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Abstract

Two existence theorems of random measures on a separable complete metric space are
proved. It seems that the theory of random measures in locally compact spaces and that in
separable complete metric spaces. are essentially different by noting that the critera for
tightness of the locally finite measures is much more tedious than that of the Radom

measures.

1° In this paper we shall prove two oxistence theorems, i. e. the Theorems §°
and 8° below, for random measures on separable complete metric space X with
metrioc p. Restrieting 0 the loocally oompaot space X or to the stochastic point
processes, our Theorem 6 is just Theorem 5.8 in [2] and Theorem 1.8.5 in [1]
respectively. Our Theorem 5° is More useful than Theorem 6° becuse the continuity
conditions in i are denumerable (i. e. (26) and (27)). In another paper relevant
theorems for infinite divisible random measures are obtained mainly by our Theorem
B. Tt scoms that the theory of random measures on locally compact metric spaces and
in separable complete metric spaces are essentially different by noting that the oriteria
for tightness of locally finite measures in [1, Theorem 3.2.5] is much more tedious
than the Radom measures in [2, A 7.8].

3° At first, let us recall the definition of random measure. Let B be the Borel
algebra of X, B* be the ring consisting of all bounded sets in B, and lot W be Borel
algobra in real line. We say +hat a measure won (X, B) is locally finite if pAd<<eo
for all A€ B*. Let M be the class of all such measures, and let B(M) be the o-ring
generated by the sets such as

{w; WAEW,, i=1, 2, -, n}
for A,€B*, W, €W and n=1, 2, - By a random measure We mean any measurable
mapping of some fixed pfobablity space (2, %, P) into (M, B(M)). For a mapping
£:0Q->M we have . '
&y whi €Wy, i=1, 2, ++, n} = {w; §(4;, w) EW,, 4=1, 2, -, n}

and ¢ is a random measure if and only if
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{o; £(4s, w)EW;, t=1, 2, =, n} €Y €y
for A,€B*, W,€ W and n=1, 2,

8° Let X = {%, ®a, -} be the denumerable dense subset of X. Lot 2 be a

denumerable dense subset of the positive numbers (0, 00), and let
B,= {open ball B(w, r); a;EXs, rc 9},

- B, =the ring generated by Bo,
For fixed sequences r4, 7€ 2 satislying

P> > e >y —> 0, h<rh<h+1, (2)
let

T'o={B(wy; 15,1) —B(a, ) =1, 2, 3N {B(a1, D},

Assume that I'o, Iy, -+, I', have been constructed and let

n+1"‘{[B<mu 4"n+1) U B(w;, Tar1)] NA4; AeTly, j=1, 2, -},

Such a family of I'o, I'y, I'a, +-- is called the family of dissecting systems related to
9. It is evident that

AnB ¢ for A, BEI', and A+B; 3)
e A=B for BEI'y (4).
AELIL” A=X; ®)
each A€ Iy, is contained in a Berly, (6)
cach I, is denumerable and contained in By; ¢h]
and
dim A<2r, for A€ T, and n=>1, - (8)
4° Lemma Suppose that u is @ findte nonnegaiive additive set function on By and
satisfies
r-»ltn;% . wB(w, r)=uwB(w, t) for Bz, t) €B,, 9
and
AcB, A€l yn MA B M’B | (10) |

for BE T, n=0, 1, 2, ««+. Then p is o additive.
Proof Let X;€B(i=1, 2, .+) and Xo= UX; € By. Tt is sufficient t0 prove
MX0<E wXi, : (11)

Let A°, A°, A and 94 be the complement, the interior, the closure and the
boundary of the set A respectively, and p(4s, Az) be the distance between the sets 4
and Ag. For AEB; and >0 there exist Ay, Ay € By satisfying

A, cAcAc A3, w(ds— A1) <s, (12)
p( 41, A3)>0,
since the family {4; 4 €By, for s>0 there exish Ay, 4,€B; satlsfymg (12)} forms a
ring and contains By by (9).
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For a natural number &, let Y3, ¥ be the sets in B, satisfying
Y, X o XYY, (Va—Yy) <_21,,_ wX, (13)

p (Yi: Y%) >O:
then by (2) there is a natural number no satisfying
2T”°<p(Y1, %) .

*o={B; BEI,, BCY} 2}
T:QED{B; BEI‘”M Bnyi%Q}e

Let

then

Now let us prove that
wYi< X pB, (14)
BeI% :
Let j be a natural number such that -
Y2 B(ws, 75),
and suppose (14) is false, i. e. |
pYi> X pB. | (15)
BeIf

By (10) (15) and
U BCB(wi, ’)"’j) '-Yi,

BeB(oy ) BET g~ Thgi
we have the following contradiction .
wB (w1, )= 2 wB= X pB+ 2 uB

. BBy ,Bely, BeI% x BcB@y,BE~The
<LbY1+]b(B<£U1, 'r{‘i) _Yi) =:u'B(w1; Ir,f);
and (14) is obtained. By (18) and (14), we have
MAo\,u;Yg<y;Y1+ 176 ,on\ ) ,bbB—l— 1 ,Lon,
Bels
or

(1"—L>MX0< > MB<<1+*21;T>,U'X0.

270 BeIl'S x
The last inequality is due to (18) and the definition of I, so we can select a finite
subset Iy of Iy such that

(1~ )nXo<p U B< (1457 JuXo, (16)
Bel'y,
Al A
Now we may select a finite subset I'w, of I, for each n>ng by induction such that
U dc U 4, (1)
A€Tyy A€l
U ax(1- ___L-) B for BET (18)
et (n—10) I f—1,Ke
AcB, A€l

By (10) it is possible. Then by (16) (17) and (18), we have
( ——2—,}_3->;1,X0<M U A<(1+ 1 )/on, for n>no, (19)

A€y
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and for fixed %, the set
Keal) U4

n=ny A€Mk
is totally bounded and closed, so it is compact.
Now we shall prove that for fixed 4 and fixed n>=>no
ANK $ 70 _ : (20)
provided that A€ 'y and wd>0. By (18), we choose AuimE€Lnems bY induction
with A,,o=A for each m=1, 2, --- such that

An+mc An-;-m-—-i;
and
N’An-;- m>0.

By (2), (8) and the property of the completeness of X, the intersection ﬁ Apim
m=1

consists of a single point belonging to 4 N K. (20) is obtained.
Let B, O be two sets in By such that
CNK,<B,
equivalently
| (C—B% N Ky=90.
Then we have :

(C-BHN U A=) (21)

_ ACT iy BA>0
as soon as 2r,<p(K, C—BY). (21) is equivalent to
dn U AcB forlargen (22)

A€k, pA>0
provided that ¢ N Ky B® and B, 0 €By. For fixed k and O with 0€B; and 0 X,,
let BE B, such that B°> KN C. Then for sufficient large n, We have

po<w U ANO-+pl0— U 4]

A€, nA>0 €k, pA>0

<uB+wplY s— U Al<wpBH+pYq— ’u,AeLl)“'n;, A (23)

A€y wA>0

<IIIB+H/X0+-§1,G— MXO“‘(MXO— 2;}_1 P"Xo> <MB+§;'}:§ pXo,

Here the second inequality is due o (22) and OCX oY 5, and the fourth inequality |

ig due to (18) and (19),
Now let us prove (11). For any given §>>0 lef us choose A€ By and 4;€ By such

that
Acxo, w(X,—A4)<s/2,
A X, w(d—X)<s/2
for i=1, 2, --+. Then for fixed £ we have

an chf;lx A9

(24)

for some m because 4 [} K is compact, and moreover we have
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e 1 1 -
F’XO"E‘” o2 F"X0<'V’A_ ok—2 ,U/X0<§ s

<3 (uXiko/2%) <3 pXi+s/2,
where the second inequality is due to (28). Therefore
wX 0<§1 wX,

and the Lemma is proved.

5° Theorem Suppose {£(4, ©); A€ By} is a nonnegative random process on (Q,
%, P) such that

EA+EA=E(41U 42) a.s. for Ay, A €By and AN A=0, (26)
. ltimw§B(w, r)=¢B(w, 1) a.s. for Bz, ) €B,, (26)
ACB’AEP”“§A=§B a.s. for BEI,, n=1, 2, «, | (27)

A< a.s. for AEBy, (28)

then there exists & random Mmeasure 7 satisfying
nA=£A, 10A=0 a.s. for A€EB;,

Proof Since Bo, I'y and By are all denumerable, we can choose Q2,2 such that
P(Q—Q)=0 and (25), (26), (27) and (28) are valid for © € Qo. Then by Lemma 4°,
(e, w) is o—additive for w €2y, and so there exists a measure 7 (+, w) on B such
that

(4, 0)=£(4, ), VAEB,, , (29)
Let (-, ) =0 for & Qo. Wo shall proVe that 7 is the desired random measure. For
this, let ' ‘ | '
B'—{B, BEB, BCB(&, ™)},
* ={B; BEB,;, BCB(z, o},

Then for fixed n, B} is a o-ring and B!, is a ring generating By and

U)B; =B, (30)

n=1
Now for fixed n we have
Bi=[4; 14 is a random variable, A€ B} (81)
since the right hand side of (81) is a monotone ctass by (28) and by the o-additivity
of n, and contains B!, by (29). Hence 7B s a random variable for each BEB" by
(81) and (80), and so (1) is valid. The theorem is proved by the equality
B,—{4; ACB;, n2A=0 as}, |

because its right hand side is a ring and contains By by (26), |

g° Theorem ILet {((4, ®); ACB'} be a given nonnegative random Process on
(@, %, P) such that :
£(Ag) +&(4s) =£(A1U 4) a. 5. for AN A=, (32)
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lim ¢ (A,.) =0 a.s. for A0, (83)

A< a. s, , (84)
Then there exists & random measure 1 satisfying
nA=£4 a.s. for ACB",
Proof We prove thig theorem by using Theorem 5° and at first we must have a
denumerable denge subset 2 of (0, oo) such thab
EoB(w, r)=0, a.s. (85)
is valid for all open ball B(w, r) with centers € X, and radii r€9. For this, let
7 iz D0 the set of positive numbers » satisfying

r<l, P{w; £oB(w, rr)>%}>_1_

m}
then Z a1 i8 a finite set for fixed natural numbers m, n,  and € X, Otherwise we
have 7;(j=1, 2, ) satisfying v ' ‘
Ploy ¢80, w)>2}> 1w, (36)
and we have the following contradiction

0=P{e; £B(w, ) =oo}>PTm {a); £0B(x, 7,)>_.1_}
. ; | n

- 111
>11;:n P{w; E0B(w, ;) >7[}>7n_’

where the equality is due to (34) and the first and the last inequalities are due 1o
(82) and (36) respectively. Now any dense subsoet of
(0, o0)— Uu U Z e

weXs n m

may be taken as the desired &. Then we have By, By, I'y(n=1, 2, --+) as in 8° and
(83) implies (26) and (27). By Theorem 5° we have a random measure 7 satis{ying
n(4)=E(4) a.s. for A€B,,
Since the right hand sides of (87) below is a monotone olass by (84) and contains
1, and so
B'={4; nd=£A as., ACB} (37)
is valid, and by (87) and (80) we have
n(4A) =¢(4) as. VAER,
the proof is complete. -
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