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Abstract

~ The spectral theory of selfadjoint operators and unitary operators in Hilbert space
has been successfﬁ]ly generalized to IT, space. Howevér, there are only a few results for the
spectral theory of selfadjoint operators and unitary operafors in IT space. One of the
important reasons is that the structure of IT space is more complex than that of II, ‘space.
This paper and the forthcoming paper “The structure of IT space (II)”will mainly be dealt
with the structure of I spaces, which will be used to further study the operators in II

spaces.

§ 1. Preliminary

In II, space, provided that a olosed subspace L is non-degenerate, then
II,—= L®L* holds™, This property of the structure of the space has a great influence
upon the operator theory for II; spaces. Bul, in II spaces, the above decomposition
is 1o longer true™. In Iy space, a closed, non-degeneratbe subspaée L is still a II;-type
‘gpace relative o the inner produoct of IIy space, but in II space, this is also no longer'
true. All of these faots constitutes one of the important reasons that there are only
a fow results for operator theory in II space. In this gection, we give a description of
the operators defined in subspaces of II space.

By II we denote a Krein space™ with an inner product(s, *). Decompose
I=H,®H_, and call it a regular decomposition if H, are Hilbert spaces relative
to 4+ (o, *)respectively™. The inner product and the norm induced by the regular
decomposition are denoted by[, -] and ||« |.Write the orthogonal projections from a
Hilbert space(Il, [+, *]1)onto H. by P.. Suppose that 4 is a linear operator from a
Hilbert space(H_, — (+,+))into a Hilbert space(H ., (+,)). We call Ly= {{w, Az}

|2€ D (4)}a linear subspace induced by 4, where {w, Aw} represents the vector
s+ Az, . ' '
Temma 1.1. The following propositions hold:
(i) L4 is @ semi-positive (semi-negative) subspace of I if and only if A is @

coniraction (ewtension).
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(ii) Ly is a closed subspace of II if and only &f A is a closed operator.
(iii) Ly 4s @ positive(negative) subspace of II if and only if for any »E D (4),
w40, | 4o]< o] (| o] > |o])hlds. |
(iv) The mazimal semi-positive or manimal semi-negative subspaces of II must be
closed subspaces.
(v) Ly és a mavimal semi-negative subspace of IT if and only 4f A is & contraction,
and D(A) =H._. | |
(vi) Ly és a closed, mawimal negative subspace of II if and only if D(A)=H._,
and for any € H_., 1+#0, |As| < || holds.
 (vii) If L és a mawimal semi-negative subspace of II, then there must ewist @
“contraction A, D(A)=H., such that Li=1,. _
(viii) If L is a mazimal negative, closed subspace of II, then there must be
constant a, 0<<a<<1, and an operator A, D(4)=H._, |A|<a, such that L=L,.
Tt is not hard to prove this lemma. Some parts of the proof were also given in
[1, 2].
We give an example that a maximal negative subspace is not closed as follow.
Example 1 1T =1_®I,, where both I_ and I, are of /2. Let {¢f}be the coﬁxplete
orthonormal system of I,. Let z=ef +er, Il =gpan {e} |¢=>2}, and f be an unbounded
linear functional defined on the whole space I... Consider a subspace of I,
- L={o+f(v)z|ecl}, 1.1)
Since €L and 2€ L, so L is not a closed subs’pace of II. It is easy to see that I is
negative. Now we prove L is a maximal negative subspace. Suppose that this ig false.
There must be a negative subspace I/DL. Take yC I/, y€L arbitrarily. Write
y=y.+aet +ber +vy., (y.€L.). Since ¢ +f(y.)2€ L, thus
0+y— (y+f(y_)2) =y, +aet +ber —f (yL)2€ I, 1.2)
It is eﬁdent that aef +bey — f (y_)2+0, and thal ¢+#b. Since f is unbounded, thus

there exist {w,} Cl., |an| <%, S (@s) =1. Define a sequence in I/

ho=1/s+aet +ber — f (y_)z— (b—F (4L)) (@t f (w4)2)
=y +(@—b)ef — (b—f(4L)) 2a, , (1.3)

It is easy to see that for sufficient large n, h, are positive vectors, which contradicts
the hypothesis that I’ is négative. This completes the proof;

If 9(4) = H_, by Ly we denote the subspace {{4"y, 4} |y€ D(4*)cH,}.

Lemma 1.2. Let A be a dense defined operator from H_ into H,. The following
propositions hold:

(i) Li=Lgp, (Li)‘=Luif 9(4=H,,

(i1) Ly is a non-degenerate subspace of II if amd only if 1€, (4*4) (oxr 1€
oy(44%)), |
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(i) L.®Li=1II if and only if RA(I—-A*A)=H_, Z(I-AA)=H,, or A isa
dense defined, closed operator, and 1€ p(44%) N p(4%4),

(iv) Ly s @ mawimal negative subspace of II and II =L,®L} is & regular
decomposition if and only if D(A)=H_, |A|<a<l (aisa constant) . '

This lemma can be proved immediately. 4 part of its proof can also be found in
[1, 2]. In [1], an example was given to illustrate that a maximal negative, closed
subspace of II needn’t be a Hilbert space according o — (e, *). In the following
example, we give a positive subspace which is not a closed subspace of II, but

(L, (s, *))is a Hilber} space. ' '

Ewample 2 Let IT, {6}, 2, and I, be as in example 1. Lot @o——{z wio7 |n> 2 }

- Denote the quotient space =1, /Py. Take a non-zero linear functional f in @. For
any z€l,, by & we denote the equivalence olass containing #. Put

= {f (@)z+o|oCl}
It is evident that L is a positive subspace of II, and it is not closed (since 2z€ L, bub
»&L). Now we show that L is a Hilbert space relative t0(+, +). In fact, suppose that
{f (%) 24w,y <L, and it is a fundamental sequence. Since

(f@eta, f@2+0)=(, o). e
{w,}is a fundamental sequence, hence there is #€ U, such thatb
lim (@, — @, @y—o) =0, (1.5)

n—rco

Thus(f (@) 2+ a— (f @) 2+0) , f @) 2+0,— (f (@)2+2)) = (2 —0, 8= )0, (n>0),
i.e. {f (En)z+wn} converges to the vector of L, f (#)2+w. Therefore L is a Hilberb
space relative to (-, »). This completes the proof. :

Lot I be a linear subspace of II, I = H_@®H, be a regular decomposition. Denote
Li={{0, 4}| {0, €L}, Li = {{», 0}|{o, Oy €L},

Lemma 1.3. The following propositions hold;

(i) L=ILyiLai L, where A is a linear operator from H_ into H,, 2(4A)cH_,
and A is an injection.

(ii) If L is @ closed subspace, there must be a unique decompositon L= Ly ®L,®LS.
Besides, if there.is a decomposition of subspace L, L=L;®@L.®L{, then L is closed if
and only if L, Ly are all closed subspaces.

(iii) L és @ closed subspace of I if and only if L= (LY)*,

(iv) For any Vinear subspace L of II, L = (LY)* holds. If L+II, there must be a
noN-2610 VBCLOT y €1l such that y ! L. _

(v) A closed subspace L is non—degenemte if and only if for decomposition
L=Ly@L®LE, Lya is non-degenerate.

Proof (i) It is evident that Ly=LN H,, Li N Ly={0}. Put &=L/ (L§ +Ly),
By the ultralimit mductlon we choose representa,hve olements # of 2€® such that
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all these representative elements constitute a linear space L= {wleE, = @}, Thus
L=1L; 4 IyiLi. For any € Ly, we have a decomposition s=a_+a,. It is easy to
seo that 4, =0 if 2_.=0. Thus there exists a llnear injection A from ZP(4)cH._
into H,, such that Ly=L,. , '

(ii) If L is a olosed subspace, L are obv1ous1y closed, and L= (Li@®Ly)®L,,
where L ={o|[», 0.]=0, 0.€ L§, o€ L}. Similar to (i), L\ = Ls, 2(4) | L,
Z(A) 1 Lg. Since L is closed, henoe Ly is also closed. For the closed subspace L, it
ig obvious that the decomposition L=Ly®L,®L] is unique. Thus 4 is determined
by L uniquely.On the confrary, if L can be decomposed into Li=Ly®L,ML§, where
A is an injection, Ly and L, are closed subspaces, then it is easy to see that L is
closed. | SN
(iii) Suppose that L is a closed subspace. From (ii), L=Li@L.®L;. Put

II(")—_J(A)@ (&) 1.6)

Obviously, ¥ is a Krein spaoce,. (1 6) isa regular decomposition of I, and under
the above decomposwmn of I, 4 is a dense defined, closed operator from P (4) into
A (A), as well as it has denge range. Thus, for I space, (L)'= (Ligs)*=Lyw=Ly.

From this it follows that for II space

= (H-OLsy @9(A)))@LA*®(H+@(L+®J’(A))) .7
Hence(L')t =L@ L L= 7

Oonversely, if(LY)+=1L, ~L is evidently a closed subspace.
(iv) From(iii), L= (T1)!. But for any linear subspace L, L‘*= Llholds thus
= (L*)*. Buppose that L=II. Make the decomposition L=Ly@L,®L$, where for
10 = G(A)DZ(4LY, A is a dense defined closed injection from P(A) into Z(A). If
L,={0}, it is obvious that one of H_OL; and H,®L§ must be nonempty, so that
there is a non-zero vector y & II such that g | L. If L+ {O}, then for any non-zere

veotor y € Ly IT®. we have y | L. '

(v) A closed subspace L is degenerate if and only if L Lt {0}, i. . there is a
non-zero veotor 2 € L, #_| L. Since LiF is non-degenerate, hence we must have 2€ L,.

Therefore, that L, is degenerate is equivalent to that L is degenerate. This completes:
the proof. v : | '
It should be noted that in Lemma 1.8, we have y_]_L which does not mean that.
there exists a nonzero vector y& L and gy_| L(however, which means this fact in a IT,
Spaoe) The following is an example. | '
Ewwmple 8 Let I=I_®I, as in example 1. L= {{w w}|w€l?}. It is evldent
that L is a neutral, closed subspace of II. From Lemma 1.1, it follows that L is a
maximal semi-negative as well as a maximal gemi-positive subspace. Obviously,
L+ 1I, and there is not nonzero vector y& L satisfying y_| L.
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Example 8 illustrates thab when we deal with an orthogonal set of subspaces, we
ghould be more careful for I space than for II; space. "

§ 2. Complete subs,pac:e‘s

Definition. Let (II, (-, *)) be a Krein space, L be & closed Tinsar subspace of II.
If (L, (s, *))is still @ II-type. space (4. 6. @ Krein space or & Pontfryagfm space), then
we call It a complete subspace of I1.

An example is given in[1]to show that a closed subspace needn’t be a Krein
space relative to (-, +). Example 2 of this paper illustrates that a subspace of II
which is a Krein space relative to(+, +)needn’s be closed. '

Lemma 2. 1. Let(I, (+, +))be a space with an indefinite metmc Let II @D and
TI®pe two linear subspaces, and I =IYDI?.

(1) IFI®, (s, «))(@E=1, 2)are II-type space, then (I, (-, )) is also @ H—type
space;

(i) If (1%, @ (s, ))(6=1, 2) are II-type space, and L is a linear subspace of
I, then L és @ closed (or complete) subspwoe of IT if and only if L is a closed (oa”
complete) subspace of TP,

Proof Suppose that there are regular decompos:Ltlons

OO-HY@HP, =12 - - @D
Tt is easy %0 see that the following decomposition is also regular -
I=(HY@QH®)D(HY L+ H ‘2’)) \ (2.2)

From the ‘above fact, the conclusions of lemma 2.1 (1) (ii) follow at once.
The following corollary is also evident.
Qorollary 2.2. Let I=H_®H, be a regular decomposition, and L be & closed
linear subspace. Then
(i) there ewist four complete subspaces (=0, 1, 2, 8)such that -
- O =1I9DIY®D H“’?(—D IT(‘?’), @. 3)
which hawe the relations with the decomposttion L=L;®L.®LS as follows -
IO =AU, T0=L;, I® =L,
o®=(H-©(I:@2(4)))®(H.O (Li®%(4))) - (2.9)
(if) fbf L, 45 a complete subspcwe then L is also @ comyplete subspace. '
- In fact, the converse propos1t10n of corollary 2.2 (ii) is also true (see corollary
2.5). :
Theorem 2.3. Lisa semfz}-negwtfz}ve (or semi-poistive) complete subspace of I iof
and only if I =LOL* holols _ '
Proof (Only consider the case that Lis seml—negatlve) Sinoe L is seml-negatlve
and closed, so Li = {0}, L= Ly@®Ly, and L~ is closed. By Lemma 2.1 and.Corollary
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2.2, it follows that L is a Hilbert space relative to— (o, o) if and only if L, is a
Hilbert space relative to— (o, ). Thus we may assume that L=1L,, and that under
the regular decomposition II =H_@H ., A is a dense defined, closed injection from
H_into H,, #(A)=H,..

Necessity L, is semi-negative & | da|<<|w|for any s €D (A4). Since A is dense
defined and closed, thus P(4)=H.. Lot A=UR be the polar decompotition of A4
(obviously, U is a unitary operator from H_ onto H,). From Lemma 1.2, IT = LOL*
will follow once it is shown that there is g,>>0 such that

4] 1] <t-s. @.5)
Suppose that there is no g, satisfying (2.5). Since L is a complete subspace, hence

for any s, 0<e<1,
(Hi-o—Hs-) H_+ {0}, (2.6)

where B, (0<<¢(<{1)is the speciral family of RE.

(I) Assume that (H., — (e, +))is separable. By (2.6), it follows that there
exists a finite scalar measure w defined on the olass Z of Borel sets contained in[0, 1],
such that for any », 1>»>0, w([L—», 1)) +0 holds, and (H_, — (-, +))is unitarily
isomorphic to L?([0, 1], &, w; ), where S is a.separable Hilbert space, J#(t)
(0<<¢<<1)is a family of elosed subspaces of 5, and L2([0, 1], &, m; 5#) is the space
of all strongly measurable and square integrable (respect to w) functions f, which
are defined on [0, 1], take values on 57, and f(¢) € #°(¢). The operator B on H_ is
equivalent fo

BN @ =tf @), FELA[0, 11, B, w ). @D

Take a strongly measurable function f on [0, 1] sabisfying the following conditions
[T 1@ Pa®<co, [ 17@1Pau@=c0 (2.8)

L a-® 17 rasm<oo | @9

for any 8, 0<g<1. Using this function, define a sequence on
D(A)=H_, es() =a()f @) (n=1, 2, -),

~where ,(¢) is the characteristic function of set [O, 1—-,)-1?’—].}From (2.9), it is easy to

see that the sequence {{w, Aw,,,}} in L, is fundamental according to — (-, +). But
'L, is complete according to — (-, +), thus there must exist #(z) € L2 ([0, 11, B, u; H#°)
such that {w,, Aa,}oonverges to {w, A«} according to — (e, «); i. e.
) _ _
[ A=) en® 0 [d ) = - (fza—0, A@~a)},
{oa=3, A(t~2)})=>0 (n—>00), (2.10)
From the definition of {w,(¢)} and (2.10), it follows that «(t) =f(¢), thus

J: lo() [ dpa (2) = o,
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which contradiots to the assumption that #(¢) € L2([0, 11, &, w; ).

(II) Suppose that (H_, — (o, *)) is nob separable. First, fake a veobor ao in
H _ satisfying p,, ((L—s, 1)) = ((By-o0— B1_s)@o, wo) #0 for any 0<e<1. By H,, we
denote the smallest closed subspace containing @, which ig invariant for R. Evidently
H_=H,®(H_-OH,). Oonsequenily H,=UH,®U(H _©®H,). We denote the
restrictions of 4 on H, and H_OH,, by 4, and Ay respeotively, so we have
Ly=L4®L,4, where@® is also the orthogonal sum on the Hilbert space (Lg, — (¢, °)).
Therefore, the limits of fundamental sequences in L,, relative to— (o, ©) is still in
L,,. Thus a contradiction now follows by an argument like that given in (D).

The sufficiency is easy o prove. It follows trom II = L,@® L} that Ly is closed. A
is a contraction since L is semi-negative, thus 2(4)=H_.. By Lemma 1.2 (iii), it
ig easy 1o see that (2.5)holds. If {{w,, Aw,}} isa fundamental sequence in I, relative
to — (o, *), then{w,} must be a fundamental sequence in (H_, —(°, +)) by (2.5),
hence there is € H_ such that {w,, Aw.} —> {&, Aa}, i. 6. L4 is complete relative to
—(+, *). Thig completes the proof.

Corollary 2.4. Let L be & semi-negative (or semi-positive) subspace of II. If L is
@ complete subspace, then L' is also & complete subspace of 1,

Proof (Only consider the case that L is semi-negative) From corollary 2.2, we
have Li=Ly®L.®LE,

I =I9QIY@IPDI®, I®=1L§= {0}, nv=I;,
IO =T A DHA), 1®=(H-O(Li®2(4)))DH.OZ(4)).
So it is eagy to see that L'=II®@ Ly, LIl @, Since L is a complete subspace,
thus L, is also a complete subspace. Therefore (2.5) holds. Since |4*]=|A4], hence
Luisa complete positive subspace, and L' is oomplete by Oorollary 2.2. The proof is
ocompleted.

Corollary 2.5. A closed linear subspwce of I, L=Li®L®L§ is @ complete .
subspace if and only if Ly is & complete subspace.

Proof The sufficiency is given in Oorollary 2.2 (ii). Now we show the
necessity. It is evident that we need only show that Ly is a IT-type space according
to (s, +). By assumption, (L, (-, *)) is a II-type space. The decomposition
L=L;®L.@®L{ is apparently true in (L, (v, *)). Thus Ly, L, L are all closed
subspace of (L, (¢, +)). Using Theorem 2.8 and Corollary 2.4 for Ly on. (I, (+,¢)),
we seo that both L and Tu@Li are complete subspace of (L, (¢, +)), so Lu@L{ is
a IT-type space relative to(+, «). Using Theorem 2.3 and OQorollary 2.4 again for L
on II-type space (Lu®LF, (¢, +)),it follows at once that L4 is a II-type space relative
to (o, *). Bosides, since Ly is a closed subspace of II, so Ly is a cbmplete subspace ef
II, This completes the proof.

Theorem 2.6 (The decomposition theorem of complete subspace). A linear
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subspace L of II 4s a complete subspace if and only of I = LAL*.

Pfroof From Oorollary 2.2, il is easy to see that-we may assume thatb L Ly,
P(Ay=H_, #(A)=H,, and Ais an injection. ’

Neoessﬁ;y. Since L is a complete subspace, thus it is a olosed snbspace, so 4 is
a denge defined closed operator from H_ into H,. We have the polar decomposition
A=TUR, where U is a unitary operator from H_ onto H, since A is aninjection and
G(Ay=H,. Lot $_= (Bi—Eoo) H., $,=(E.—H,) H_ where H,(—oco<A< o) is
the spectral family of B. We denote the restriction of 4 on . and, &, by 4_ and
A, respectively. Onoce we note U is an isometry, it can be seen thab Ly=I, ®L,,
and L, , Ly, are semi-negalive and semi-positive subspaces respeotively. Using
Theorem 2.8 for Ly, on II-type space (Ls, (¢, *)), we see that Ly, are II-type spaces
relative to (o, <), i. e. L4, are Hilberh spaces relative to 4= (s, «). Thus Liy=TL, @ Ly,
is a regular decomposition of L. Besides, A. are obviously closed operators, so Ly,
are closed subspaces of I, which implies that L4, are complete subspaces of II. Using
- the proof of necessity in Theorem 2.8 for L,, respectively, it is easy to see that there
exists a constant gy, 0<gy<1, such that

J4-]<1—go and HA+1”<1 8o
i. e. 1 is a regular point of operator B, hence 1Ep(4"4) Np(44%). It follows from
Lemma 1.2 (iii), that II = LALL,

Sufficiency. Since II =L@ L, we have 1 € p(4*4A) Cp(44*) by Lemma 1. 2(111)
Thus for the polar decomposition of denge defined closed operator A, A=UR, 1is a
regular point of B. From this it is easy %o see that L,, are Hilbert spaces relative to
+ (o, +). Thus Ly=Ls @®Ly, is a regular decomposition of Ly, i. e. Ly is a II-type
space relative to (¢, +). Sinee IT =L,®L,., we see that L, is a closed subspace of II.
Thus, it is a complete subspaoe of II. This completes the proof.

Remark. Theorem 2.6 had been ‘obtained in [4]. Bubt the proof there was
purely depended on many methods of topological vector spaces. However, we prove
this result in view of the description of operator. This smaple and dlreot method is
convenient to the latter discussion.

Theerem. 2.6 has the following apparent corollary. :

Gorollary 9. Let II', II" be two - linear subspaces of I, II=II"®I". Suppose
that L', L' are linear subspaces of II', II'". Then L/'®L" is a closed subspace of I &f

and only f I’ and L' are closed linear subspaces of II' and II" respectively.

Generally speaking, I/ and.L'" are closed subspaces of II, and L' L",

I’ N L" = {0}. But, in this case, we can not assert that L/PDL" is a closed subspace of
Ezample 4. Let IT =L_@L+, Wher_e L, are I2[0, 1]. Let
Af) @ =tf®), f@)EeL0, 1],
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Oonsider A as an operator from L_ into L. Take Ly =Ty, and Ly=Ls. It is evident
that L; (=1, 2) are closed subspaces of 1, L | Ly, and LyNLy={0}. This time,
L:@®Ls is not a closed subspace of II. Sinoe for any vector f €L [0, 1] satisfying
1-t ‘if (¢) € L0, 1], we have
{f@®, 0 ={@A-YF®, 1@ D)}
| F{—BA—) (@), — A~ @)}

i. 0. {f, 0} € Ly@Ly. However, the vectors satisfying the above condition are dense
in (I, —(+, +)). If Ly®L, is oclosed, 0 L@®TLsoL., we can show Li®ILsDLy.
Phus I = L;®LY, which contradits to that 1€ (4"4). '

The following corollary is also evident.

Corollary 2.8. Let L, Ly be two complete subspaces of II. Then

(i) Li is a complete subspace, o

(ii) A linear subspace L Ly and L is a complete subspace of II if and only iy L
is & complete subspace of II—type space(Ly, (e, *)),

(iii) L=L1@L2 is @ complete subspace of II of L | L,

(iv) L=IyOLy is a complete subspace of II if Ly Ly,

Generally speaking, Corollary 2.8 (iii) can nob be generalized to the case of the
orthogonal sum of a sequence {L,} (the counterexample can be gifren easily).

§ 3. Projection and complete subspaces

Let (II, (-, +))be a Krein space. If H is a linear operator defined in the whole
space II, and B?=H, Et=H, then H is called a projection on II.

Evidently, projections are bounded linear operators in II. If K is a projection,
then I-H is also a projection. Denote HII= {w|Bo=w, « €IT}. It is obvious that
II =EI @(EH)*. From Theorem 2.6, EII is a complete subspace. Conversely, for
any complete subspace L, since II = L®L*, we can uniquely introduce & projection
E such that EII = L. Thus there is a one to one correspondence between projections

and complete subspace.
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