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Abstract

TLet P and @ be convex sets in 0(X), and q(w}g <0 in X for all ¢ € Q. The approximating
family is then the class '

R={p/q:p€ P, 1€ Q}.
The Chebyshev approximation to feC0X) an clement in R is investigated® and the
characterizations of a best approximation, and the necessary and sufficient condition for the
unique best approximation are obtained. '

1. Introduction

Let X be a compact metric space and O(X) the space of continuous real-valued
functions defined on X with the norm

|l =max| F@)].

We now suppose that P and Q both are subsets in 0(X) and ¢(#)>0 in X for all
¢ €Q. Our approximating family is then the class

* R={p/q: pEP, ¢€C}
and our approximating problem is, of course, given an element fEO(X) to find ro€
R such that

|f—rol =0t ] £ =1,

such an To (if any) is said 0 be a best approximation t0 fin B,

In this paper we preseht +he characterizations of a best approximation and of the
unique best approximation when P and @ both are arbitrary convex sels.

3. Characterization and Uniqueness

Write '
X,={weX:|f@)—r@|=1f=r
We may state the following lemma.

Lemma. For any T, ra€R,

| f—rd << F=ral

|3

implies that
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max (frg(w) —r3(@)) (f (&) —ra(@)) < ()0,
Proof It is easy 1;0 see that
| f=rd (NS =1l

implies
o [(f (@) —ra(@)) — (F (@) —r1(@))1(f (@) —ra(@)) = (>)0, Vo€ Xy,
e (ra(@) —11(2)) (f (@) —12(@)) <(<)0, Vo€ Xy,

max (ra(@) —rs(@)) (f (@) —1ra(@))< ()0,

We will be able to charaoterlze the best approximations in R,
Theorem 1 (Charaoterization). Let P and @ be convew in O(X). An element
roC R is a best approvimation to f EO(X) in B if and only of
max (ro(w) = (@)) (f(2) = ro(®)) =0, VrER, @)

Proof Sufficiency. Suppose not and let r& B satisfy

| f=rl<lf—rol.
Then, by Lemma '

max (1(2) —r(@)) (f (@) —ro(2)) <O, @)
This is a contradiction. ° |
Neoessity. suppose on the contrary that it i possible to find an element rER
satlsﬁes 2. Puttmg To="po/¢o and r=p/q, where po, p€ P and g, g E€Q, write

L€ S )7 el
(1—1)go+1g "
The remamder of the proof is devoted to showing how to seleot s, 0<t<1, so that
| f =i <e=[f—rol.
Let y € X,,. From (2) it follows that

| £(@) —r:(@) | = | (f (@) =70(®)) + (ro(2) —7:(@)) |

_ tq () |
= @) o) gy il (roe) =@

=17 @) =) |~k gy (@) =1 (@)

if >0 and |z—y| both are small enough. So there exist a number #,€ (0, 1] and a
neighborhood N, of the point g such that
| F(@) —ri(@) | <e, VI€(0, B, VoEN,, &)
For y& X\X,o we have

| f (@) —ro(y) | <e.
Then there also exist #,>>0 and a neighborhood N, of y such that (3) is valid,

because lim 7;=
t->04-

Now from the open cover {N,} of the compact metric space X we may select a

finite subcover Ny, -+, N,,, Taking the minimum of the corresponding positive

2
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numbers &,, +*, &, denoted by #, we have 0<t<<1 and
| f (@) —ri (@) [ <e, VBEX,

| f =l <e.
We have reached a contradiotion, hecause

—1
. S
Theorem 2 (Characterization). Under the assumptions of Theorem 1 &f f €0(X)
possesses & best apprawfi,mat?)bn in R, then roC R is @ best approsimation to f in R if and
only if o
max (r @) ~ (@) (@) =r(@) <max (ro(@) =) (F &) = @), VreE

Henoce

4

Proof If 1o is a best approximation t0 fin R, then
| f=rol<|f—rl, ¥rER.
Hence it follows by Lemma that
max (r (@) = o @) (f (@) —r@)) <0, VrE R,

which and (1) imply (4), .
, Conversely, assume thab ro satisfies (4). Suppose on the contrary that ro is not a
best approximation to f in R but » € B\ {ro} is. Thus by Theorem 1

18X (r (@) —ro(@)) (f (@) —r(2)) >0, (6)
max (ro(@) —r (@) (f (@) —ro(@)) <0,

This is a contradiction.
Theorem 3 (Uniqueness). Under the assumptions of Theorem 2 the following

and by Lemma

statements are equivalent to each other:
@) |f—rol <|f—rl, Vr € R\{ro};
(b) max (r(@)—7o @) (f (@) —r (@) <0, Vr € B\ {ro};
(¢) max (r (@) —ro(®)) (f (@) =7 (#)) <max (ro(2) —r(@)) (f (@) =10 (@),
Vr € R\ {ro},
Proof (a)=>(b). By Lemma it follows directly.
(2)=>(0). Since (a) implies (1) by Theorem 1, (c) follows from (1) and (b).
(b)=>(a) and (c)=>(a). Suppose not and let r € R\{ro} be a best approximation
to f in B. Thus, by Theorem 1, (5) is valid and by Lemma
max (ro(2) —r(@)) (f (@) —10(#)) <0, )
But (8) contradicts (b), and (5) and (6) together contradict (c).
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