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Abstract

It is shown in this paper that the necessary condition that a hyponormal weighted
unilateral shift of norm one be unitarily equivalent to a Toeplitz operator is that the
associated weights {a,}¢ must stisfy 1—|a,|?=(1—]ao|®)**! Vn=0. As a consequence we
obtain that the answer to Abrahamse’s Problem 3 is that the Bergman shif$ is not unitarily
equivalént to a Toeplitz operator.

A mecessary contition thab a hyponormal weighted unilateral shift be unitarily
equivalenf to a Toeplitz operator is shown in this paper. As a direct consequence of
this condition we obtain that the answer to Abrahamse’s Problem 8 is that the
Bergman shift is not unitarily equivalent to a Toeplitz operator. Obviously, thig
problem should be eonsidered before the Halmos question on subnormal Toeplitz
operator (of. [2, 8]).

Let 4 be the unit circle in the complex plane, H? be Hardy space. As usually,
H? is identifed with a closed subspace of L?(4). For ¢ in L~(4), the Toeplitz
operator 7', with symbol ¢ is the operator on H? defined by the equation T,(f)=
P(@f) where P is the orfhogonal projection from L?(4)onto H?.

Lemma 1. If Toeplitz operator T, is a hyponormal weighted unilateral shifé
- with weights {a,}s, i. €. there ewists a orthonormal basis {e.}5 of H? such that
T jen=O8yr1, n=>0, 1)

Then ¢, is an outer function and @ (t) —r % g 6. 1€ 4, where r is @ constant.
€o

Proof It is known from [4] Chap. 7 that either ker T,= {0} or ker T%={0}.
The fach that ¢y € ker T, implies thab |@y| >0(n=>0). For e, € H? we have (of. [4]
Chap. 6, also [b] Chap. 5)ey=gF, where ¢ is an inner function and ¥ is an outer
function. Hence T F =T5(geo) =T 4Tw00=T71 300=0. This means F = pe, because dim
ker Ty=1, where p is a constant. The first part of our lemma is thus proved.

It is easy to check that the hyponormality implies that

l“nl < lan+1| (n=0), (2)
It follows from [6]p.240 thal the essential spectrum of T, ¢,(T,) = {\: |A| =1}. Here
we assume |T,|=1. So we have|p(#)|=1 a. e. t€d(cf. [6] p. 139). Now Te =0
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implies ¢peo ={C H?, where H* =I2(4)OH?=(I-P)L*(4). Notlcmg ° € Ha-

and —g- €.H?, we obtain that T (_E_) =——P(§5 E) =P<T> =0. By dim ker Tf;= 1 again,

t
we have Go="1 —?— where 7 is constant. This proves that gv—-—g—- = 20 with {r|=1
€o

a. 6. 1€ 4.
Lemma 3. If Toeplitz operator T, is a hyponorfmwl undlateral shift with weights
{@n}5. Then either|a,| =const=|T | (=L)or|ao| # |a1].

Proof ‘We prove the lemma by ooniradiction. By contradictory assumption,.

there exists a positive integer ! such that |ay| = @] =+++=|&| <]|@i,1|. Because ¢; and
2,1 are linearly 1ndependent we can chooge complex number o with || <1 such
that

(o4e1-1+ N4 Wez) | e=0=0, ' 3)
This means — G H?, where ay=ae_1+~/1— |o4[® ¢. Hence

-%L ” - ||TfT¢wz" = |a| | T (war+~1—|a]? ) [ <ol

The following fact is easy to verify:

{If |Tou|= inf |T,|for some wc H? with |u =1,
: © @eHY, joi=1 . » (4)
then u & ./%;=Spa,n{eo, €1, °°°, e}, C

Wo get from (4) that
e | ()
The same arguement shows that there exists ;-1 € {Span{ey, -, er} Gw;}with l@pa| =1
such that ﬂtﬂ- € . Repeating the proceedure above,ﬁe obatain @, @3, -+, #; such that
-, ESpan{ey, -, e”},

0 fiiaéj,
173 2< .) .<Z)

_—‘”g—i-e./%.
where the symbol(s, +dstands for the inner product in L*(4). Similary, we can pick
up 1€ {span{eo; e1, »+, e} Ospan {wa, ws, +:, w}} Wlth |@i] =1 and E./% All
this shows there exists a pair of appropriate matrmes a; and Bz of order Ix (1+1)
such that B

@4 / (<) @y
| @ er | e -
B I e e e N

@ (9] €
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From the construction of a}s, it is easy to check that the matrix e has a form as
follows

o=l .| A | ®

0
where the matrix A; is of order IxIl. Also |po|#1, this is because ¢, is an outer
function. Moreover the orthognality of as indicates that det 4,+0. By appling T’

o both sides of (7), we obtain that

0 () 6o
] %o ) 1 *ITT% 1 1 % 1 o1
aLTt E == —a—o- aLTth, E "'-—"‘—a;' T,p —%— o .
O1-1 6 7]
€o 0
e é '
Lg% l=s) 7| | ©
Qo : :
9] €11
It follows from (8) and (9) thaib
o o o
e e e
il 4Bl T j=af T (10)
€11 | -1 €11

where the matrix B; is oblained from B; by omitting the first column.
Applying the same arguement given in (8)—(7) to the system {eo, €1, °°, €1-1}
we obtain vectors {y;}i  such that

[ {y}s*cspand{es, -, o1},
yie {Spa’n{e‘b 01, °*% 6;_1}@8})&11{(1]2, °* yl-i}}s . '
0 iy, L.
Y v, y;>={ ) b, j<i-1 (11)
1 4=y, |
Y com,
L ¢
‘We now asseri that
%—E%AESP&H{% €1, *°°, 91—1}. (12)

Indeed, it follows from (10) that T;‘.///HQ%_L Hence —%‘—=T§ o, €T M 1S My

(1<4<<I—1). We now can repeat the argnement given in (8)—(10) to the system
{6, €1, *-*, e-s}and geb that T M,_2C M5 Hence we obtain ab last that
T:;/é/o_c_e/%o, i. 0, ‘ ' (13)
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Tfeo = (09, ' (13,)

where p is a constant. Obviously |p| <1. Let ¢= iﬁ] ¢2". Then it follows from (18")

that c,=p"o (n=>0). Therefore we have ¢ = 1—0—0pz The fact that |ee|=1 implies

lo] <1,

On the other hand, we get from Lemma 1 that p=1r % _p z—ﬁt 1€4, 1. 0. ¢ is
€0 -

an inner function. Therefore T, is an isometry. This contradicts that |ay| = | @y | for
some [>1.

Lemma 2 is tuns proved.

The following is our main resul.

Theorem 8. Let T be o wefz)ghted unilaterad shift (on Hilbert spacest”) with weights
{a}3. If @] = a| @=0)with ,hf?c |a;| = 1. Then & necessary condition that T be

unitarily equivalent to @ Toeplitz operator is that 1— | @y 2= (1— | @] ™, Vn=0.

Proof T is unitarily equivalent fo a Moeplitz operator, say T’ So T, is also a
weighted unilateral shift in H* with weights {a.}5. T, is hyponrmal by |@a| < |@nsu]
(n>0). As is shown in Lemma 2, |p| =1 a. e. 1€ 4. Without loss of generality, we
assume 0<a,<<1 (cf. [6] p. 46), also a,<1 (n=>0, of. [1, 71). By the definition of
Toeplitz operator, the system(1)is equivalent to the following

1
O = U1+ (L —a2) % My,
POy == Gpfni1 ( ) M n=0, (14)

. 1
P31~ Onn 1- “72»)_2. €.
where %, e H and [n] = [&] =1(®=0). Obvicusly <pe, pe>=<ei, e,
i, §=0. So we obtain from a,<1 (n=>0)that
‘ 0 I#k
<7)l; 777ﬁ> = < 5] §k> = { 1 =Pk Z: k>0u (15)

What we want to show in the next step is to give the explicity expression of 78
and &/s. To this end, we obtain from (14) thatb

_ 1 1 1
en= 0 (tntp 1+ (L—a3) Zn) = a2y +ay(1—a2) % &g+ (1—0a") 2o, n=>0, i. e. (16)

- i
PNp= — “ngn'l’ (1_ “?D %en, n=0, (17)

Lot d, = ﬂt—”— and p,= %"’ . Then (17) has the from

1
(pdn = — @y Pn+ (1 - “ﬁ) 2 ff‘; n=>0, (17,>

Tt is evident that —%”— € H? (n>>0)and {d.}5is a orthonormal vector family in HZ.

Also we get from (17") that
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|7 odo| = @o=_ inf |7 2],
{ W;Hnn loll=1 (18)
T d == == i : /
" ¢ l“ " % meH’,w_L(e::I'}iz-x},ﬂmll=1 " T¢wn° i
Then it can be easily verified by using (1), (15) and (18) that
d[ €
i1 Orit |
=D, 1=>0, (19
dl+s; Clis,

where D, is an unitary matrix of order ¢ X ¢ and ¢ is an infeger, may be zero, such
that g 1< @=0r= " =6<Oe+1. Substituting (19) into (17’) and comparing ib
with (14) we get immediately that

P €141
Pry1 OLia
—D ;(- . = . )
Plisy Clye+l
e '
h i (20)
. - m
€141
D: t _ Mt
° )
El+s; M4e;
L ?

wvhere D is the complex congugate transpose of D;. Actually, Df=D;™.

Only for computation convenience we assume =0 (I=0) in what follws, i. e.
@<a,1(1=0). We shall see below that go<ay is essential in the proof. However,
this is always true because of Lemma 2. In this case the matrix D, is reduced o a
complex number 7, of modulus one. Also, (14) is reduced to

1
0= G+ (1 — %) 27 ul_(niy,
Py T n+1 ( ) 2C—(nt1) 'n>0, (21)

1
_ nio
Plny1= non— (1 — 7)1 ab-msm,

~where e_(,,+1)E-e-t’-‘— a. e. t€ 4(n=>0),

For completing the proof, we need some of further assertions.

—_ 1 : |
The function p=p—rer (1—af)?p is in H*NL" (4), where r is the constant
given in peo=re_1(see Lemma 2).
In fact, we get from(21)and Lemma 2 that

- 1 _— 1 :
@o= tioey+ 1o (1 — a) He_1=aeo1+ToT (1—a?) ® peo, (22)
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i. . Yi6o=tipes. Then the following subspace of H*
V={sc H*paC H?}

is not empty and invariant under the multiplication by =. So V=xH* by
Bourling’s Theorem (of. [4] chap. 6, also [B5] chap. 7 or [6] p. 79), where x is
an inner funchion. Bubt ¢,€V and ¢, is an outer function so y=1. Therefore
Y=y-1€ H2,

Remark 1. The fact thabt ap#ay is ossential'in the proof of Y& H2.

We now return to the proof 6f our theroem.

The Laurent operator L,, the multiplication by ¢, is unitary in L (4)
because |p|=1 a. e. t€4. We identify L, with its mairix represénta,tion in
the coordinate system {t"}.. It follows from i) thab (of. [6] p. 185 for Laurent

matrix)
-—'1 0 1
pe2 \
o
P01
(01 ------ CO p—éi..- pE2 --------------------- —1
L‘P: '.'_
......... Ry LTy STRRLY ' RRLLRITRELRLLALLAALLE 0
............ 02.....01.....00......;)51....-....... 1
C2 C:;(
Ga
! ! —1 .
= . 0 (28)
z| | e

—e 1
where p=rer (1—af)?, QF is the transpose of Q. Similarly, it follows from (21) thab
the operator L, has a matrix representation in the coordinate system {en}2. as

follows
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—(n+2).--—2 -1 0 n
- o
............ wn ssssesscs lsoveevcsosveisasactncconaiane ¢n<1—“3)1/2 eee —_ (f)’b_l—l)
..................... T reeeneen o To(L—@YE cederiiiiiien -1
o} i
PR (SO WO B SN T N 0
............... o (L GV 2 v g e e 9
_¢”(1~lw'3)1/2 .................................. 'wln ......... / n+1
(r 0 0 -
AT i ; % ]
= —1_ (R m—
= . O=Q where ¢= (24
H % .
g | A : 9 -7
-1 0
Let
e_m t—-n
€..9 t_2
e_1 it
Wl e |=| 1 (25)
€1 t
[} t2

-

-

Then W is unitary ond W H?=H?, WH?**=H?*'. Moreover, if ¢"= 2 Wy, 65 (n=>0),
then ¢=**D =i< ) 'wn,a'ei> =" Wy, j-10-;(0=0),
t \i=0 7=1 _

Therefore, it is easy to verify thab
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_________ S W B §
- v (26)

Obviously, this holds if and only if pr= —ro(1—ad)*/? and pr,(1—a2)Y?= —ruu
(1—a2,1) Y2, This leads to that 1—ai= (1 —ad)"**vYn=>0. The proof of our theorem is
thus completed.

As a consesuence of Theorem 8, we obtain the answer to Abrahamse’s Problem 3
(ef. [11).

Corollary 4. = The Bergman shift is not unitarily equivalent to a Toeplitz operator.

Proof The Bergman shift (of. [1] for the definition) is a subnormal weighted

shift with weighls a,= ntl (n=0). Then Theorem 8 implies Corollary 4.
g n-+4-2
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