CONSTRAINED RATIONAL APPROXIMATION*

(史应光) SHI YINGGUANG

(The Computing Centre, Academia Sinica)

Abstract

Let P and Q be convex sets in G(X), and q(x) > 0 in X for all $q \in Q$. The approximating family is then the class

 $R = \{p/q : p \in P, q \in Q\}.$

The Chebyshev approximation to $f \in C(X)$ an element in R is investigated, and the characterizations of a best approximation, and the necessary and sufficient condition for the unique best approximation are obtained.

1. Introduction

Let X be a compact metric space and C(X) the space of continuous real-valued functions defined on X with the norm

$$||f|| = \max_{x \in X} |f(x)|.$$

We now suppose that P and Q both are subsets in C(X) and q(x)>0 in X for all $q \in Q$. Our approximating family is then the class

$$R = \{p/q: p \in P, q \in Q\}$$

and our approximating problem is, of course, given an element $f \in C(X)$ to find $r_0 \in$ R such that

$$||f-r_0|| = \inf_{r \in R} ||f-r||,$$

such an r_0 (if any) is said to be a best approximation to f in R_0

In this paper we present the characterizations of a best approximation and of the unique best approximation when P and Q both are arbitrary convex sets.

2. Characterization and Uniqueness

Write

$$X_r = \{x \in X : |f(x) - r(x)| = ||f - r||\}.$$

We may state the following lemma.

For any r_1 , $r_2 \in R$, Lemma.

$$||f-r_1|| \leqslant (<) ||f-r_2||$$

implies that

Manuscript received October 2, 1981.

^{*)} This work has been supported by a grant to Professor C. B. Dunham from the Natural Sciences and Engineering Research Council of Canada when the author is at the University of Western Ontario as a Visiting Research Associate.

$$\max_{x \in X_{r_2}} (r_2(x) - r_1(x)) (f(x) - r_2(x)) \leq (<) 0.$$

Proof It is easy to see that

$$||f-r_1|| \leq (<) ||f-r_2||$$

implies

$$[(f(x)-r_2(x))-(f(x)-r_1(x))](f(x)-r_2(x)) \geqslant (>)0, \ \forall x \in X_{r_2}$$

 \mathbf{or}

$$(r_2(x)-r_1(x))(f(x)-r_2(x)) \leq (<)0, \forall x \in X_{r_2},$$

i. e.

$$\max_{x \in X_{r_3}} (r_2(x) - r_1(x)) (f(x) - r_2(x)) \leq (<)0.$$

We will be able to characterize the best approximations in R_{ullet}

Theorem 1 (Characterization). Let P and Q be convex in C(X). An element $r_0 \in R$ is a best approximation to $f \in C(X)$ in R if and only if

$$\max_{x \in X_{r_0}} (r_0(x) - r(x)) (f(x) - r_0(x)) \ge 0, \ \forall r \in R_{\bullet}$$
 (1)

Proof Sufficiency. Suppose not and let $r \in R$ satisfy

$$||f-r|| < ||f-r_0||$$
.

Then, by Lemma

$$\max_{x \in X_{r_0}} (r_0(x) - r(x)) (f(x) - r_0(x)) < 0.$$
 (2)

This is a contradiction.

Necessity. suppose on the contrary that it is possible to find an element $r \in R$ satisfies (2). Putting $r_0 = p_0/q_0$ and r = p/q, where p_0 , $p \in P$ and q_0 , $q \in Q$, write

$$r_t = \frac{(1-t)p_0 + tp}{(1-t)q_0 + tq}$$
.

The remainder of the proof is devoted to showing how to select t, $0 < t \le 1$, so that $||f - r_t|| < e = ||f - r_0||$.

Let $y \in X_{r_0}$. From (2) it follows that

$$\begin{aligned} |f(x) - r_t(x)| &= |(f(x) - r_0(x)) + (r_0(x) - r_t(x))| \\ &= |(f(x) - r_0(x)) + \frac{tq(x)}{(1-t)q_0(x) + tq(x)} (r_0(x) - r(x))| \\ &= |f(x) - r_0(x)| - \frac{tq(x)}{(1-t)q_0(x) + tq(x)} |r_0(x) - r(x)| \end{aligned}$$

if t>0 and |x-y| both are small enough. So there exist a number $t_y\in(0, 1]$ and a neighborhood N_y of the point y such that

$$|f(x) - r_t(x)| < e, \quad \forall t \in (0, t_y], \quad \forall x \in N_y.$$

$$(3)$$

For $y \in X \setminus X_{r_0}$ we have

$$|f(y)-r_0(y)| < e.$$

Then there also exist $t_y>0$ and a neighborhood N_y of y such that (3) is valid, because $\lim_{t\to 0+} r_t = r_0$.

Now from the open cover $\{N_y\}$ of the compact metric space X we may select a finite subcover N_{y_1}, \dots, N_{y_n} . Taking the minimum of the corresponding positive

numbers t_{y_1} , ..., t_{y_n} , denoted by t, we have $0 < t \le 1$ and

$$|f(x)-r_t(x)| < e, \forall x \in X_{\bullet}$$

Hence

$$\|f-r_t\| < e_{\circ}$$

We have reached a contradiction, because

$$r_t = \frac{(1-t)p_0 + tp}{(1-t)q_0 + tq} \in R_{\bullet}$$

Theorem 2 (Characterization). Under the assumptions of Theorem 1 if $f \in C(X)$ possesses a best approximation in R, then $r_0 \in R$ is a best approximation to f in R if and only if

$$\max_{x \in X_r} (r(x) - r_0(x)) (f(x) - r(x)) \leq \max_{x \in X_{r_0}} (r_0(x) - r(x)) (f(x) - r_0(x)), \quad \forall r \in R.$$
(4)

Proof If r_0 is a best approximation to f in R, then

$$||f-r_0|| \leqslant ||f-r||$$
, $\forall r \in R$.

Hence it follows by Lemma that

$$\max_{x \in X_r} (r(x) - r_0(x)) (f(x) - r(x)) \leq 0, \ \forall r \in R,$$

which and (1) imply (4).

Conversely, assume that r_0 satisfies (4). Suppose on the contrary that r_0 is not a best approximation to f in R but $r \in R \setminus \{r_0\}$ is. Thus by Theorem 1

$$\max_{x \in X_r} (r(x) - r_0(x)) (f(x) - r(x)) \ge 0, \tag{5}$$

and by Lemma

$$\max_{x \in X_r} (r_0(x) - r(x)) (f(x) - r_0(x)) < 0.$$

This is a contradiction.

Theorem 3 (Uniqueness). Under the assumptions of Theorem 2 the following statements are equivalent to each other:

- (a) $||f-r_0|| < ||f-r||, \forall r \in R \setminus \{r_0\};$
- (b) $\max_{x \in X_r} (r(x) r_0(x)) (f(x) r(x)) < 0, \forall r \in R \setminus \{r_0\};$
- (c) $\max_{x \in X_r} (r(x) r_0(x)) (f(x) r(x)) < \max_{x \in X_{r_0}} (r_0(x) r(x)) (f(x) r_0(x)),$ $\forall r \in R \setminus \{r_0\}.$

Proof (a) \Rightarrow (b). By Lemma it follows directly.

(a) \Rightarrow (c). Since (a) implies (1) by Theorem 1, (c) follows from (1) and (b).

(b) \Rightarrow (a) and (c) \Rightarrow (a). Suppose not and let $r \in R \setminus \{r_0\}$ be a best approximation to f in R. Thus, by Theorem 1, (5) is valid and by Lemma

$$\max_{\sigma \in X_{r_0}} (r_0(x) - r(x)) (f(x) - r_0(x)) \leq 0.$$
 (6)

But (5) contradicts (b), and (5) and (6) together contradict (c).

Acknowledgement

I am indebted to Professor C. B. Dunham for his guidance and help.