ON HYPONORMAL WEIGHTED SHIFT

SUN SHUNHUA (孙顺华)

(Sichuan Univerity)

Abstract

It is shown in this paper that the necessary condition that a hyponormal weighted unilateral shift of norm one be unitarily equivalent to a Toeplitz operator is that the associated weights $\{a_n\}_0^n$ must stisfy $1-|a_n|^2=(1-|a_0|^2)^{n+1}$ $\forall n>0$. As a consequence we obtain that the answer to Abrahamse's Problem 3 is that the Bergman shift is not unitarily equivalent to a Toeplitz operator.

A necessary contition that a hyponormal weighted unilateral shift be unitarily equivalent to a Toeplitz operator is shown in this paper. As a direct consequence of this condition we obtain that the answer to Abrahamse's Problem 3 is that the Bergman shift is not unitarily equivalent to a Toeplitz operator. Obviously, this problem should be eonsidered before the Halmos question on subnormal Toeplitz operator (cf. [2, 3]).

Let Δ be the unit circle in the complex plane, H^2 be Hardy space. As usually, H^2 is identified with a closed subspace of $L^2(\Delta)$. For φ in $L^{\infty}(\Delta)$, the Toeplitz operator T_{φ} with symbol φ is the operator on H^2 defined by the equation $T_{\varphi}(f) = P(\varphi f)$ where P is the orthogonal projection from $L^2(\Delta)$ onto H^2 .

Lemma 1. If Toeplitz operator T_{φ} is a hyponormal weighted unilateral shift with weights $\{a_n\}_0^{\infty}$, i. e. there exists a orthonormal basis $\{e_n\}_0^{\infty}$ of H^2 such that

$$T_{\varphi}e_n = \alpha_n e_{n+1}, \quad n \geqslant 0. \tag{1}$$

Then e_0 is an outer function and $\varphi(t) = r \frac{te_0}{\overline{e_0}}$ a. e. $t \in \Delta$, where r is a constant.

Proof It is known from [4] Chap. 7 that either ker $T_{\varphi} = \{0\}$ or ker $T_{\varphi}^* = \{0\}$. The fact that $e_0 \in \ker T_{\varphi}^*$ implies that $|a_n| > 0 (n \ge 0)$. For $e_0 \in H^2$ we have (cf. [4] Chap. 6, also [5] Chap. 5) $e_0 = gF$, where g is an inner function and F is an outer function. Hence $T_{\varphi}^* F = T_{\overline{\varphi}}(\overline{g}e_0) = T_{\overline{g}}T_{\overline{\varphi}}e_0 = T_{\overline{g}}T_{\varphi}^*e_0 = 0$. This means $F = \rho e_0$ because dim ker $T_{\varphi}^* = 1$, where ρ is a constant. The first part of our lemma is thus proved.

It is easy to check that the hyponormality implies that

$$|a_n| \leqslant |a_{n+1}| \quad (n \geqslant 0). \tag{2}$$

It follows from [6] p.240 that the essential spectrum of T_{φ} $\sigma_{e}(T_{\varphi}) = \{\lambda: |\lambda| = 1\}$. Here we assume $||T_{\varphi}|| = 1$. So we have $|\varphi(t)| = 1$ a. e. $t \in \Delta(\text{of. [6] p. 139})$. Now $T_{\varphi}^{*}e_{0} = 0$

Manuscript received January 8, 1982, revised august 26, 1983.

implies $\overline{\varphi}e_0 \equiv \xi \in H^{2\perp}$, where $H^{2\perp} = L^2(\Delta) \oplus H^2 = (I-P)L^2(\Delta)$. Noticing $\frac{\overline{e}_0}{t} \in H^{2\perp}$ and $\frac{\overline{\xi}}{t} \in H^2$, we obtain that $T_{\varphi}^* \left(\frac{\overline{\xi}}{t}\right) = P\left(\overline{\varphi}, \frac{\overline{\xi}}{t}\right) = P\left(\frac{\overline{e}_0}{t}\right) = 0$. By dim ker $T_{\varphi}^* = 1$ again, we have $e_0 = r + \frac{\overline{\xi}}{t}$, where r is constant. This proves that $\varphi = \frac{e_0}{\xi} = r + \frac{te_0}{\overline{e}_0}$ with |r| = 1 a. e. $t \in \Delta$.

Lemma 2. If Toeplitz operator T_{φ} is a hyponormal unilateral shift with weights $\{a_n\}_0^{\infty}$. Then either $|a_n| = \text{const} = ||T|| (-1) \text{ or } |a_0| \neq |a_1|$.

Proof We prove the lemma by contradiction. By contradictory assumption, there exists a positive integer l such that $|\alpha_0| = |\alpha_1| = \cdots = |\alpha_l| < |\alpha_{l+1}|$. Because e_l and e_{l-1} are linearly independent, we can choose complex number α_l with $|\alpha_l| \leq 1$ such that

$$(\alpha_l e_{l-1} + \sqrt{1 - |\alpha_l|^2} e_l) \mid_{s=0} = 0.$$
 (3)

This means $\frac{x_l}{t} \in H^2$, where $x_l = \alpha_l e_{l-1} + \sqrt{1 - |\alpha_l|^2} e_l$. Hence

$$\left\|T_{\varphi}\left(\frac{x_{l}}{t}\right)\right\| = \left\|T_{t}^{*}T_{\varphi}x_{l}\right\| = \left|\alpha_{0}\right| \left\|T_{t}^{*}\left(\alpha_{l}e_{l} + \sqrt{1-\left|\alpha_{l}\right|^{2}}e_{l+1}\right)\right\| \leqslant \left|\alpha_{0}\right|.$$

The following fact is easy to verify:

$$\begin{cases}
\text{If } ||T_{\varphi}u|| = \inf_{x \in H^{2}, ||x|| = 1} ||T_{\varphi}x|| \text{ for some } u \in H^{2} \text{ with } ||u|| = 1, \\
\text{then } u \in \mathcal{M}_{l} = \text{Span} \{e_{0}, e_{1}, \dots, e_{l}\}.
\end{cases} \tag{4}$$

We get from (4) that

$$\frac{x_l}{t} \in \mathcal{M}_l. \tag{5}$$

The same argument shows that there exists $x_{l-1} \in \{\text{Span}\{e_1, \dots, e_l\} \ominus x_l\} \text{ with } \|x_{l-1}\| = 1$ such that $\frac{x_{l-1}}{t} \in \mathcal{M}_l$. Repeating the proceedure above, we obtain x_2, x_3, \dots, x_l such that

$$\begin{cases} x_{i} \in \operatorname{Span} \{e_{1}, \dots, e_{n}\}, \\ \langle x_{i}, x_{j} \rangle = \begin{cases} 0 & i \neq j, \\ 1 & i = j, \end{cases} & 2 \leq i, j \leq l, \\ \frac{x_{i}}{t} \in \mathcal{M}_{l}. \end{cases}$$

$$(6)$$

where the symbol $\langle \cdot, \cdot \rangle$ stands for the inner product in $L^2(\Delta)$. Similarly, we can pick up $x_1 \in \{\text{span}\{e_0, e_1, \dots, e_l\} \ominus \text{span} \{x_2, x_3, \dots, x_l\} \}$ with $||x_1|| = 1$ and $\frac{x_1}{t} \in \mathcal{M}_l$. All this shows there exists a pair of appropriate matrices α_l and β_l of order $l \times (l+1)$ such that

$$\frac{1}{t} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_l \end{pmatrix} = \frac{1}{t} \alpha_l \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_l \end{pmatrix} = \beta_l \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_l \end{pmatrix}.$$
(7)

From the construction of α'_i s, it is easy to check that the matrix α_i has a form as follows

$$\alpha_{l} = \begin{pmatrix} \rho_{l} & & \\ 0 & & \\ \vdots & & A \\ 0 & & \end{pmatrix} \tag{8}$$

where the matrix A_l is of order $l \times l$. Also $|\rho_0| \neq 1$, this is because e_0 is an outer function. Moreover the orthognality of x_l 's indicates that det $A_l \neq 0$. By appling T_{φ}^* to both sides of (7), we obtain that

$$\alpha_{l}T_{t}^{*}\begin{pmatrix}0\\e_{0}\\\vdots\\e_{l-1}\end{pmatrix} = \frac{1}{a_{0}}\alpha_{l}T_{t}^{*}T_{\varphi}^{*}\begin{pmatrix}e_{0}\\e_{1}\\\vdots\\e_{l}\end{pmatrix} = \frac{1}{a_{0}}T_{\varphi}^{*}\left\{\frac{1}{t}\alpha_{l}\begin{pmatrix}e_{0}\\e_{1}\\\vdots\\e_{l}\end{pmatrix}\right\}$$

$$= \frac{1}{a_{0}}\beta_{l}T_{\varphi}^{*}\begin{pmatrix}e_{0}\\e_{1}\\\vdots\\e_{l}\end{pmatrix} = \beta_{l}\begin{pmatrix}0\\e_{0}\\\vdots\\e_{l-1}\end{pmatrix}.$$

$$(9)$$

It follows from (8) and (9) that

$$T_{t}^{*}\begin{pmatrix} e_{0} \\ e_{1} \\ \vdots \\ e_{l-1} \end{pmatrix} = A_{l}^{-1}B_{l}\begin{pmatrix} e_{0} \\ e_{1} \\ \vdots \\ e_{l-1} \end{pmatrix} \equiv C_{l}\begin{pmatrix} e_{0} \\ e_{1} \\ \vdots \\ e_{l-1} \end{pmatrix}.$$

$$(10)$$

where the matrix B_l is obtained from β_l by omitting the first column.

Applying the same argument given in (3)—(7) to the system $\{e_0, e_1, \dots, e_{l-1}\}$ we obtain vectors $\{y_i\}_1^{l-1}$ such that

$$\begin{cases}
\{y_{i}\}_{2}^{l-1} \subset \operatorname{span}\{e_{1}, \dots, e_{l-1}\}, \\
y_{1} \in \{\operatorname{span}\{e_{0}, e_{1}, \dots, e_{l-1}\} \supseteq \operatorname{span}\{y_{2}, \dots, y_{l-1}\}\}, \\
\langle y_{i}, y_{j} \rangle = \begin{cases}
0 & i \neq j, \\
1 & i = j,
\end{cases} & 1 \leqslant i, j \leqslant l-1 \\
\frac{y_{i}}{t} \in \mathcal{M}_{l}.
\end{cases} (11)$$

We now assert that

$$\frac{y_i}{t} \in \mathcal{M}_{l-1} \equiv \operatorname{span} \{e_0, e_1, \dots, e_{l-1}\}. \tag{12}$$

Indeed, it follows from (10) that $T_t^* \mathcal{M}_{l-1} \subseteq \mathcal{M}_{l-1}$. Hence $\frac{y_i}{t} = T_t^* y_i \in T_t^* \mathcal{M}_{l-1} \subseteq \mathcal{M}_{l-1}$ ($1 \le i \le l-1$). We now can repeat the argnement given in (6)—(10) to the system $\{e_0, e_1, \dots, e_{l-1}\}$ and get that $T_t^* \mathcal{M}_{l-2} \subseteq \mathcal{M}_{l-2}$. Hence we obtain at last that

$$T_t^* \mathcal{M}_0 \subseteq \mathcal{M}_0$$
, i. e. (13)

$$T_t^* e_0 = \rho e_0, \tag{13'}$$

where ρ is a constant. Obviously $|\rho| \leq 1$. Let $e_0 = \sum_{n=\infty}^{\infty} c_n z^n$. Then it follows from (13') that $c_n = \rho^n c_0$ $(n \geq 0)$. Therefore we have $e_0 = \frac{c_0}{1 - \rho z}$ The fact that $||e_0|| = 1$ implies $|\rho| < 1$.

On the other hand, we get from Lemma 1 that $\varphi = r \frac{te_0}{\overline{e}_0} = r \frac{t-\overline{\rho}}{1-\rho t}$ $t \in \mathcal{A}$, i. e. φ is an inner function. Therefore T_{φ} is an isometry. This contradicts that $|a_l| \neq |a_{l+1}|$ for some $l \geqslant 1$.

Lemma 2 is tuns proved.

The following is our main result.

Theorem 3. Let T be a weighted unilateral shift (in Hilbert space \mathcal{H}) with weights $\{a_n\}_0^{\infty}$. If $|a_l| \ge |a_{l+1}|$ ($l \ge 0$) with $\lim_{l \to \infty} |a_l| = 1$. Then a necessary condition that T be unitarily equivalent to a Toeplitz operator is that $1 - |a_n|^2 = (1 - |a_0|^2)^{n+1}$, $\forall n \ge 0$.

Proof T is unitarily equivalent to a Toeplitz operator, say $T_{\overline{\varphi}}$. So T_{φ} is also a weighted unilateral shift in H^2 with weights $\{a_n\}_0^{\infty}$. T_{φ} is hyponrmal by $|a_n| \leq |a_{n+1}|$ $(n \geq 0)$. As is shown in Lemma 2, $|\varphi| = 1$ a. e. $t \in \Delta$. Without loss of generality, we assume $0 < a_n \leq 1$ (cf. [6] p. 46), also $a_n < 1$ $(n \geq 0)$, cf. [1, 7]). By the definition of Toeplitz operator, the system (1) is equivalent to the following

$$\begin{cases}
\varphi e_n = \alpha_n e_{n+1} + (1 - \alpha_n^2)^{\frac{1}{2}} \eta_n, & \\
-\frac{1}{\varphi} e_{n+1} = \alpha_n e_n + (1 - \alpha_n^2)^{\frac{1}{2}} \xi_n.
\end{cases}$$
(14)

where $\{\eta_n\}_0^{\infty}$, $\{\xi_n\}_0^{\infty} \subset H^{2\perp}$ and $\|\eta_n\| = \|\xi_n\| = 1 (n \ge 0)$. Obviously $\langle \varphi e_i, \varphi e_j \rangle = \langle e_i, e_j \rangle$, $i, j \ge 0$. So we obtain from $a_n < 1$ $(n \ge 0)$ that

$$\langle \eta_l, \eta_k \rangle = \langle \xi_l, \xi_k \rangle = \begin{cases} 0 & l \neq k \\ 1 & l = k \end{cases} \quad l, k \geqslant 0.$$
 (15)

What we want to show in the next step is to give the explicity expression of η_i 's and ξ_k 's. To this end, we obtain from (14) that

$$e_n = \overline{\varphi} \left(a_n e_{n+1} + (1 - a_n^2)^{\frac{1}{2}} \eta_n \right) = a_n^2 e_n + a_n (1 - a_n^2)^{\frac{1}{2}} \xi_n + (1 - a_n^2)^{\frac{1}{2}} \overline{\varphi} \eta_n, \quad n \geqslant 0, \text{ i. e. } (16)$$

$$\varphi \bar{\eta}_n = -a_n \xi_n + (1 - a_n^2)^{\frac{1}{2}} \bar{e}_n, \ n \geqslant 0. \tag{17}$$

Let $d_n = \frac{\overline{\eta_n}}{t}$ and $\rho_n = \frac{\overline{\xi_n}}{t}$. Then (17) has the from

$$\varphi d_n = -a_n \rho_n + (1 - a_n^2)^{\frac{1}{2}} \frac{\bar{e}_n}{t}, \ n \geqslant 0.$$
 (17')

It is evident that $\frac{\bar{e}_n}{t} \in H^{2\perp}(n \geqslant 0)$ and $\{d_n\}_0^{\infty}$ is a orthonormal vector family in H^2 . Also we get from (17') that

$$\begin{cases}
\|T_{\varphi}d_{0}\| = a_{0} = \inf_{x \in H^{2}, \|x\| = 1} \|T_{\varphi}x\|, \\
\|T_{\varphi}d_{l}\| = a_{l} = \inf_{x \in H^{2}, x \perp \{e_{0}, \dots, e_{l-1}\}, \|x\| = 1} \|T_{\varphi}x\|.
\end{cases}$$
(18)

Then it can be easily verified by using (1), (15) and (18) that

$$\begin{pmatrix}
d_{l} \\
d_{l+1} \\
\vdots \\
d_{l+\epsilon_{l}}
\end{pmatrix} = D_{l} \begin{pmatrix}
e_{l} \\
e_{l+1} \\
\vdots \\
e_{l+\epsilon_{l}}
\end{pmatrix} \geqslant 0,$$
(19)

where D_l is an unitary matrix of order $\epsilon_l \times \epsilon_l$ and ϵ_l is an integer, may be zero, such that $a_{l-1} < a_l = a_{l+1} = \cdots = a_{l+\epsilon_l} < a_{l+\epsilon_{l+1}}$. Substituting (19) into (17') and comparing it with (14) we get immediately that

$$\begin{cases}
-D_{l}^{*}\begin{pmatrix} \rho_{l} \\ \rho_{l+1} \\ \vdots \\ \rho_{l+\epsilon_{l}} \end{pmatrix} = \begin{pmatrix} e_{l+1} \\ e_{l+2} \\ \vdots \\ e_{l+\epsilon_{l}+1} \end{pmatrix}, \\
D_{l}^{*}\begin{pmatrix} \frac{\overline{e}_{l}}{t} \\ \overline{e}_{l+1} \\ \vdots \\ \overline{e}_{l+\epsilon_{l}} \end{pmatrix} = \begin{pmatrix} \eta_{l} \\ \eta_{l+1} \\ \vdots \\ \eta_{l+\epsilon_{l}} \end{pmatrix}, \tag{20}$$

where D_i^* is the complex congugate transpose of D_i . Actually, $D_i^* = D_i^{-1}$.

Only for computation convenience we assume $e_l = 0$ $(l \ge 0)$ in what follws, i. e. $a_l < a_{l+1}(l \ge 0)$. We shall see below that $a_0 < a_1$ is essential in the proof. However, this is always true because of Lemma 2. In this case the matrix D_l is reduced to a complex number r_l of modulus one. Also, (14) is reduced to

$$\begin{cases}
\varphi e_n = \alpha_n e_{n+1} + (1 - \alpha_n^2)^{\frac{1}{2}} \bar{r}_n e_{-(n+1)}, & n \geqslant 0, \\
\bar{\varphi} e_{n+1} = \alpha_n e_n - (1 - \alpha_n^2)^{\frac{1}{2}} \bar{r}_n e_{-(n+2)},
\end{cases} \tag{21}$$

where $e_{-(n+1)} \equiv \frac{\overline{e}_n}{t}$ a. e. $t \in \Delta(n \ge 0)$.

For completing the proof, we need some of further assertions.

The function $\psi \equiv \varphi - \overline{r_0 r} (1 - a_0^2)^{\frac{1}{2}} \overline{\varphi}$ is in $H^2 \cap L^{\infty}(\Delta)$, where r is the constant given in $\overline{\varphi} e_0 = r e_{-1}$ (see Lemma 2).

In fact, we get from (21) and Lemma 2 that

$$\varphi e_0 = a_0 e_1 + \overline{r}_0 (1 - a_0^2)^{\frac{1}{2}} e_{-1} = a_0 e_1 + \overline{r}_0 \overline{r} (1 - a_0^2)^{\frac{1}{2}} \overline{\varphi} e_0,$$
(22)

i. e. $\psi e_0 = a_0 e_1$. Then the following subspace of H^2

$$V = \{x \in H^2 : \psi x \in H^2\}$$

is not empty and invariant under the multiplication by z. So $V = \chi H^2$ by Beurling's Theorem (cf. [4] chap. 6, also [5] chap. 7 or [6] p. 79), where χ is an inner function. But $e_0 \in V$ and e_0 is an outer function so $\chi = 1$. Therefore $\psi = \psi \cdot 1 \in H^2$.

Remark 1. The fact that $a_0 \neq a_1$ is essential in the proof of $\psi \in H^2$.

We now return to the proof of our theroem.

The Laurent operator L_{φ} , the multiplication by φ , is unitary in L^2 (Δ) because $|\varphi|=1$ a. e. $t\in\Delta$. We identify L_{φ} with its matrix representation in the coordinate system $\{t^n\}_{-\infty}^{\infty}$. It follows from i) that (cf. [6] p. 135 for Laurent matrix)

$$L_{\sigma} = \begin{pmatrix} -1 & 0 & 1 \\ \vdots & \ddots & \vdots \\ \rho \overline{c}_{2} & \vdots \\ \rho \overline{c}_{1} & \vdots \\ \rho \overline{c}_{1} & \vdots \\ \rho \overline{c}_{2} & \vdots \\ \rho \overline{c}_{1} & \vdots \\ \rho \overline{c}_{1} & \vdots \\ \rho \overline{c}_{2} & \vdots \\ \rho \overline{c}_{1} & \vdots \\ \rho \overline{c}_{2} & \vdots \\ \rho \overline{c}_{1} & \vdots \\ \rho \overline{c}_{2} & \vdots \\ \rho \overline{c}_{1} & \vdots \\ \rho \overline{c}_{2} & \vdots \\ \rho \overline$$

where $\rho = \overline{r_0 r} \ (1 - a_0^2)^{\frac{1}{2}}$, Ω^T is the transpose of Ω . Similarly, it follows from (21) that the operator L_{φ} has a matrix representation in the coordinate system $\{e_n\}_{-\infty}^{\infty}$ as follows

$$= \left(\begin{array}{c|c} A^{T} & \gamma \\ \hline \xi & A \end{array}\right) - 1 = Q \quad \text{where} \quad \xi = \begin{pmatrix} \overline{r} & 0 & 0 & \cdots \\ 0 & \overline{} \\ 0 & -\gamma^{*} \\ \vdots & -\gamma^{*} \end{pmatrix}$$

$$(24)$$

Let

$$\begin{array}{c|c}
 & \vdots \\
 e_{-m} \\
\vdots \\
 e_{-2} \\
 e_{-1} \\
 e_{0} \\
 e_{1} \\
 e_{2} \\
\vdots \\
 e_{m} \\
\vdots
\end{array}$$

$$\begin{array}{c|c}
 \vdots \\
 t^{-n} \\
\vdots \\
 t^{-2} \\
 t^{-1} \\
1 \\
t \\
t^{2} \\
\vdots \\
 t^{n} \\
\vdots
\end{array}$$

$$(25)$$

Then W is unitary ond $WH^2 = H^2$, $WH^{2\perp} = H^{2\perp}$. Moreover, if $t^n = \sum_{j=0}^{\infty} w_{n,j}e_j$ $(n \ge 0)$, then $t^{-(n+1)} = \frac{1}{t} \left(\sum_{j=0}^{\infty} w_{n,j}e_j \right) = \sum_{j=1}^{\infty} \overline{w}_{n,j-1}e_{-j}(n \ge 0)$.

Therefore, it is easy to verify that

$$W = \begin{pmatrix} -1 & 0 \\ \overline{R} & 0 \\ \hline 0 & R \end{pmatrix} - 1 \tag{26}$$

It it well know that $W^*QW = L_{\varphi}$. So we have, by (23)—(26), that $\overline{\rho}R^*\xi \overline{R} = R^*\overline{\gamma}\overline{R}$. Obviously, this holds if and only if $\overline{\rho r} = -r_0(1-\alpha_0^2)^{1/2}$ and $\overline{\rho}r_n(1-\alpha_n^2)^{1/2} = -r_{n+1}(1-\alpha_{n+1}^2)^{1/2}$. This leads to that $1-\alpha_n^2 = (1-\alpha_0^2)^{n+1} \forall n \geqslant 0$. The proof of our theorem is thus completed.

As a consesuence of Theorem 3, we obtain the answer to Abrahamse's Problem 3 (cf. [1]).

Corollary 4. The Bergman shift is not unitarily equivalent to a Toeplitz operator. Proof The Bergman shift (cf. [1] for the definition) is a subnormal weighted shift with weights $a_n = \sqrt{\frac{n+1}{n+2}}$ ($n \ge 0$). Then Theorem 3 implies Corollary 4.

References

- [1] Abrahamse M. B., Subnormal Toeplitz operators and function of bounded type, Duke Mathematical J., 43 (1976), 597—604.
- [2] Halmos P. R., Ten Problems in Hilbert space, Bull. Amer. Math. Soc., 76(1970), 887—933.
- [3] Halmos P. R., Ten Years in Hilbert space, Integral Equations Operator Theory, 2:4(1979), 529-564.
- [4] Douglas R. G., Banach Algebra Techniques in Operator Theory, Academic Press 1972.
- [5] Hoffman K., Banach space of Analytic functions, Prentice-Hall. INC. 1962.
- [6] Halmos P. R., A Hilbert space problem book, Springer-Verlag 1974.
- Brown A. and Douglas R. G., Partially isometric Toeplitz operators, *Proc. Amer. Math. Soc.*, 16(1965), 681—682.