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Abstraet

In this paper we are concerned with the nonlinear boundary value problem for
parabolic system '
Lu=F(®, t, u, Vu), T€Q, 0<i<T,
Bu=g(x, t, u), €08, 0<i<T, ¢))
u(x, 0)=h(z), £€ 8, ' .
where Lu= (L, +++, Lyty)with Ly the second order uniformly parabolic operators which
may be different from one another, and Bu= (B, ***, Byuy)with B either the Dirichlet
boundary operators or the regular oblique derivative ones. We have proved that a certain
form of convex set is invariant for (1), that there exist solutions to (1) if f=f(x, ¢, u, »)
has an almost quadratic growth in p, and that the set of solutions possesses the Hukuhara-
Kneser property.

§ 1. Introduction

The purpose of this paiper is to disouss the invariant sets, the existence theory of
solutions related to invariant sets, and the Hukuhara-Kneser property for the
parabolic system _

Tu=f(®, t, v, V)
with nonlinear boundary conditions. Here u= (u1, **, uy) and f=(f1, =, fx) are
real vector functions, Tnt= (Lyws, -, Lyux) with each I, a uniformly parabolic
operator with real coefficients. Some of the boundary data concerned are of firsh
kind, and the others are of second kind and regular oblique derivative conditions.

A set DCRY is said to be invariant for a parabolic boundary value problem if
the given initial and or boundary values remaining in D imply thab each solution
remains in D. The oxistence of an invariant set provides an a priori bound for maxi-
mum norm, and it is helpful to solving the existence of solutions. The above
parabolio boundary value problems, with reaction-diffusion systems as their main
back-ground, have aroused great inferest in recent-years. In the ease that all the Lis
are the same for k=1, +-, N and f=F(w, ¢, u) is independent of Vu, Weinberger™
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proved that a closed convex set D is invariant for the Dirichlet problem if f satisfies
“weak tangent condition”, Sharpening this result, Ohueh ef al.” considered the case
that Ly may be different from one another. Bebernes et al™. generalized invariance
results to include gradient dependent nonlinearities, but the boundary conditions
they were concerned with are still linear. Talaga™ investigated invariant sefs for
the parabolio systems, where all the ILjs are the same, with nonlinear boundary
data. In this paper we allow not only L, to be different from one another, but
nonlinear boundary conditions as well. Although Redheffer et al®. mentioned this
kind of problem, they did not study it in depth. Besides the weak fangent condition,
they required f=f (e, ¢, u, p) to be Lipschitz continuous in » and p, and %o satisfy
the inequality (f(s, ¢, u, Ap) —f (s, ¢, w, p)) X n(w) <0 for A>1, where n(w) is the
outward normal o 8D at u. In this paper we just require f to be Hdolder-continuous
and to satisfy tangent condition. | _ | _

The existence results in this paper seem to be a little better than earlier ones
~ for the above problems. Amann™ gtudied only homogeneous linear boundary value
problems for the same systems as in this paper. Talaga™ considered only the
Neumann problems for the systems where all the I} s are the same, and he imposed
a severe restricion on f, i. e., f is assumed to be bounded in p. It is incidentally
pointed out that the proof of his basic existence result-Corollary 8.4 is incorrect. In
this paper we have cancelled the above restriction in [7] and replaced it by an almosh
necessary condition that f has an almost quadratio growth in p. The key to estab-

lishing better existence results is that the a priori bound for the norm in H**® (@r)

14+
(1. e. o't (@r)) has been deduced fromone of Solonnikov’s results and the

intperolation inequalities in H**%(Q). The superfluous smoothness assumptions on f
and the growth restriction in p on its HGlder constants in our earlier work, are
cancelled here. | .

A set of solutions to a boundary value problem is said o possess the Hukuhara-
Kneser property if it is compact and conneced in an appropriate Banach space. The
uniqueness theorem deduced from [5, Th. 104, p.621] in this paper is befter than
that in [7, 9], thus improving the results concerning the Hukuhara-Kneser
property in [7], and making it apply to nonlinear boundary value problems with
oblique derivative conditions. -

§ 2. Notation and General Hypotheses

For each positive integer 4, R* denotes the 4 dimensional Euclidean space. For

1,
each y € B*, |y| denotes its Euclidean norm, i. e. |y|= [é y?] /2,
§=1




No. 1 Yan, Z. Q. mVABIANT SETS AND HURKUHARA-KNESER PROPERTY 121

Let 2 be a bounded domain in R*(n>1) with boundary S€O?**, We write

=0x% (0, ¢], 8;=8x [0, ¢] for each ¢ € (0, T7].

The Greek letters @, s, efo., and English letters ’u, v, w, efo. are always used o

denote scaler functions and vector functions with N components respectively in thig:
paper. ‘
For scalar functions, the spaces Lq(Qr), W2'(Qr), Wi¥*(Sr), WL(Q), O(Qy),
- = - ap ke oy Lk
04°@n), 0 @), H*"*@)=H"""% @n), H**(Sp)=H"""T (8z), 0"**(Q)oto.
used in this paper have the same meaning as those used in [B, Chs. I and IT]. The.

” ° “211"11 ” * ”z,z/a,q, ” ¢ ”l,q, ' ¢ lO; I ° li,o, I * l2v19-

For a veotor function, if each of its compoﬁéhts belongs to some of the above

spaces, then we say for short that it ifself belongs to the space, and define the sum of

the norms of all of ils components as ifs norm.

Hypothesis(D). D=D"X---x D", where D* is an open bounded conves subset of
B™ containing the origin for each k€ {1, +, r} with m1¥l—f-- +m, =N

Correspondingly, the expréssion of a funoction u: R"->RY¥ often takes the form
u=(u", -+, o) in the sequel, where w*= (u&, -, u%,) éR’"" for k=1, <., . The
Jecobian of  is denoted by

V= (Vai, -+, Vo) = (Vail, «o, Vaidseo; Ve, oo, Vi)
= (Vg o, Vu,,)=(6u,-/3wi),rb==1, see, my j=1, o) N,
The matrix of variables p= (py),é=1, «-; n; j=1, «-+, N, will correspond to Vu, and:
O T om /°
For u§ € 0D, an my~vector n(uf) is said to be the outward normal to OD* at uf if
n(ug) « (u§—u) =0

the my—vector p* (¢=1, <, n; k=1, -, ) o OuF/Ow;= (

holds for each «* € D*,

For k€ {1, .-, r}, L* represents such a uniformly parabolic operator with real

coefficients that for ¢p: @z—>R

¢ Oy — 2 “gc,f (m: t) ¢@4ﬁj+§[ w;c (w} t) 2]

4,4=1

where (af;) is a symmetrio, positive definite matrix. For u= (u?, «-, w’) with o

Qr—> RB™,
Lu= (L™, -, L'u),
where '
L= (LFog, «--, LFul),

Let s be a nonnegative integer not greater. than . Let B, -, B be the first-
kind of boundary operators, and B**%, ..., B" the boundary operators including-

probably regular oblique derivative ones, i. e., for : Sy—> R,
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P, k=1, s,

Bap=, |
2 0@, Do+ (a, 1)y, h=s+1, o p,

where b%(a, 1) =0, b%(q, £) = (bi(e, t), .- bi (@, 1)) satisfies the inequality b*(w, t)
v (%) >0 with v(®) being the unit outward normal fo s at ¢, For u= (u, W),

Lu=f (@, t, u, Vi), (2, 1) €Qy,
Bu=g(w, ¢, u), (2, 1) €8y, €))
_ u(w, 0) =h(z), vEQ,
with f, ¢, and b satisfying the following hypotheses:
Hypothesis (B). f=( Y e, P with, S Qrx BY x R _ B™ locally belonging to
Heolhaa g, k=1, -, p. g= 9%+, o) with 9'=g"(a, #) independent of o and

9° € H**(S) when — 1, - s, and 9 =9"(w, ¢, w) hawing continuous partiel derivatives

with respect to & ang % and as @ functon of (z, t), g*c gite @), o9"/om; and
agk/au,-em@) Jori=1, ... n gnd J=1, oo, N when b=s+1, . o h=(h*, ...
h) € 07*a ()

Hypothesis ). f, gand Satisfy the Jollowing compatibility conditions at ¢ g

Bh() =g (a, 0, 2(2)), wcs,
2880 | 1 (0) —po(a, o, h(@), Vh(@)), b=1, -, 5, ses.
Hypothesis (8T and (WT). Let Dpv satisfy Hypothesis (D). We say that i
with D, satisfies the strong tangent condition, (ST if for each Uo=(uj, -+, uf) €D with
any its component U5 € D" thore emists an outward normgl n(uf) to Db gy uh such that
| i@, b, w, p)on@)<o @)
holds for (w, t) €Qr and those P whose ‘eloments sqtis Sy % en (uf) =0, é=1, -, 0, and
holds for (s, ) €Sy and those p whose dlements satis  fy :

2 U@, DD 85(0, g, 1, vy | ®)
If the strong tangent Inequality (2) is replaced by the weak tangent inequality
@, 1, w, p)on(uf) <0 @)

in the above d’eﬁnition, then we say that £, with D, satisfies the weak tangent
condition wr), '
Hypothesis @y). For bh=s+1, <) r and eqop, (@, ) €Sy
92, 1, up) sn(uk) <0, W EADY, uy €D, @
Hypothesis(Q®). For eqon (2, 1) €Qr,

B e
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] |f (e, 8, u, o) | <p(lu])(T+][p[*), (5)
where 0<s<1 and w(v) is @ non decreasing function of = for v=0.

§ 3. Invariant sets and existence of solutions

Theorem 1. Let f, g, b and the coefficients of the operators L and B be continuous
functions of their own variables and DCRY be an open, bounded, convew set satisfying
HYP(D). Let f and g satisfy the strong tangens condition(ST) and the weak tangent
condition (T'y) respectively. If

g% Sg—>D¥ for k=1, -, s; h: Q—D
and w € O0**(Qy) is a solution to the problem (1), then w: Qr—>D; é. e., D is invariant
Jor (1.

Proof Assume it is not the case. Then there exists a time £ € (0, T'] such that
u(w, £) €D for (w, 1) EAX [0, to) and wu(w,, to) =uo = (ug, =+, ¥p) €0D for some
2,€Q2. In virtue of the consiruoction of -D, there exists k€ {1, :++, r} such that
=l (o, £o) €OD* and w¥(w, £) €D* for (w, ¥) EQ X [0, %),

Lot n(uf) be the outward normal to D at uf satis{ying (2). and (4). Consider the
functlion

o (@, 1) =@, 1) on(uh).
By the definitions of %, and u%, p(w, £) abtains its maximum ufn(uf) =M on @, ab
(wo, to). Since D* is convex, M >0,
Suppose that @p € Q. Thus @, (20, %) =0, i. e.

% .
2 %v:;, tO) °n u?) = O, {l;: 1) see, My (6)
(]

and
L (ao, 1) =0, | )
On the other hand, by (6) and (2)
Lrp(@o, to) =1"(@o, to, o, Vt(o, to)) *n(e) <O
This contradicts (7). P ,
Suppose that @ €. Since we assume thab ¢’: Sp—> D7 for j=1, ++, s, b must be
in {s+1, -, r}, Therefore

é ¥ (wo, to)OU* (o, to) /0w (w0, to)ul= g*(@o, to, Uo).

Using (2) again we get IFgp(w,, to)<<0. By the continuity of L’p, there exists an open
ball B with center (2o, fo) such that I¥p<<0 on BN Q. In addition, it is easy to see
from the convexity of D¥ and the above argument that ¢ (w,#) <M for (w, t) EBN Q.
By Friedman [4, Th. 14, p.49], | o

g b:’o (wo, to) Pa; (woi to) >O. . (8)
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On the other hand, by the boundary conditions concerned and the inequality (4)

E b¥ (@0, 10) P2, (o, t0) =g" (o, to, Uo) *n(ug) — b (w0, t0) M<<0,

This contradicts (8) and proves the theorem.

In disoussing the existence and uniqueness of solutions we will repeatedly make
use of a basic result concerning linear 2b-parabolic systems due fo Solonnikov [5,
Th. (0.4, p.621]. For simplicity, we state it only for the following linear parabolic
problem

Uy — ijé=1 -Aif(w) t)u¢l$j +§ Ai(w,v t)u¢¢+A(w: t) =F(w; t): ((D, t) EQ’-":

31 B(o, )+ Bau=G (o, 1), (o, ) €8s, 9)

u(w, 0)=H(z), «cQ,
Hero u=u(w,t), F (v, £),G (&, ) and H (@) are vector functions with N components,
‘A‘J(w: t) =(ag.f ({6, t); *t, w?.;(w; t) )diag a’nd B; ({I}, t) = (O: -, 0, %ﬂ+1 (m: t); % bgv (w) t))dlag

m
are NV x Ndiagonal maitrices, 4;(v, ¢) and A(w, ) are NX N matrices, and By (w, £)is
m—1

& N X N matrix with (1, 0, -, 0), (0, 1, 0, -, 0), -, (OF,_:TO, 1, 0, +, 0)as its
first m rows.

Solonnikov’s Theorem. Suppose that S € 0%, 4,€0(@r), Aiand ACL.(Q,), B,
and Bo € HY"'*(8), 4, j=1, «-, n, where 1<q+#3, >0 can be arbitrarily small.
Then the problem (9) with F € Lq (Qy), GuEWGTH A2 (8 for k=1, -, m,
GrEWETHE-2(8, for k=m+1, -, N, adn HE W22 (Q), satisfying necessary
compatibility conditions, has unique soluti on u, and the following estimate holds:

ka1 e<OU 17+ 331Gl a0, aeym
+ k-—%l " Gk " 1-¢-1, (1-g1y/2,¢ ” Hﬂz—s«-x.q), (10)

where constant Oy depends onlyon n, N, 9, T, Q and the supremwms of the norms in the
above spaces of the coefficients.

Now we make use of Theorem 1 to obtain an a priori bound for all the possible
solutions of the problem (1).

Theorem 2. Suppose that S € C%, &€ 0@y, a* €L, (Qr), b and b5 HY (Sp).
Suppose that f is a measurable function satis fying (5), g*EWsTH@e2 (§.y for
k=1, +, s, ¢* locally belongs to H*7/*7(Syx RY) Jor h=s+1, -, r and L€ W22 (Q)
and that the necessary compatibility conditions are Sulfilled. :

If we W5 (Qr) is a solution to the problem (L) with lulo<M, 1—g*<y<1 and

n—l—Z Sor & in (B). Then the following estimate holds:

qg=
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lula,1,e< My (11)

where constant M depends only on n, N, g, v, &, T, 2, M, p(M)and the supremums
of the norms in the above spaces of f, g, k and all the coefficients of L andB.
Proof Since ¢>n+2, u€Wa(Qr) implies u€ H*** (@r), for any

36(1_8, 1— “';2) and |1, e<Cau]s s, (12)

Define
' F(w, t)=f(a, t, u(, 1), Vuls, 1))

G(w, t)=9g(z, t, ulm, 1)),
By HYP.(QG), the interpolation inequalities in H¥*%(@y) (seo o. g. [9, Lemma 2]),
the irequality (12) and the fach that |u|e<<M, we have
‘ |7 o< | (M) (14| Ve[ **) [ <O (14 [Vu|§) |
<O (1+ |u| E2/0+0) <Os (14 |u| S5/ (18)
Since the embedding operator HY(Qr) <> Wi @Y (Sy) is bounded, we have
|G¥ | 1-01,c1-a-2y/2, 006 | G| <Oz (1 + | Vus[ B)
<O+ [u|YF) <O (L+ [ul¥F?),
h=s+1, -, 7, (14)
Oonsider v as the solution to the linear boundary value problem
Lu="F(a, 1), (&, ¥) €Qr,
Bu=G (=, t), (», t) ESr,
u(z, 0) =h(w), ®€Q,
and apply the estimates (10), (13)and (14) to if, we find that

and

2—¢
Ilullz.l,q<0m(1+||ull21“‘;+||u||ﬂ% .
2—
1+ ,3

This completes the proof of Theorem 2.

Corollary Under the conditions of Theorem 2. there ewisis Ma>0 such that

) ‘ w I 1+B< M 2
for any given BE (0, 1— (n+2)/9), ;

Theorem 8. Suppose that o, af € H*(@r), b}, b€ H*™*(8r), and that DcRY
satisfies HYP(D), f, g and h satisfy HYP.(R), (0), QF), (TQ)and (ST) with
Ag¥, O<SASL, én place of ¢* in (3). In addition, assume that

Fo(w, 0, h(w), Vh(®)) =0, h=1, ==, s
g“(w, 0, h(z)) =0, b=s+1,
If ¢ Sy—>D* for k=1, -, s and &f h:QCD, then the problem (1) has a solumon

<1, (11) follows from the lash inequality.

Since B>1—s and thus 1_?_’ 3 -<1,

zES,
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wE H*(Qn) with w:Qr—> D,

Proof Firstly, define vector functions 9@, ¢, w), i, t, u), k() and h(@) as
follows: ’

for k=1, -, s ,

9@, ) =g*(w, ), F(a, 1, 4) =0, *(s) =H*(a), (@) =0,
and for k=s+1, -, o |
9@, =0, (o, t, W) =g*(a, 1, w), B*(w) =0, (@) =1 ().
Then, define operators ¥ and G as follows: for w:Qr—>R" dofine Fuw:Qr— RY by
S (@, t, ws, £), Vu(e, ) —f*(, 0, w(s, 0), Vu(, 0)),
(Fuw)*(w, §) =4 F=1, oo, 8,
| f (@, t, ww, t), Vu(e, ), h=s+1, -, p;
for w:S7— BY define Gaw:Syp—> RY by
Guw(w, ) =j(=, ¢, w(, ) —§@, 0, w(w, 0)).
It is obvious that F:0%(Q,)— O(@r) is a bounded continuous operator, and that
(Fw)* (@, 0) =0, (Gu)* (e, 1) =0, h=1, -, g
and
Gw(z, 0)=0

for €8 andt € [0, T,

Next, define operators Ty and T, as follows: for vEHA(Qr) with o*(w, 0) =0
for k=1, «, s and ¢€8, let u=Tw be the unique solution of the linear problem.

Iu=v(, 1), (2, £) €EQy,
{Bu=§(a;, ), (&, t) €Sy,
u(w, 0) =h(a), s Q.
T:H?(Qr)— H**8 (Q;) is a bounded continuous operater for any B€ (0, 1). By
Solonnikov’s Theorom stated above, T’y may be extended to be a bounded continuous.
operator from L,(Qy)to Wg;i(QT) for 1<g+8. It is easy o see that the embedding:
operator O(Qr) <> Le(Qy) is bounded. And by the Sobolev embedding results W2 (Qr)
n--2

can be compactly embedded in H**4(g,) for 0< B<1- . Therefore, 7'y:0 (@) -

H**#(Qr) i3 a compact continuous operator.
For v€ H*(8;) with (s, 0)=0 and o* (@, ©)=0 for €8, tc [0, 7] and
k=1, +-, s, lot u=T50 be the unigue solution of the linear problem
Tu=0, (, 1) €Qr,
Bu=v(w, ©), (a, t) €Sy,
u(z, 0) =h(a), s€Q.
Ty H¥* (8z)—> H?**(@y) is a bounded continuous operator for any y & (0, 1),

Fix,BE(l—s, 1— n;—2) and sot X =04 (@r) x H¥ (). For (u, ) €X,,
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define norm| (u, @) | =|%|1,0+ |¥|1.6. Then X is a Banach space. Let T: X — X be
defined by
T, V)=T(u, v)=TF (ut+v), TG TLF (ut+v)+2)),
As has been stated above
(©, ) €X = u+0v€0*(@r)=> F (utv) €0(@r)
=U=T1F (u+v) € H*4(Qr)=TU+v € H**(Qr)
=G (U +v) €A™ (80)=V =T,6'(U+0) € H* @),
Since F, @, Ty and T, are all bouned continuous, 7" is a bounded continuous
operator from X to H***(Qr) x H**#(Q;), and hence a compact continuous operator
from X to itsolf. If (u, v)is a fixed point of 7 in X, then w and v satisfy
Lu=F (u+wv), Ln=0, (w, ) €EQr,
Bu=g(w, t), Bo=G(u+v), (z, 1) €8y,
u(w, 0)=h(z), v(w, 0)=h(z), ©C€Q,
and w=u+v is just a solution of the problem (1) with w& H**(Qy). By a bootstrap
argument we can show rhat w& H?**(Qr). And by Theorem 1, w(Qr) =D. Thus,
the proof of Theorem 8 is reduced to proving that the compact continuous operator 7'
has fixed points.

Leb T'y: X X [0, 1]—>X Do the homotopy defined by

Ty 0) = (ToLF (u0)), Ta[AG(To(MF (u+0)) +0)1).
By an argument similar to that for 7, we find that Ty, is a compact continuous
operator from X X [0, 1] to X, and that if (v, v) is ils fixed point, then w(@r)cD
where w=u-v,

Let M=sup {|w|; w€E D}. As mentioned above for any possible fixed point(u, v)
of Ty, |u+n]e<<M, Imitating the proof of Theorem 2, from this we deduce that

|, o) [<|w|ipet | 9] 1,0<M’,
Denote '
O={(u, v) €EX |ut+v: @r— D, | (u, v)|<M’'+1},
@ is a nonempty open bounded subset of X. It is easy to see that Ty,=T and
I —T =0 has unique solution in &. Therefore
dI-T, O, 0) =3I ~Tq,, O, 0)=d(I—Ty, O, 0) %0
and hence 7' hag at least one fixed point. Theorem 8 is thus proved.

Remark. Itshould be pointed out that Theorem 8 has improved the basio
existence results-Theorem 3.8 and Corollary 8, 4 in[7] -of Talaga in several aspects.
One is that L;, s may be different from one another. Another is that the conormal
derivative conditions are extended to the general nonlinear regular oblique derivative
condtitons. The third one is concerning the restriction on f. The assumption that f
is bonnded in p is weakened by that f has an almost quadratic growth in . In
addiﬁbn, it is impossible that the inequality g(e, 0, A(®))s n(u) <O which was used




i28 CHIN. ANN. OF MATH., Vol. 5 Ser. B

1o prove Corollary 3.4 in [7] holds for any w4, €2D unless that g(x, 0, h(x)) =0,

The example given in [7] shows that, even for the case of one equation with
conormal derivative condition, if the strong tangent condition (ST") is changed to
the weak tangent condition (WT'), then Theorem 1 becomes false, i. e., #(Q)cD is
not sufficient to ensure 4 (@r) C.D for any solution u. However, Theorem 4.1 in [7]
shows that, for linear conormal derivative conditions, #(2)cD ensures that there
exists at loast one solution that remaing in D. Now we generalize this result to more
general nonlinear boundary conditions. ‘

Theorem 4. Let the hypotheses of Theorem 8 hold with (ST) replaced by (WT)
Then for any g*: Sp—>DF, k=1, «-, s, and any h: Q—D, there ewisis a solution
w€ H2*(Qy) to the problem (1) with u: Qr—>D.

Proof For A€ (0, 1], consider the perturbed problem

Lu=f(w, t, u, Vu) —thu, (o, t) EQr, ,

Bu=g(e, ¢, u), (w, t) €Sy, (1,)

u(w, 0) =h(w), vCQ,
It is easy to verify that fo=f(w, ¢, u, V) —tAu is compatible with ¢ and A, and
satisfies the strong tangent condition (S7"). By Theorem 8 the problem (1), has a
solution wgy € H***(Qp) with ug,y: @r—>D. By the corollary of Theorem 2, there exists
a positive constant M, independent of A such that|ugu, |1,s<M, for B€ (0, 1). Using
the Schauder estimate for linear parabolic equations (see e. g. [5, Ths. 5.2 and 5.8,
p. 320]) we got |ugy|2.a<M; for some constant Mz. Thus, it follows from Ascoli-
Alzera Lemma that there exists a sequence {uq,)}, as A;—>0, converges in 0**(Qr) to
some function v € H***(Qy). By letting A;—>0 in (1,,) we find that » is a solution to
the problem (1) . Since u=% Ua,y and U ,y:Qr—>D, w takes @ to D. Theorem 4 is

thus proved.

Theorem 5. Let D=D'x -+ x D'and D* be a noNeMPLY COMPAct CoNvew subset of
R™ containing the origin for k€ {1, -+, r} with my+-++m,=N. Suppose thai af; and
a* € H*(Qr), b} and b§€ HY** (Sy), and that f, ¢ and h satisfy HYP. (B), (O)and
(RGF), and f satisfies the weak tangent condition (W1T')for any outward normal n(uf) to
oD at uf. In addition, assume that

F(w, 0, h(w), Vh(2)) =0, €S, k=1, -, s

and ¢*, h=s+1, +--, r, satisfy either )

¢, 4, W=0, (&, ) €Sy, uER 15) -

or
“(@, 0, h(®))=0,
9" (e, 0, h(=)) k 16)
(@, t, up) on(ul)<<—9, >0,
Then for any ¢“:Sp—>DF, k=1, -, s, and any h: Q->D, there emists a solution
u € H2*%(Qyr) to the problem (1) with u: @r>D,
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Proof We consider first the case that ¢¥, k=s+1, -, 7, satisfy (15). Since D* is
compact and convex, for each w*€R™, there exists unique Pu*E€D* such thab
dist (u, Pu¥) =dist (v, D¥), k=1, -, 7. For u= (ud, o+, ur), define Pu= (Pu', ---, Pu").
As is well known, P is uniformly Lipschitz continuous. For AE (0, 1], consider
D, =Djx -+ x Dj, where Di={uf € R™: dist (u¥, D¥) <A} are open bounded convex
subsots of B™ for k=1, -, r. If W* €8D, then Pu*€aD" and the vector u*— Pu® is
‘an outer normal to D* at Pu? and an ouber normal to D ab ub. It is easy to verify

that, for any open convex set D,, the problem

Iu=f(w, t, Pu, Vu), (z, t) €Qr,
=g*(a, 1), k=1, +, s, (&, ) €Sy,
Bt=0, b=s+1, -, 1
u(w, 0) =h(w), s€Q
catisfios all the conditions of Theorem 4. Thus, there exists a solution uq, € H*™ (@r)
with ugy: @r—>Dyc Dy for each A. By means of a limib process similar to that used in
the proof of Theorem 4. we find a solution wC H?*%(Qp) to the problem (17) with
w:Qr—> D. Since v remaing in D, Pu=u and so  is the required solution to the
problem (1) with ¢* satisfying(15) for b=s+1,
Now we assume that (16) holds. For S1mp11011;y, we consider only the cage that

an

s=0, i. e., the boundary conditions do not inolude the Dirichlet conditions. Then,
Theorem 4 does not apply directly to the auxiliary problem
Inu—=f(®, t, Pu, Vu), (o, t) EQL,
Bu=g(w, t, Pu), (%, t) €8, 18
u(w, 0) =h(®), =y}
because the boundary data ¢*(», ¢, Pw), k=s+1, -, r, do not satisfy HYP. (R), bub
satisfy uniform Lipschitz condition.
Construct a sequence {Pyu}cO? (D) such that Py converges in HY (Dy) to Pu
as j—> oo, with 0<y<1. Consider the problem
Tu=f(z, t, Pu, Vu), (&, t)€Qr,
Bu=gu(®, t, ), (, t) €8, | (18;)
u(w, 0) =h(®), sEQ,
where g, (@, t, w)=g (&, 1, Pyu) —9 (@, O, Pyh(a)). It is easy to see that, for
F=Ff(, t, Pu, Vu), §=9x»(®, , w) and h=h(z), HYP.(R) and (0) are fulfilled,
and that g, (e, ¢, u), with Dy, satisfies the weak tangent condition T%,
& (@, 1, to) » (Wk—Puk) =g*(w, t, Puo)« « (ul— Put) + [9* (@, ¢, Payo)
—g*(w, £, Puo) —¢*(@, 0, Piyh(®))]+ (uf— Pur) <O
for j large. By Theorem 4, the problem (18,) has a solution wug € H**® (Q@r) With g
Qr—> D1, Dy for each j. By Theorem 2 and its Corollary, the estimates |uy|2,1,e< My
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n+2

and |uyy|1.6< M hold for ¢=> MS—Q and BE (O, 1—
(denoted still by {up}) of {uy} strongly converging in O%°(Qr) and weakly
converging in W2*(Qr) to some function w& H**4(Gr) NW>*(@r). Thus, as j—> oo

f (m; 6, P Us), vu(f))'—%f (w: 2 P u, vu) _in O(QT>)

), so there is a subsequuencs

9o (@, b, uy)—>9 (@, t, Pu) in 0(Qr),
Bu(,-) -> B’M in O (QT) s
Lujy— Ly weakly in Lg(Qr)

This shows that  is a solution in W3*(Qp) to the problem (18). Since u=1lim uy, and
j-r00

gy @r—>Dyy;, w takes @p to D. Therefore, Pu=u and w also solves the problem (1). By

a standard regurality argument, u € H2*%(Q,). This completes the proof of Theorem
5. '

§ 4. The Hukuhara-Kneser Property

In this paragraph we mainly show that the sel of solutions of the problem (1)
possesses H-K property, i. e., it is compact and connected in 01'°(QT) . A special case
of H~K property is the uniqueness of solutions.

Theorem 6. Let the coefficients of L and B satisfy the same dsswnpt@on as in
Theorem 8, and f, g and h satisfy HYP(R). In addition, assume that f (@, ¢, w, p) has
bounded derivatives with respect to w and p. Then the problem (1) has at most one solution
in 0**(@r) |

Proof Let both u and v are solutions in 0%*(Qr) fo the problem (1). It is eassy
to see that w=u—wv satisfies the following linear problem

Lv+-3} 4i(e, )G+ A, Hu=0, (3, ) €Q,
Bw+ By (=, t)w-0, (@, t) €8y, (19)
fw(a;, O)=0, mE@

2

where

Az, 1) = J aaf (w t, u(w, t)+rw(e, ), Vule, t) +rVw (s, ©))dr,
b= 1 °0ey My Pi= (.piil °%ty PtN}

Aw, t)= j of (z, 3, u(z, &) +vw(a, ), Vule, £)+rVw(e, t))dr,

Bo(a, )= [, X0, 1, u(a, 1) +ww(a, ))ds,
Consider (19)as a linear boundary value problem. By wusing Solonnikov’s Theorem

with ¢#38 and 1<¢< 11 wo find that |w|s,4,¢=0, i. e., u==v. This thus proves

Theorem 6.
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Remark. Theorem 6 has sharpened our earlier uniqueness result (see [9])
concerning nonlinear boundary value problem.

The examples given in[7] show that if f does not have enough smoothness then
the solutions to the problem (1) may not be unique. Thus, it is interesting to study
the H-K property of the seb of solutions. Similar to [7], an abstracted version of the
result in this aspect (see [2]) is stated without proof here.

B-8S Theorem. ILe¢t X be a Banach space, O X a nonempty, bounded, open set
and T:0->X a compact continuous operator,. Suppose that |

(a) d(I-T, O, 0)+0;

" (b) there ewists a sequence of compact continuous operators Ty O— X, k=1, 2, -
such that 870:‘?‘2% {|Tww—Tw|}—>0 as k—>+co and

(c) the equation w="Tyw-+wo—Tywo has at most one solution in O for any solution
wy of w=Tw. '

Then the set of fiwed points :
_ v ’ Q={we0: w=Tw}
is @ compact connected set in X -

Theorem 7. Let the hypothesis of Theorem 8 hold. For g*: Sp—>D* k=1, +.. S and

h: ©Q—>D, the set.of solutions of the problem (1) is a compact conmected set in C-°(Qy).

Proof The notation in the proof of Theorem 8 will be used here. Let

Q={(v, v) €O:(x, v) =T(y, v)}.

Since the mapping (u, v)—>u+o from Q fo O%° (@) is contininuous, the set @
corresponds to the set of solutions of the problem (1) in an evident way. Therefore,
in order to prove the theorem, it is sufficient to show that the set @ is oempaot and
connected in X. It turns oub that we need only to verify the conditions of B-S
Theorem. By the proof of Theorem 8, (a) is satisfied. The verification of (b) and (o)
is similar to that in [7, Theorem 5.6] with the only difference that Theorem 6
should be used to replace Lemma 5.5 in [7].

Theorem 8. Let the hypothesis of Theorem 4 or 5 hold. For ¢g*: Sp—> D, 70—- , 8
and h: Q—> D, the set of solutions of the problem (1) that remains in D is a compact,
connected subset of 0+°(@p).

- Proof The proof is similar to that of ’I‘heorem 5.4 in [7], so it is omitted here.
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