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Abstract

In this paper, under some conditions of solvability, the local time existence and uniqueness
theorem is proved for general types of first initial-boundary value problems for quasilinear
hyperbolic-parabolic coupled systems in two variables.

§ 1. Introducﬁon

We have proved in [1, 2] the local time existence and uniqueness theorems for
initial valae problems and seoond_” initial-boundary value problems for quasilinear
hyperbolic-parabolic coupled systems. In this paper we disouss first initial-boundary
value problems for this kind of systems.

As in [2] we consider on a rectangular domain

 RG)={(, 2)]0<¢<?, 0<w<1} 1.1)
the following quasilinear hyperbolic-parabolic coupled system

' ;j(:,,(t @, U, 'v)( ou; +0MG, 5, u, v, v,)— )

={,(¢, », u, 'v)( +7\.z(t @, U, v, %)'—->+.Ulz<t w, U, V, V)

(=1, -, m), (1.2)
ZZ; —a(t, o, u, v, v;) 222 =b(t, @, u, v, v,), (1.3)

Without loss of generality, the inital conditions may be written as
| t=0: =0 (j=1, -+, n), (1.4
’ =0, 1.5

Moreover, we can assume that |
a(0, s, 0, 0, 0) =1, (1.6)
b(O) m} 0’ 0) 0) =O) ] (1°7)
1, if I#7, :

' =dy= 1.8
L0, 0, 0, =0y 0127 (1.8
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The boundary conditions are as follows:

on p=1: up=Gr (¢, u) (r=1, -, h, h<<m), (1.9)
v=pa(®); | | (1.10)

on w=0:
us=Gs(¢, u) (§=m+1; s, n, m=>0), (1.11)
v=g1(t). (1.12)

Here, the boundary conditions for v are of Dirichlet type, so this problem is called
the first initial-boundary value problem. |
We assume that the following conditions are satisfied:
(1) Conditions of orientability '
- a0, 1, 0, 0, 0)<0, 2:(0, 1, 0, O, 0)>0 (q:=1,. voey b )», (1.18)
v s=h+1, =, m, ‘
Fe=1, e, m )

2:(0, 0, 0, 0, 0) <0, 24(0, 0, 0, 0, 0)>01{ &
s=m-+1, -, n,

(1.14)

As usual, the characteristic directions on the boundary are colled departing
characteristic directions, if as long as ¢ increases, they point towards the interior of
the domain Thus, on the boundary, the number of boundary conditions for v is
equalto the number of departing characteristio direction (cf. [8]). For example, on
o=1 the number of boundary conditions for v is equal t0 h, the number which
appears in (1.13) . |

(2) Oonditions of compatibility

G, (0, 0)=0, G50, 0)=0 (r=1, oo, By §=ml, e, 0), (1.15)
28 0 0)+31-%%7 (0, 0)y(0, 1, 0, 0, )= (0, 1, 0, 0, 0)
3t =1 a‘uj ' 3 : :
<;=1) ) h); (117)
Qs i oyt 888 0 0y (C (0 0. 0. 0.
=~ (O) 0>+2 (0: O):w.’i(ox O’ O: O: 0) "'"#’S(O: Ol 0; 0) 0)
ot = oy o
(3=m+1, -, m), , © (1.18)
P (O)=0 (=1,2). -~ S (1.19)
(8) Conditions of solvability ' '
dot aﬁ,—gif (©, 0)‘?—‘-0 (7, 7=, -, B, (1.20)
det | g3 — gff (0, 0)‘#0 (8, ¥ =m+1, -, n), - @.2n)
SI . .

Conditions (1.20), (1.21) imi)ly that boﬁndaiy conditions (1.9), (1.11) can
be rewritten as follows: | ' : '

on o=1: _ L - _
wpm Hy 5, w) Gy ooy By Bbebdy e m), o (122)
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on g=0:
A, w) (=, wor, my $=mAl, oo, ), (1.28)

(4) Cond1t1ons of smoothness: The coefficients of the system and the boundary

conditions are suitably smooth. The detail will be explained later on.

‘The main aim of this paper is-to prove that under the preceding hypotheses
L— —(4) the first initial boundary yalue problem (1.2)—(1.5), 1. 9) —(1.12)
admits a unique classical solution on R(®) where 0>0is sul‘oably $mall.

§ 2. Some estimations for thé solutions of first
initial-boundary value problems for heat equations

At first, we oonsider the following first initial-boundary value problem for heab

equations

o _ & T T

5 S, %), o @.1)

) t=0: =0, ‘ . 2.2y

g=1: =0, L (2.8)

w=0: v=0, - @.4)

Lot Go(t, @; 7, £) be the fundamental solution of the heat equatmn o
(o= : o

g T !

@ty a5 7, ) ww s T @, @D

then . '

GG, o 7, &)= __2 [Go(t, & 7, 2n+E) —Go(t, o5 7, 20—8)],.~  (2.6)

N, o =, §)—— E [Qo(t, @3 T, 2n+E) —I—Go(t w; 7, 2n—&)] 2.7y

are the Green function and the Neumann funocbion for the first and the secomi
initial-boundary value problem of the heat equamon respectively. G (¢, o v, £), as a

e
or #=1; on the other hand, G, o7, £), as a function of (v, £), satisfies the adjoint

function of (¢, ), satisfies the heat equatlon a@? aa for t>7 and G@=0 for =0

oG _ aﬂGs for v<t and G=0 for £=0 or {=1. Besides
o o5

oG oN 4G _ _oN | \
o ag’ % om° (2-8)

Let . ‘ 2 _
Vo(t, ©)=t % exp{ 167 }, | . (2.9)
a direct caloulation gives |

[V o#=1v= £ (1>0), 2.10)
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ﬂﬁ Velt=m, §>d§d7=%\_{—§“t3—gz (if 0<3), (2.11)

t o0 ' ' 3—o
L [ Vot—, i de=5YT 55 (fo<gand 0<y<s), (2.12)
=Y J=ee o C

By (0 =8
L "j__ Vo (t—1, £)dE dv< 80*_/_—“”3— YT (if 0>8 and 0<y<t:<t). (2.18)

We can find the following two lemmas in [2] .
Lemma 2.1 It holds on R (o) that
I ai+jG(t: v T, é) ai-HN(t) @; ’7) §)
. o' o ox' o
(-8 06 | |@—E)* I |
(t—7)® oo’ ot (t—v)° ow'ol |

<P¢jV'¢+25+1 (t—T) T— g) (t>7) ’ (2 . 14)

H

< PiusV isasps-na G —7, —E) ((=7),

)

_ 2.15)
where Py, Py are positive constants.
Lemma 2.2 It holds for (¢, ) € R(Jy) that
f|on. 0 |dr<0 (o0 2
0 '—a—w— (t, m; 17, ) T\ (w# ), ( .16)
| oV D ldr<0 (@1 2
o "%‘ ( y @ '_v: ) T (CU?E ): ( '17)

where constant C depends only on J,.
In what follows we need some a priori estimations for the solutions of first

initial-boundary value problems for heat equations.
‘Lemma 2.3 Suppose that on R(3,) b(t, ) is Holder continuous with respect to
and to & with the exponents —%— and o respectively (0<a<<l) and
’ 5(0, @) =0, (2.18)
then the first initéal-boundary value problem (2.1)—(2.4) admits on R(do) @ unique

classical solution

v, = [ @@ o5, O, Hikdr 2.19)
and, it holds that v |
D6, 0= [ ¢ uv, 006 O, (2.20)

P04, )= [ 29 07, 6 G, b5, ) ds
—l—j: [—%‘Zg—(ﬁ, &; T, O) - aalZ (t; v 7, 1)]6(7: m)dr; » (221)
D, a=[ [ 20 55606 -0 )

+.j:a-<t, 2,0, £)b(, £)dE, | (2.22)
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9 . N . Trs ' .
Moreoyer, on R(%), v, e 3 : and W are continuous, i Holder continuous
with respect to ¢ with the exponent 1’;“ , ZZ and 22/"

respect to ¢ and fo 4 with the exponents % and o respectively, denoted by »€ g2t
with the notation in [1, 2] ‘

This lemma can be proved by means of the properties of the Green function and
the Neumann function. The last part of the conclusion follows from the proof of the
following lemmas, as for the rest we refer to [4].

Lemma 2.4( first a priord estimation). Under the wssumpmon of Lemma 2.8, if |
v=v(t, &) is the solution of the first imitial-boundary value problem (2.1)—(2.4) on
R(3o), then for any 3(0<<8<<d,) we have

lv|== ot “,,,",‘_ua’v H<C’187||b[[ onR(S), | | (2.23)1

where constant Oy depends only on Jo.
Proof TUsing inequalities (2. 14) and (2. 10), (2.28) follows from expressmns
(2.19) and (2.20). ‘
- Lemma 2.5 (second @ priori est@mwtfaon) Under the assumpt@on ‘of lemma 2.8, for
any 3 (0<3<<do) we have
“ +’ +Hf [ am] |

<0, (|d| +62H“[b]) (mbR(_S), (2.24)y
where constant Oy depends only on So. '
Proof By means of (2.15), (2.11) and Lemma 2.2, (2.21) gives

Zo < GiEzmI+ ). @)

v

Noticing that v (¢, ©) satisfies the heat equation (2.1), we can also get a similar

estimation for %% Here and 'heréaftei', d; ('13=1,\2, -.+) denote constants depending

only on 8.
In a similar way as in [1], we have . .
| H7[ v ]<dznz,|1 (2.26)

(2.24) follows from the combination of (2.25) and (2.26).-
Lemma 2.6 (third a priori estimation). Under the assumpt@on of lemma 2. 3

for any 8(0<<3<do) we have

|rv|2 = |fv|1+H [ ]+Hml_-%%]+.ﬂm[gig] |
<Os(Jb] -+ H"[b]) 0”_3(5), . 2.27)

where Cs is @ constant depending only on do.
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Pfroof First of all, we estimate H,z 5 [glv } We got from (2.20)
v (oG, : _ \
D, o= [ 226, a5 7, 6 0, O b, H)dds
(2.28)

t (1 .
*‘LL%% @, v, £)b(, £)dédv=I1+1,,

Suppose d=>11=>13=>0 and let y= 6, —1,.
- If t—2y =13—y=0, We have
I (b1, ©) —I1(ts, ®)

=j" j“‘@G‘(ti,w 5, &) (b, &) —b (s, £))dE do

-2y
(t2

[ [, w5, & s, <00, D)

Jta—vJ
rta—y (1

JO JO
(ta—y

_ via%i,m 7, £) (b, &) —b(ts, O))dl v

Jo

= Iyg+T1a+T1g4T1a,

s

[T (B, v 6~ (1, 03 7, &) (b(s, §)~blts, ) dv

(2.29)

By means of Lemma 2.1 and (2. 10) (2 13) 11; is easy to obtain with a similar way

ag in [1] that - :

]Iiil, II:1.2I, 1113l<d3’)’ Ht [b]
Moreover :
114+12'('t1, @) - Ig(tg, @)

~[if2 % (4, 25 v, Ob(t, f)d&h

0J0

"tn

- f o, 1 % DY (o, O

JO
(ta—Y

.JO

o[t [R5 D o, £ b, )ik s

0%

“Lf f 06 (ta, 25 7, ) (5, £)dbdw=T s+,
~-vJO ow ) . .
From Lemma 2.1 and (2.10)—(2 .13) it follows that

lfil<d47 Hz [61.

ta—27

Noticing (2.18) we have
o e a0l Lo
|7l <ds BF 8] 6 | LVz(w—'f, tam 7)A€ d
it 4

[ a (0 : 1 o I3 —
<d HF1 [ (=) oy HF OO 45 (WY —

1-.-a 1+

—d, H?[b] 8} v ”
«/t2+7 + by

_ Jiag(t1,¢ 7, £) (b(ti, £ — b(tz, E))dfdtv ,

Nta )
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Since s>y, We got .
Tl <dn ® HFD.
The combination of the preceding formulae gives that

|22 (o, ) & (1, o) \<d87 P E¥s]  for t—2y>0.
om Lemma 2.1 and (2. 10)—(2.18) it follows direotly that

(2.30)

If 4y~ 2y =ta— <0, Fr
N a(t, @) —Ta(ts, @) |<de¥™™ HETS,
Ig(ti, (U) Ig(tz, CU)
f1 (1
= [*[128 (1, 7, OB, D

j::jz o (s, @ 7, §)D(, £)d¢ dv
ﬂj::ﬁ e o (ta, @ 7, €) (B (s, €) —0 (s, 5))015037;

'—’)’0

Usmg Lemma 2.1 and (2.10)— (2 13) we getb
| 81] <dsov -Ht [b]j (tg-—'v)-f dv

<2y * HED]. (2.81)

Moreover, (2.18) gives

| 84| <dasHE 5] ﬁj (t2—1)7d7<d127 S H7 0], (2.32)

“Thus, (2.80) stays still yalid for #;—2y<0. Finally, we obtain

E#[ 2] < BB o RO).
Now we estimate H“[ g ] (2.22) gives
'éqtl (t) w) =L1<t: w) +L2(f’; (U),

-where

L., o= 152, @ 5 © 0, O =30 )&,
Luth, @)= [ @, @ 0, b, O,

Ag above, sﬁppose 81, >1,>0 and let y=t3—1ta,

If ty—2y=1ta— >0, We have :
o (feG, |
Tati, &=t )=, [ 5200, & 7 DO, =Dl DY

_ jta _ﬁ (%?‘ (bo, 05 7, €) (b (v, &) —D(ta, £))dE du

-2y

[ 75'd



84 CHIN. ANN. OF MATH. Vol. 5 Ser. B

+ﬁa-7 ,[1 (?.G_ (ty, @ 7, &) — %% (ba, w3 7, §)> (B (v, €) —b(ts, §))dé dv
[T 0w, £ (B, =B, D)

0
=L{’+LP + LP + L,
It follows from Lemma 2.1 and (2.10)—(2.13) that

| |LP|, | L2 | <duy*HEB],
“and

|L§3>|<d1511‘2[b] f‘f’ 7{ %’g-(t, & 71, &) (ba—7) T df dor 0t
<diy HE[B], |
Morsover | v
L= [ [ 5t £ (B, -G, )
~ [, @5, 2 =y, O~ Gt 3 0, £) B, &) ~bltn, E)E,
hence

L® Ly (b1, @) —La(ta, @) ,
~[,6@, 50,00, O-b o)

[, @ 0 0, -Gt 45 0, ), D

= kg -+ ks,
It is easy to see that

| by <dwy*HE[B],
[ Ba| <ds #HE 5] fﬁ %—?— (b1, @ 0, &)dE di

<dyp yZHZ[0] 3
thexefore

o v %
206, @)~ 22 (1, ) | <dao v P EE L8] for 11270, (2.83)
If ¢ — 2y =13~y <0, noticing that
Ll (tl) w) - Li (t2) w)

”ﬁ aacj (1, @ 7, &) (v, &) ~b(hy, ©))dE do

'.Uowtz, 5 % £ 0, &) =blt, )& dr,
Ly (ts, ) — Ly(ts, @) - _ | .
_=J1 G (ts, 5.0, )b (s, §)d§—J1G(t2, @ 0, £)b(ts, £)dE

and using (2.18), it follows from Lemma 2.1 and (2.10)—(2.13) that (2.88) holds
also for t1—27<0
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Hence, we get. :
HH[ 2 |<an HF(B) on RO
Let y= (w1 —ws)?, |
If t>v, then

Li(t, ) — Ly (3, @2) -

=f r 3% ws v, &) (b(x, &) —b(, £)d dv

_f:_y Jiag(t a5 T, 5) (b(z, £)—b(, £))dédv
+j‘:’7 J'o<aa_cj (b1, @13 T, €) — 3G (t w3 T, §)>(b(ﬁy &) —b(, £))dE dm'
=L11+L12+L13.

'Not’io’ing
| Luo= | " g:g @, @ v, &) (b(z, £ —b0, &) ddvda,

0

o
it is easy to see that

| Ly, |Laal, lL13|<0122?’%H?[b],
that is :

|LsCt, @) — T, @s) | <daoy HETD].
If 1<y, estimating Li(t, @) and Ly (t, @) respectively, we ocan obtain the same
result. " - :
Moreover, for t=>vy we have

Tt ) ~InCt, o9 | = | [, 55 @ o 0, ObC, O

< oy H i [b] ')’ 3
by means of estimating L (¢, wy) and Ly (%, @3) reSpectlvely, it is easy . to 66 tha;i; this
estimation stays still valid for ¢<y.
Henoce, we get

Bz[ 2 )< HF(B] on RO).
Using the fact that » (¢, ) satisfies eq-uatioh (2.1), it follows immediately that
me[ 2 2 |<dHo[b] on B().

‘The proof of Lemma 2. 6 is completed.
Now we turn to the following first 1n1t1a1—boundary value problem for heat

a\equatlons
' oV _ ' '
- 8 5 +b(t »),. (2.34)
J¢=0: v=0, - L - (2.8b)
w=0: v=04(), _ ‘ (2.36)

o=1: v=pa(), o (2.87)
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where we assume that b(f, «) satisfies the same hypotheses as in Lemma 2.3,

A 0#% and

?(0)=0, g () =0 (i=1, 2), (2.38)
In this case, by means of a simple transformation of unknown function
T=0— (@pa(§) + L—2) pu (1)), 2.39)

we can reduce problem (2.84)—(2.87) to problem (2.1)—(2.4), hence we have
Theorem 2.1 Under the preceding assumptions, first initial-boundary wvalue

problem (2.84)—(2.87) admits @ unique solution v=v(t, ©) €C** on R(y) and the

Sollowing a priort eseimations hold on R(8) (0<<d<8):

o] <Gs8%([8] + o], @)
|0]4<0a(|B] +8T H2[B] + o), (2.41)
|9]s<C5(|b] + H*[6] + | p)s+ HE[51), (2.42)

where Cy, Cs and Cj are constants depending only on d.

§ 3. Existence and uniqueness

By means of the a priori estimations established in § 2 for the solutions of first.

initial-boundary value problems for heat equations and the a priori estimaitons
egtablished in [2] for the solutions of mixed inifial-boundary value problems for

linear hyperbolic systems, we prove in this section the existence and the uniqueness.

of the solution for the first initial-boundary value problem for quasilinear hyperbolic-
parabolio coupled systems.

Suppose that the coefficients of system (1.2), (1.8) and the boundary condmons:-

satisfy the following conditions of smoothness on the domain under consideration:

(1) L@, o, u, 0), LG, @, u, v) EO'H% with respect to all arguments;

G) MG, 2, uw, 0, 1) <¢=Q?.> nd Pa O 0N O continuous, A; is:

ox on’ ou’ v’ or
Holder continuous with respect to ¢ with the exponent = o oM , M are Holder
2° 0w’ ow,’
continuous with respect to ¢, @, u, », r with the exponent = . is Holder continu--

2° or

ous with respect to (£, #, u, ») and r with the exponents < and 1 respectively; the-
’ p ¥

2 2
same hypotheses for u;

d@w oo ©Oo O

@D o, o, v, 0, ) ana 22, 22, L0, B0

- continuous with respect to ¢ with the exponent —; the same hypotheses for b,

2’

are oontinuous, & is Holder:
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Gv) G: (¢, w) (r=1, -+, k) and Qs (¢, w) (§=m+1, -+, o) belong to O™? with

respect to all arguments;

™ m@) €O =1, 2.
We have the following

Theorem 3.1 (Existence and Uniqueness Theorem) 'Suppose that the coefficients
of the system amd the boundary conditions satisfy the preceding conditions of smoothness.
Suppose further that conditions of oréentability (1.18), (1.14), conditions of compati-
bilisy (1.18)—(1.19) and conditions of solvability (1.20)—(1.21) hold. Then, there
ewists @ positive number 8,<do such that on R(3,) first fbmtwl boundary value problem.

(1.2)—(1.5), (1.9)—(1.12) admits a unique solution u€ O f, € O
Progf Asin [2], without loss of generality we may assume that the following:
contraction condition holds:

e Gy n | 96 . |
0= Eg; <j 2 2 I (0, 0)D<1, -(3.1)1
m+l<s<n
Moreover, according to conditions of or1enta,b111ty (1.18), (1.14) we have
do= min {—2(0, 1, 0,0, 0), As(0, 0, 0, 0, 0)}>0, (8.2)
mii <akn .
Hence, we can choose >0 suitably small such that o
6;= (L+dgte)d<1, . (3.8)
0= (1+2d5 e +dy%e) 0 <1, . (8.4)

Introduce the following sets of functions on R(d):

_ ou ou W v _ ol
5@ =0 lu 2, L0, 5 B Z5E0 U0, 9 =00, 0, }
(8.5)

wEC™E, 00, u(0, a;)~tu(0 ) =0

24(8) ={ (u, ®) (3.6).

D10, 8) =0, 5, 0, 0, 0), 2 (0, ) =0,
(u, ’0)621(5) i]u|l<Ao, feal"<As, Julpq <4 }
3.7)

2(3) -—{( U, )
|v]<Bo, |v|1<B1, |v]2<B,
where 4;, B, (6=0, 1, 2) are positive constants t0 be chosen later on W1th Ae<< 4y
<A2, B0<B1<Bz and

Juli= Tl + | 22|+ 52

fultpo=buls+ 22 25 +o (m2] 57 ]+Hﬁ[am])

in which )
HE[f1=HSL 1+ HILS],
For any (u, v) € 21(3), setting
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’Zlf(t: w)_'::cli(ﬁ: @, &:(ti -m): 6@: W)),
Zl(t: w)=Zl(t: @, &’(t: (I)), 6@: a’)):

5 ~ ~ ov
M@, @) =Nt 9, u(t, 2), v0, 2), -0, 2)), - »
4 ’ l< 6:1: ) | : (3.8)

(b, @) =y (t, w, u(t, w), v(t, »), —33’- (t, w)), | |
50, 0)= b(t @, U, ), 5, o), (ﬁ a;)) [a ( «7 5, %2-)—1]%,

we solve on R(8) the following linear problem

300, o) (2 406, 92) -0, @) (G, o S2) it 9 (5.9)
v (Z=1i 0“) n)’

%’:‘_%4@’ o), | (3.10)

t=0: u;=0(j=1, -, n), (8.11)

] =0, (3.12)
w=1: lez,,(t ;=G (¢, @, 1))+Z‘({,;(t 1) —87,) (¢, 1)

=) G=1 e k), (8.13)

| v=pa(t), (8.14)

o=0: 31luy(t, Ou=GaCs, 4G, o>>+z<cs,<t 0) —34,)iis ¢, 0) |

L =) E=m+1, -, ), (3.15)

v=ps(%). (8.16)

(3.10), (8.12), (8.14), (8.186) is a firsh initial-boundary value problem for heat
equations discussed in § 2, hence, by means of Theorem 2.1 it possesses a unique
solution v (¢, @) € C*** on R(8) which satisfies estimations (2.40)—(2.42). On the
other hand, (8.9)_ (8.11), (8.18). (8.1b) is a mixed initial-houndary value problem
for linear hyperbolic systems handled in [2], hence, it admits a unique solution

u €& 0% on R(8) which satisfies the following estimations:
Jul < W+E ) [9] + (Ho+Ed) 5] + Kudl i, (3.17)

lul3< (1+d5ts+ Rad®) ] + (ot Bad) (L+5]0), (3.18)
Juls, g < < (1+2d5e+d5 + K 30%) HE[f]
+ (Ko + Kd) (L[] + 2] ), (8.19)
in which dy is defined by (3.2), Ho=2 sup 1&.(t, ®)], Constants K, and K,

(t w)eR(ao)
depend only on the norms | Fo| and | ] on R(8) respectively, constant K,

depénds only on the norm |I,| and H? [I,] on R(3,), K5 depends only on | Iy
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end HE [I';] on R(3,), where

o~

I'0={Xl; Zl; /-l/l; ~ 1 p) 1 }:
0)

7(t1 1) X@@:
p_fp By oy oy & L g 1-} |
{CU’ o’ ow’ & oL’ o’ M, detlzljl ’ (8.20)
f‘s—I‘iU{a)\‘l ~l: a’wl: = 1 F PN 1 }.
o’ Nt 1) MG, 0)

By means of problem (3.9)—(8.16) we define an iterative operator I": (u ).
=T (u, ©). Obviously, maps Z,(8) to itself. "
From the definition of b (¢, @) it follows that for any (4, ) E 2(9),

[B]<Di(do, Bo)+Da(4s, BOSF, (3.21)
He[B]<Dy(ds, B)+Da(4y, Ba)d*, (3.22).

where, for instance, D; (4o, Bo) denotes a constant depending only on A4, and By.
Substituting (8.21), (8.22) into estimations (2.40)—(2.42), we get

|v| <Ds(4:1, Bi) 3%, (8.28):
|v|1<<De¢(4o, Bo)+Dr(41, By)d?, (3.24)
| v} 2<<Dg (41, By)+Ds(4s, B2)dZ, - (8.25)

It follows from (8.20) that
||f0H<D10(A0: BO):

1750, |5, BELS<Du(4s, By, (3.26)
HE[F,1<Dis(4s, By).

Bosides, , _
N (8) | 641+ Di(4o) +D1a(4s, B1)S%, (8.27)
a4, , 4]
HE [ (£)1<0As+Dss(4s, By) +Dig(ds, Bs)d" (8.28).
and the same estimations for $§ (¢). Hence, estimations (3.18) and (8.19) give
|| 3<0141-+Dir (4o, Bs) +Dis(4s, B1)8%, (3.29).
|u] 148 <0343+ Dys (41, Bs) +Dyy(As, By)d® (3.80).

and from (8.29) and (3.11) we have
|u)| <Das(41, B1)d. (3.81).
By means of the preceding estimations (8.28)—(3.25), (3.29)—(8.81) we can
choose as in [2] constants Ao, Ai, A, Bo, By, Bs and 3, such that the operator T
maps 2(8*) into itself. Then, according to Leray Schauder fixed point theorem (of.
[6, 6]) we get as in [1] and [2] the existence of the solution for the first initial--
boundary value problem for quasilinear hyperbolic- paraboho coupled systems.
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The uniqueness of the solution can be obtained in a similar way as in [2], we

omit the detail here.

[1]
[2]
[3]
[4]

£51]
Lé]

References

Li Tatsien, Yu Wentzu and Shen: Weshi Initial value problems for quasilinear hyperbolie-parabolic
coupled systems, deta Math. Appl. Sinica, 4(1981), 821—888.

Li Tatsien, Yu Wentzu and Shen Weshi, Second initial-boundary value problems for quasilinear
hyperbolic-parabolic coupled systems, Chinese Annals of Math., 2:1 (1981), 656—90.

Lee Datsin (Li Tatsien) abd yu Wentzu, Boundary value problems for the first order quasi-linear

- hyperbolic systems and their applications, Journal of Pifferential Equations, 41 (1981), 1—26.

Gevrey, M. Sur les équations aux dérivées partielles du type parabohque, Journal de Mathématiques
Pures et appliguées, 9 (1918).

Ou Bingmo, Mathematical physics equations, Vol. 8, Science Press (1959).

Jean Leray, La théorie des points fixes et ses apphcatmns on analyse, Universitae Politecnico dl Toriano,
Bendiconti del Seminario Matematico, 15 (1955—1956) , 65—T74.



