ON THE CONVERGENCE FOR NULL-ARRAYS OF THE POINT PROCESSES

DAI YONGLONG (戴永隆) PEI XIANG (裴 祥)
(Zhongshan University)

Abstract

The purpose of this paper is first to establish a representation of the Laplace transform for the regular infinitely divisible point processes, and then to give a sufficient and necessary condition for convergence of the null-arrays toward a regular infinitely divisible point process.

§ 1. Notations

Let (X, d) be a separable complete metric space, and denote by \mathscr{A} and \mathscr{B} the Borel and bounded Borel sets in X respectively. A measure μ on (X, \mathscr{A}) is called locally finite if $\mu(A) < \infty$ for all $A \in \mathscr{B}$. Let M be the set of all locally finite measures on (X, \mathscr{A}) and \mathscr{M} the smallest σ -algebra of subsets of M with respect to which the real functions $\mu \rightarrow \mu(A)$ ($\mu \in M$) are measurable for all $A \in \mathscr{B}$. A measure μ in M is called a counting measure if μ (A) $\in Z = \{0, 1, 2, \cdots, \}$ for all $A \in \mathscr{B}$. Denote by N the set of all counting measures, then $N \in \mathscr{M}$, and denote by \mathscr{N} the σ -algebra $N \cap \mathscr{M}$. A probability measure on (N, \mathscr{N}) is called a random point distribution. Denote by \mathscr{P} the set of all random point distributions. Suppose P_1 , $P_2 \in \mathscr{P}$. Then a distribution P on (N, \mathscr{N}) is called the convolution of P_1 and P_2 , denoted by $P = P_1 * P_2$, if it satisfies the condition

$$P(Y) = \iint \mathbf{1}_{Y}(\mu + \nu) P_{1}(d\mu) P_{2}(d\nu)$$

for all $Y \in \mathcal{N}$. In particular we denote by P^n the *n*-fold convolution of P with itself. A distribution on (N, \mathcal{N}) is called infinitely divisible if for each positive integer n there is a $Q \in \mathcal{P}$ such that $P = Q^n$. Let \mathcal{P}_{IN} be the set of all infinitely divisible distributions. Denote by \mathcal{F}_+ the set of all nonnegative bounded functions on X with bounded support. By the Laplace transform of $P \in \mathcal{P}$ we mean the mapping

$$L_P(f) = \int e^{-\mu t} P(d\mu), \quad f \in \mathscr{F}_+,$$

of \mathscr{F}_+ into $[0, \infty)$, where $\mu f = \int f d\mu$.

Manuscript received November 9, 1981, revised March 14, 1983,

Proposition 1* ([2] Theorem 6.1). Suppose $P \in \mathscr{P}$. Then P is infinitely divisible iff its Laplace transform has the f following form

$$-\log L_P(f) = \int (1-e^{-\mu f}) \widetilde{P}(d\mu), \quad f \in \mathscr{F}_+,$$

where \widetilde{P} , called the canonical measure of P, is a measure on N satisfying $\widetilde{P}(\{0\}) = 0$ and $\widetilde{P}(\mu:\mu(A)>0) < \infty$ for all $A \in \mathscr{B}$.

 $P \in \mathscr{P}_{IN}$ is called a regular infinitely divisible distribution if $\widetilde{P}(\mu:\mu(X) = \infty) = 0$.

We denote by X^k $(k=0, 1, 2, \dots,)$ the k-times product of X, and by \mathcal{A}^k the Borel sets of X^k . A measure G on (X^k, \mathcal{A}^k) is called symmetric if

$$G(A_1 \times A_2 \times \cdots \times A_k) = G(A_{i_1} \times \cdots \times A_{i_k})$$

for all $A_1, \dots, A_k \in \mathcal{B}$ and any permutation (i_1, \dots, i_k) of $(1, \dots, k)$.

§ 2. The Laplace transform of regular infinitely divisible distribution

Theorem 1. $P \in \mathscr{P}$ is a regular infinitely divisible distribution if

$$-\log L_P(f) = \sum_{k=1}^{\infty} \int_{X^k} \left(1 - \exp\left(-\sum_{i=1}^k f(a_i) \right) \right) \gamma_k(da_1 \times \dots \times da_k), \quad f \in \mathscr{F}_+, \tag{1}$$

where γ_k , k=1, 2, ... are symmetric lacally finite measures on (X^k, \mathscr{A}^k) such that

$$\sum_{k=1}^{\infty} \gamma_k (X^k - (A^c)^k) < \infty \tag{2}$$

for all $A \in \mathcal{B}$. Here A^c denotes the complement of A.

Proof Suppose (1) is the Laplace transform of some $P \in \mathscr{P}$ with γ_k , $k=1, 2, \dots$, satisfying (2), we define for integer k>0 a measure \widetilde{P}_k on N as follows

$$\widetilde{P}_k = \gamma_k \psi_k^{-1}, \quad k = 1, 2, \cdots,$$

where ψ_k is a mapping from X^k into N such that

$$\psi_k(a_1, \dots, a_k) = \delta_{a_1} + \dots + \delta_{a_k}, \quad \text{for } (a_1, \dots, a_k) \in X^k$$

Let $\widetilde{P} = \sum_{k=1}^{\infty} \widetilde{P}_k$. Then $\widetilde{P}(\{0\}) = 0$ and

$$\widetilde{P}(\mu \colon\! \mu(A) \!>\! 0) = \sum_{k=1}^\infty \widetilde{P}_k(\mu \colon\! \mu(A) \!>\! 0) = \sum_{k=1}^\infty \gamma_k(X^k \!-\! (A^o)^k) \!<\! \infty$$

for all $A \in \mathcal{B}$. Since (1) can be rewritten in the form

$$-\log L_P(f) = \sum_{k=1}^{\infty} \int (1 - e^{-\mu f}) \widetilde{P}_k(d\mu) = \int (1 - e^{-\mu f}) \widetilde{P}(d\mu),$$

it is shown that P is a regular infinitely divisible distribution with canonical measure \widetilde{P} .

Conversely, suppose P is regular infinitely divisible and \widetilde{P} is its canonical measure. Set

^{*)} This theorem is proved in [2], where X is supposed to be a locally compact second countable Hausdorff topological space. It can be proved that the same result is still valid when X is a complete separable space.

$$\begin{split} N_k = \{\mu \colon & \mu \in N, \ \mu(X) = k\}, \quad \widetilde{P}_k(\bullet) = \widetilde{P}(\bullet \cap N_k), \\ N_{kj} = \{\mu \colon & \mu \in N_k, \ \mu \text{ has } j \text{ different atoms}\}, \quad j \leqslant k, \ j, \ k = 1, \ 2, \ \cdots, \end{split}$$

and

$$L = \{(a, \mu): a \in X, \mu \in \mathbb{N}, \mu(a) > 0\}.$$

By a measurable indexing relation $(a, \mu) \rightarrow i(a, \mu)$ we associate a positive integer $i(a, \mu)$ to each (a, μ) in L. (The definition of measurable indexing relation, see [1] pp. 229) Instead of $i(a, \mu) = s$, we write $a = z_s(\mu)$, so that $\mu \rightarrow z_s(\mu)$ is a measurable mapping of N_{kj} into X for all k, j, s, $s \le j \le k$.

Now we define a mapping φ_k of N_k into X^k as follows: if $n_1, \dots, n_j \in Z_+$, $n_1 + \dots + n_j = k$ and $\mu \in \{\mu: \mu \in N_{kj}, \mu = n_1 \delta_{z_1(\mu)} + n_2 \delta_{z_2(\mu)} + \dots + n_j \delta_{z_j}(\mu)\}$, set

$$\varphi_{n}(\mu) = (z_{\underline{1}}(\mu), \dots, z_{\underline{1}}(\mu), \dots, z_{\underline{j}}(\mu), \dots, z_{\underline{j}}(\mu)) \in X^{k},$$

Since φ_k is measurable, it induces a measure $\gamma_k'(\cdot) = \widetilde{P}_k \varphi_k^{-1}(\cdot)$ on X^k . Denoting by γ_k the symmetric version of γ_k' , it is not difficult to verify that γ_k is locally finite and $\widetilde{P}_k = \gamma_k \psi_k^{-1}$, hence the Laplace transform of P can be expressed in the form (1).

To prove (2), taking $f(a) = t\mathbf{1}_A(a)$ for $A \in \mathcal{B}$, we have

$$egin{aligned} -\log L_P(f) &= \int (1-e^{-\mu f}) \widetilde{P}(d\mu) = \sum_{k=1}^\infty \left(1-e^{-tk}\right) \widetilde{P}(\mu(A)=k), \ &-\log L_P(f) = \sum_{k=1}^\infty \left(1-\exp\left(-\sum_{i=1}^k f\left(a_i
ight)
ight)\right) \gamma_k (da_1 imes \cdots imes da_k) \ &= \sum_{k=1}^\infty \sum_{j=1}^k inom{k}{j} (1-e^{-tj}) \gamma_k (A^j imes (A^o)^{k-j}), \quad t \geqslant 0. \end{aligned}$$

Since

and

$$\sum_{k=1}^{\infty} \widetilde{P}(\mu(A) = k) = \sum_{k=1}^{\infty} \sum_{j=1}^{k} \binom{k}{j} \gamma_k(A^j \times (A^c)^{k-j}) = \sum_{k=1}^{\infty} \gamma_k(X^k - (A^c)^k),$$

it follows that $\sum_{k=1}^{\infty} \gamma_k (X^k - (A^c)^k) = \widetilde{P}(\mu(A) > 0) < \infty$.

§ 3. Convergence of Null-Arrays

Let $P \in \mathcal{P}$. A set A in \mathcal{B} is called a continuous set with respect to P if $P(\mu: \mu(\partial A) > 0) = 0$, where ∂A denote the boundary of A. Denote by \mathcal{B}_P the class of all bounded continuous set of P.

A triangular array $(P_{n,j'}n=1, 2, \dots, 1 \le j \le k_n)$ of distributions on (N, \mathcal{N}) is called a null-array if

$$\lim_{n} \max_{1 < j < k_n} P_{n,j}(\mu: \mu(A) > 0) = 0$$

for all $A \in \mathcal{B}$.

Proposition 2 ([1] Theorem 3. 4. 2). Let $P \in \mathscr{P}_{IN}$ and $(P_{n,j})$ be a null-array. Then

$$\underset{1 \leq j \leq k}{*} P_{n,j} \stackrel{W}{\Longrightarrow} P$$

iff

$$\underset{1 \leq j \leq k}{*} (P_{n,j})_{A_1, \dots, A_m} \xrightarrow{W} P_{A_1, \dots, A_m}$$

for all $m \ge 1$ and disjoint $A_1, \dots, A_m \in \mathcal{B}_P$, where $(P_{A_1, \dots A_m})$ are the finite dimensional distributions of P, or equivalently, iff

$$\sum_{1 \leq j \leq k_n} (P_{n,j})_{A_1, \cdots, A_m} ((\bullet)) - (0, \cdots, 0)) \stackrel{W}{\Longrightarrow} \widetilde{P}_{A_1, \cdots, A_m} ((\bullet) - (0, \cdots, 0)),$$

where \widetilde{P} is the canonical measure of P and $(\widetilde{P}_{A_1,\dots,A_m})$ are the finite dimensional measures of \widetilde{P} .

Theorem 2. Let $(P_{n,j})$ be a null-array of distributions on (N, \mathcal{N}) and P be a regular infinitely divisible distribution having Laplace transform (1). Let

$$\lambda(\cdot) = \sum_{k=1}^{\infty} \gamma_k(\cdot \times X^{k-1}).$$

Then $\underset{1 < j < k_n}{*} P_{n,j} \xrightarrow{W} P$ iff for all finite sequences A_1, \dots, A_m of pairwise disjoint sets in \mathscr{B}_{λ} (the all bounded continuous sets of λ) and all nonnegative integers $h_1, \dots, h_m, h_1 + \dots + h_m > 0$, the relations

$$\lim_{n} \sum_{1 < j < k_{n}} P_{n,j}(\mu; \mu(A_{1}) = h_{1}, \dots, h\mu(A_{m}) = h_{m})$$

$$= \sum_{h=0}^{\infty} \frac{(h_{1} + \dots + h_{m} + h)!}{h_{1}! \cdots h_{m}! h!} \gamma_{h_{1} + \dots + h_{m} + h} (A_{1}^{h_{1}} \times \dots \times A_{m}^{h_{m}} \times ((A_{1} \cup \dots \cup A_{m})^{o})^{h})$$

are satisfied.

Proof For any $A \in \mathcal{B}$, we have

$$\gamma_k(A \times X^{k-1}) \leqslant \widetilde{P}(\mu: \mu(A) > 0, \mu(X) = k) \leqslant k\gamma_k(A \times X^{k-1}), \quad k=1, 2, \dots, k=1,$$

hence

$$\lambda(A) = \sum_{k=1}^{\infty} \gamma_k(A \times X^{k-1}) \leqslant \widetilde{P}(\mu: \mu(A) > 0),$$

and $\lambda(\partial A) = 0 \Leftrightarrow \widetilde{P}(\mu: \mu(\partial A) > 0) = 0$, so that $\mathscr{B}_{\lambda} = \mathscr{B}_{\widetilde{P}}$.

Now let

$$e_1 = (1, 0, \dots, 0), \dots, e_m = (0, \dots, 0, 1),$$

and $H = (h_1, \dots, h_m)$ be in Z^m , $h_1 + h_2 + \dots + h_m > 0$. Then $H = h_1 e_1 + \dots + h_m e_m$.

If P is a regular infinitely divisible distribution having Laplace transform (1), then by definitions of ψ_k and γ_k , we obtain

$$\begin{split} \widetilde{P}_{A_{1},\dots,A_{m}}(H) &= \widetilde{P}(\mu : \mu(A_{1}) = h_{1}, \dots, \mu(A_{m}) = h_{m}) \\ &= \sum_{h=0}^{\infty} \widetilde{P}(\mu : \mu(A_{1}) = h_{1}, \dots, \mu(A_{m}) = h_{m}, \mu(X - (A_{1} \cup \dots \cup A_{m})) = h) \\ &= \sum_{h=0}^{\infty} \gamma_{h_{1}+\dots h_{m}+h} \psi_{h_{1}+\dots +h_{m}+h}^{-1}(\mu : \mu(A_{1}) = h_{1}, \dots, \mu(A_{m}) = h_{m}, \mu(X - (A_{1} \cup \dots \cup A_{m})) = h) \\ &= \sum_{h=0}^{\infty} \frac{(h_{1}+\dots +h_{m}+h)!}{h_{1}! \cdots h_{m}! h!} \gamma_{h_{1}+\dots +h_{m}+h} (A_{1}^{h_{1}} \times \dots \times A_{m}^{h_{m}} \times (X - (A_{1} \cup \dots \cup A_{m}))^{h}). \end{split}$$

Now the assertion of the theorem follows from Proposition 2.

Corollary. $P \in \mathscr{P}_{IN}$ is called a G-P distribution if $\widetilde{P}(\mu: \mu(X) > 2) = 0$ (see [3], [4]). If P is a G-P distribution, then $\underset{1 \leq j \leq k_n}{*} P_{n,j} \stackrel{W}{\Longrightarrow} P$ iff for arbitrary disjoint A, B $\in \mathscr{B}_{\lambda}$, the following conditions are satisfied

1.
$$\lim_{n} \sum_{1 \le i \le k} P_{n,j}(\mu: \mu(A) > 2) = 0;$$

2.
$$\lim_{n} \sum_{1 \le j \le k_n} P_{n,j}(\mu: \mu(A) = 1, \mu(B) = 0) = \gamma_1(A) + 2\gamma_2(A \times (A \cup B)^c);$$

3.
$$\lim_{n} \sum_{1 \le i \le k_n} P_{n,j}(\mu: \mu(A) = 1, \mu(B) = 1) = 2\gamma_2(A \times B);$$

4.
$$\lim_{n} \sum_{1 \le i \le k_n} P_{n,j}(\mu; \mu(A) = 2) = \gamma_2(A \times A)$$
,

where $\lambda(\cdot) = \gamma_1(\cdot) + \gamma_2((\cdot) \times X)$.

§ 4. The Stationary Case

Let $X = \mathbb{R}^m$. We denote by \mathscr{R}^m and $\mathscr{B}(\mathbb{R}^m)$ the Borel σ -algebra and the class of all bounded Borel subsets in \mathbb{R}^m respectively.

Lemma. Let $\gamma_k(\cdot)$ $(k \ge 1)$ be a symmetric measure on $((R^m)^k, (\mathcal{R}^m)^k)$ satisfying the following conditions:

1. For all $t \in \mathbb{R}^m$ and $A_1, \dots, A_k \in \mathbb{R}^m$,

$$\gamma_k((A_1+t)\times\cdots\times(A_k+t))=\gamma_k(A_1\times\cdots\times A_k),$$

where $A+t=\{s: s\in R^m, s-t\in A\};$

2. For all $A \in \mathcal{B}(\mathbb{R}^m)$, $\gamma_k(A \times (\mathbb{R}^m)^{k-1}) < \infty$.

Then $\gamma_k(A \times (R^m)^{k-1}) = hL(A)$ for all $A \in \mathcal{B}(R^m)$ and some constant h, and $\gamma_k(\cdot)$ can be expressed in the form:

$$\gamma_k(\cdot) = (I_l \times C_k) \varphi_k(\cdot),$$

where L is the Lebesgue measure on R^m , C_k is a symmetric locally finite measure on $(R^m)^{k-1}$, and φ_k is the following mapping

$$\varphi_k: (x_1, \dots, x_k) \rightarrow \left(\frac{x_1 + \dots + x_k}{\sqrt{k}}, \frac{x_1 - x_2}{\sqrt{k}}, \dots, \frac{x_1 - x_k}{\sqrt{k}}\right).$$

Proof Let $A \in \mathcal{B}(\mathbb{R}^m)$, From condition 1, it follows that

$$\gamma_k((A+t)\times(R^m)^{k-1})=\gamma_k(A\times(R^m)^{k-1})<\infty,$$

hence we have $\gamma_k(A \times (R^m)^{k-1}) = hL(A)$ for some constant h.

Now if we denote $\tilde{\gamma}_k(\cdot) = \gamma_k \varphi_k^{-1}(\cdot)$, then

$$\widetilde{\gamma}_k((A+t)\times B) = \widetilde{\gamma}_k(A\times B)$$

for all $t \in \mathbb{R}^m$, $A \in \mathcal{R}^m$, $B \in (\mathcal{R}^m)^{k-1}$. Therefore, for fixed $B \in (\mathcal{R}^m)^{k-1}$,

$$\tilde{\gamma}_k(\cdot \times B) = L(\cdot)C_k(B)$$
.

It is easy to verify that the set function $C_k(\cdot)$ is a symmetric locally finite measure on $(\mathbb{R}^m)^{k-1}$, and hence

$$\widetilde{\gamma}_k = L \times C_k, \quad \gamma_k = (L \times C_k) \varphi_k.$$

Combining Theorems 1 and 2 with lemma we can deduce the Laplace transform for the stationary regular infinitely divisible distribution P, therefore, the necessary and sufficient condition under which the null-array of distributions convenges to P can be obtained.

References

- [1] Matthes, K., Kerstan, J. and Mecke, J., Infinitely Divisible Point Processes., Wiley, New York, 1978.
- [2] Kallenberg, O., Random Measures., Akademie-Verlag, Berlin, 1975.
- [3] Milne, R. K., & Westcott, M., Further results for the Gauss-Poisson processes, Adv. Appl. Paob., 4 (1972), 151—176.
- [4] Newman, D. S., A new family of point processes which are characterized by their second moment properties, J. Appl. Prob., 7(1970), 338—358.