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Abstract

The main result is:

Theorem1. Let T be a continuous selfmapping of a complete metric space (X, d) and
have the unique fixed point properfy. If there exists n:X—>IV (the set of all positive integers)
which is locally bounded such that for each z¢€ X and for all r€ N, r=n@),

DOx(T"s, 0, 1)) <p(D(Ox(z, 0, 1)), OF
D(Ox(T*@z, 0, r))<$(D(0r(m 0, 1));
where ¢ and ¢ are contractive gauge functions, then

(a) T has a unique fixed point z*;

(b) For each x€ X, Trx—>x* as n—>o0;

(¢) There exists a neighborhood U (&*) of z* such that ng (U *)) ={2"}3

(d) «* is stable; . '

~ (e) For any given C€ (0, 1) there exists a metric d* topologically equivalent to d such
that T is a Banach contraction under d* with Lipschitz constant c.

By Theorem 1 it is shown that many contractive type mappings- defined in [1—26] are

topologically equivalent to each other. '

§ 1. Introduction

Tn recent ten years, a number of important generalizations of the well-known
Banach confraction principle are obtained in various directions. In [1], Rhoades has
disoussed the comparison and classification of various definitions for contraction
mappings and established some relations between them. The author of [2, 24] has
also proved that under a guitable metric d* which is topologically equivalent to & for
the given metric space (X, &), a number of contraction mapping priﬁciples are
topologically equivalent t0 each other. '

Recently, Fisher™®, Browder 41 Walter™ and the writer®® establish some new
fixed point $heorems for contraction type mappings. In this paper we shall show thab
these new contraction principlés are also topologically ‘equivalent t0 Banach contrac-

tion principle. Our equivalent principles unify and generalize a number of recent
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results obtained by many authors.

§ 2. Notations and Lemmas

We denote by w the set of all nonnegative integers and by RB* the set of all
nonnegative real numbers.

Let T’ be a mapping of a metrio space (X, d) into itself. For each 2€ X, Or (s,
0, oo) denotes the orbit of 7" at # and for all 4, j€w, >4, write Or (, 4, §) ={T",
T, ..., Tig}. For any Ac X, D(A) =sup{d(z, ¥):a, yE€ A} denotes the-diameter
of 4. |

In the following we introduce two families @ and ¥ of contractive gauge
functions.

We say that p €D, if p: B* — R* satisfies the following properhes

(D7) @ is nondecreasing,

(Dq) E_g @"(t) =0, V¢>0, where ¢" is the n-th iteration of g,

(@,) Tim (5= p (1)) =0,

We say that €, if §: R*—>R" satisfies the following properties:

(¥y) ¢ is nondecreasing and continuous from the right, |

(W) For each ¢ € R™ there exists the maximal solution u(¢) of the equation
u=1(u) +¢ and u(0) =0. The class is defined by Kwapisz™

Lemma 1.% Let y €W, ¢ € R" and u(q) is the mawimal solution of the equation.
u=y(u) +q. If pE€ R* satisfies p<i (p) + ¢ then p<u(g),”

Lemma 2.5 et T be a continuous selfmapping of & complete metric space
(X, d) with the following properities:

(i) T has a unique fived point o*,

(ii) For each € X the sequence {T"®} e, converges to *,

(iii) There exisis an open neighborhood U of «* with the property that for any given. .
open set V including «” there is no & N such that n=ny implies T"UCV '

Then for each C€ (0, 1) there ewists @ meairic & topologically equivalent to d such
that T is @ Banach consraction under d* with Lipschitz constant O,

Lemma 3. Let T be a continuous selfmapping of a complete metric space (X, d).
Suppose for each o € X, D(Or(w, 0, 00)) <oo. If there ewists a function n: X —> N such.
that for all € X any one of the following conditions holds: |

D(0r(T", 0, 0)) <p(D(0r (s, 0, *))), ®
D(0:(T"* @, 0, 00)) <Y(D(Or(2, 0, ©0))), , @)

where p €D and Y EW, then for each 2 € X {I"™5},e. converges to a ﬁxeol point «” of T,
Proof If (1) is true, then the conclusion of Lemma 8 follows from Theorem 1
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of [7]. If (2) is true, then noting that D(Or(w, 0, o) <o, VoeX, and using the
‘same argument as in the proof of Theorem 1 of [24], the conclusion of Lemma 3 also
Hholds.

Remark 1. The lemma improves and genefalizes the main results of [12] and

[61.

§ 8. Main results

A mapping T: X _» X is said o have the unique fized point property in the
following sense: if the fixed poin of 7' exists, then it is unique. |
We say that the function n: X —> N is locally bounded, if for each ®€ X there
oxist a neighborhood U (#) of » and pE N such that n(y) <p, VY cU (@),
Theorem 1. Let T be a condinuous selfmapping of @ complete metric space (X, d)
.and have the unique ficed point property. If there exists a function n:X — N which is
Tocally Ddounded such that for all ®€X and for all rEN, r=n(w), any one of the
. fdlow@)ng conditions holds:
D(0(T"s, 0, 1)) <¢(D(Or(z, 0, ), 3
D (O (T, O, N)<$(D 0z, 0, 1)), 4
-awhere q)é ® and PET, then
(a) T has & unique fiwed point z",
(b) For each & X, {an}nem converges 1o @°, -
(¢) U (")-uniform convergence: there ewists & nebghborhood U(a*) of " such that
1im T*(U (&%) ={2"}, this means that for any oper ¢t V including a* there exists no eN

B (Acaed

such that T*(U (@) SV, Vn=n0

(@) Stability of the fiwed poimt o*: for any ne'z)ghbm"hood'W(w*) of " there evists
~s0me neighborhood V (&") o f &* such that T (%) EW (&), Vo€ V (a*) and nCw,

(e) For any given 0€ (0, 1) there ewisis @ metric & topological equinalent to d such
that T s @ Bamach contraction under @ with Lipschitz constant 0,ie &0, TY<
Od (w, v), Vo, yEX. ' |

Proof If (3) holds, then for all r=n(®),

D(Or(=, O, 7)) <D(Or(w, 0, n(w)))—kD(OT(T"(”w, 0, r))
<D(0z(a, 0, n(@))) +¢(DOr (2, 0, ). ()
1f D(Or(w, 0, 0)) =00, then 1im D(Or(w, 0, 1)) =0°°. BY (5) and (Ps) We have

1r->00

OO=1im [D(OT(m; 0; "')) "“p(D(OT(w) O; T)))]QD(OT(w, O: n<m>>).

'This is a contradiction and hence
D<OT(w; 0: OO)) <00, VmEXo (6>
If (4) holds, then for all r=>n(®), :
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D(Or(w, 0, r))<D(Op(w, 0, n(®))) +D(0r(T*?x, 0, 1))
 <D(0r(®, 0, n(®))) +$(D(Os(s, 0, 1))). (7
Let M=D(0s(x, 0, n(x)) and u(M) be the maximal solution of the equation u=
P(u)+M, It follows from (7) and Lemma 1 that D(Or(w, 0, r)) <u(M), Vr=n(w)
and henoe o
D(Or(w, 0, 00)) <o, Vo€ X, (8)
On the other hand, obviously (3) and (4) imply (1) and (2) respectively. It
follows from Lemma, 8 that for each s € X {T"w},c,, converges to a fixed point 2* of T'..
Since T has the unique fixed point property, the conclusions (a) and (b) hold.
Now we prove the conclusion (¢). Since n: X — N is locally bounded, there exist
a neighborhood Uy (") of #* and p € N such that n(y) <p, Vy €U1(z"). It follows from
the continuous property of T’ that T%(k=2, 8, «--, p) is also confinuous and so for
some given (M/2) ER* (M/2)>0, there exists n € R*, 0<n<M/2 such that

d(T%s, w*)< , VEE€{0, 1, -, p}, wEU,,(w*)={a;:ol(w, &) <n},

Henoe we have :

d(Tw, Tix) <d(T's, o*) + 3Tz, &)<M, o €Us(a"), 4, j€ {0, 1, «-, p}

and so '
sup D (Or(, 0, p)I<M,

Putting U (¢*) =U1(s") NV (m*)i we obtain
Sup, D(Or(w 0, n(2))) < Sup, D(Or(z, 0, p))< _sup D(Om(m 0, p))<M, (9

An analysm for the proofs of (5) —(6) and (7)— (8) shows that when in (5), (6),
(7) and (8) we take the supremum for # €U ("), they are still true. Then we easily’
gob . . ,

lim sup D(Or(T™, 0, o)) <<lim sup D(OT (@m, 0, ©0)) =0, 10),

m->o0 ZET(2*) m—»o0 EU (R

m=1
nE+ 2 B2

where #,=T * @, mp=>n(s) —I—mgn(wk), Vo cU (a%),
Now we take the fixed open neighborhood U (¢*) of 4". For any given >0, it.
follows from (10) that there exists me & N such that
d(T, T'x) <—§—, Ve €U (%), j=i=>mop,
Putting j—>oc we obtain
d(T's, o°) <=, YoCU ("), i=mop,

Therefore D(T"(U (&*))) satisfies
DU (")) = sup )d (T'w, T'y) < Sup, d(Tiw o*) + sup d(Ty, o)
2, YEU @

yeU (@™
for all i=>mep, which implies D(T*(U(a*)))—>0 as ¢—>occ. Thus for large ¢EN,
T+(U («*)) squeezes into any neighborhood ¥ (¢*) of &* and so the conclusion (o)
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holds.
According 0 Lemma 2 the conclusion (e) is algo true. By Lemma 2.1 of
. onolimes™ the conclusion (d) also holds. This completes the proof of Theorem 1,
Theorem 2. Let T be a continuous selfmapping of @ complete metric space (X, &).
If there ewist functions n, m:X —> N which are locally bounded such that for all , yeX
and for all r=max {n(w), m(@)}, any one of the following conditions holds,
D(0x(T"®, 0, r) UOr(T™ My, 0, 1))

<p(D(Or(®, 0, r) UOr(y, 0, 1)), (11)
D(0x(T"®w, 0, 1) UOr(T™¥y, 0, 1))
<Py(D(Or(w, 0, 1) UO:(y, 0, 7)), (12)

where p €D and YET, then the condlusions (a), (b), (0), (d) and (o) of Theorem 1
still hold. . ,

Proof By (11) and (12) it is easy 10 check that T has the unique fixed point
property. Obviously, (11) and (12) imply (8) and 4) respeetively.b Therefore the
conclusions of Theorem 2 follow from Theorem 1,

Theorem 8. Let T be a continuous selfmapp@ng of @ complete metric space (X, d).
If there ewists a function n: X —> N which 8 loéally bounded such that for each € X and
for all n=n(w), Y€ X, any one of the following conditions holds, ,

(T, T) <gp(D(On(a, 0, ) UOx(g, 0, m)), (18)
4(T", T'y)<p(D(Or(@, 0, ») U0z(y, 0, ), (14)
then the conclusions of Theorem 1 hold.

Proof By (18) and (14), it is easy to prove thab T has the unique fixed point
property. For any ¢ € X, r=>n=>n (@), b, §€wand 0<i-+j<r—n, letting n=n(x) +4,
y=Ts in (18) we have ' -

G(Trer¥ig, Tr@*g) Lp(D (Or(w, 0, n(#) +8) U Or (T, 0, n(w)+7))) '
<p(DOr(®, 0, 1)). .

From the arbitrariness of 4 and j it follows that for all #€ X and for all r=>n(z)

v D(0x(T"w, 0, ) <p(D(Or(w, 0, 1)) ).
Similarly, by (14) we can prove thab for all ¢ € X and for all r=>n(w)

D(Ox(T*w, 0, 1)) <Pp(D(Or(a, 0, 1)),
Therefore the conclusion of Theorem 3 follows from Theorem 1.
- Remark 2. Theorem 8 improves and generalizes the main results of Browder™

and Walter™, ‘

Remark 3. By Theorem 1 of [2] and Theorem 7 of [24], it is easy to prove
that many known coniraction conditions imply (18), (14), (3) and (4) respectively,
s0 Theorems 1 and 8 unify, improve and generalize the ‘many known results.
Moreover, it is easy o prove that under a suitable metric d* topologically equivalent
to d these contraction type mappings are topologically equivalent fo each other.
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Theorem &. Let T be a continuous sehfmapping of @ complete metric space (X,
d). If there ewist @ decreasing funcmorn, a: (0, 00)—[0, 1) and pEN such that for oll
@, yEX, v#y
d(T%, T?y) <a(d (w y)) max {d(w y), d(, "), aty, T,
then for each € X, the sequence {T™z} ne., converges to a unique fived poini a* of T,

Proof For any fixed € X we consider the sequence

{wm}mew = {Tmpw; meE w} .
By (15) we have

A @y, Bm) =Ty, T”mm_i)
<a(d(wm, Tye1) ) MaX {d{(@m, Tp-1), & (@m, Bmyt), d(@m-1, Tm),
210+ d@ns, 51,
Since a(d(@m, Tn-1)) <1, it follows that
& @1, Om) <&((@m, Bm1)) *d(@m, Tm—1) <A (B, .z;m_i) (18)
and S0 \{d(wm“, @) tmew i8 a decreasing sequence. Let by =d(@my1, Tm) —>b, and
suppose b>0. Then b,=>b, Ym Ew, which ylelds o(bm) <a(d), Ym Ew. By (16)
D=0 @1, Tm) <a(b)d(mm, 1) < [a(b)]md(wi, @o) —>0,
ag Mm—>o0,
Now we prove that {@m}me. i8 a Cauchy sequence. If it is not, then there exist
>0 and the sequences {p(m)} and {g(m)} such that

p(m)>q(m)>m, . @0
& @Bpems Taemy) =8, (18)

and (by the well-ordered principle)
W Gptmy—i, Taom—s) <8, Vi<i<p(m), 1<j<g(m), (19

Lot ¢p=0 @pemy, Taemy). BY (18) and (19) we have

£ <0n<<d(@pmy, Tpm-1) +&Boem—1, Dam) <bym-1+8,
which implies that {¢,} converges to s from the right. Let v,=d@pm-1, Taem-1),
T =0 @pmy—t, Taemy) d0A W= @pem, Taom—1) - Since ¢,—> s and b,—>0, it is easy to
show that vm, dmand w,, converge 0 & from the left. Using (16) we have

Cm=a (Tpim, wq(,,.)) =d (Twpm-1, Tpqu(m) 1)
<oa('vm)max {Ivm: bﬂ(m)-—i; bQ(m)~1; 2 (dM+wm)} . (20)

By the assumption of o, without loss of generality, we may regard o as oontmuous
function from the left. Letting m—>oo in (20) we obtain s<<a(e)s<s. This is a
contradiotion and hence {®mtme. is a Cauchy sequence. Lot an,—>a*. Since T is
continuous, 77 is also continuous. Thus Bmy1=T?0,—>T?" and so o*=T?2". If ¢ is
also a fixed point of 7? and a*#y*, then by (15)
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i(@*, o) =a(T, T <a(d(@, v d(@", ¥ <d@, ¥),
which yields a contradiotion. Hence &*=g*. Then & is a unique fixed point of Te,
But o =T7%"* implies Ta" =TT &*. So T'w* is also a fixed point of T, By the uniqueness
of #¥ we obtain o =Tg". Hence ¢" is a unique fixed point of T' and [@ntmen=
{T"™g} e CONVOTZES 0 o* for each s € X,

Theorem 5. Let T be a continuous selfmapping of @ complete metric space (X, d).

If there ewists @ decreasing function o (0, o0)—>[0, 1) such that for dll @, yE X, 8+,
(T, T <a(d(@, 9))max(d(@, 9), 51, To)+a@, TV,

1 tata, T+, TO, e

then the conclusions of Theorem 1 hold.

Proof By Theorem 4 with p=1, we see that T has a unique fixed point o* and
{T"%} e, OODVOIZES 0 &* for each € X. Hence the conelusioﬁs (a) and (b) of
Theorem 1 hold. By (21) we have

a(Ts, o*) =d (T, ) <a (@™o, «*) ) max{d (T, z*),

—é— [&(T" ", &™) +dT", )1},

It follows thab .
d(Tw, ") <o(d(T™ *m, ")) d(T" s, o) <d(T" "z, «*)
and 50 {3(T", &)} new is a decreasing SeqUENCo. Qince « is a decreasing function, we
have

(T, o) <[a(@@", @)1 (®, o%).
Now take the open neighborhood U (&%) = (e X:d(w , o) <1} of #*. Assume V (&)
is any open neighborhood including &". Take 1>>&>>0 such that 7 (o*) = {o€ X :d(a,

o) < stV (o). Since o (—E—) <1, there exists no € N such that [a(-fi—)]" <-%, Vn=ng.

For n>ne, let Ui(a") = {w €U (") :d (T, o") <-—Z~} and Uy (6*) = {a: cU (@) :d(T™s, o*)
>}, D@ @) sbisis | |
DU @)= sup &I, )< sup [4(T"w, o°)+d Ty, a*)]

2, yEU @ 2,90 (&%)

<2 sup d(T"s, ")

weU(@™)

<2max { sg;() )d(T“a;, o"), sup d(T"z, aH}
el (@

2V (2%

sup [a(@d(T", )1, w*)}

wEU (e

€ AYE g &l _
| <2max {—Z’ [a(z-)] }<2 max {71_’ —2—} =g, Yn=no,
Hence T"(U (&) 7 (@) cV @), Vn=>"n0. Thig shows that the conclusion (6) of
Theorem 1 holds. From Temma 2.1 of [11] and. Lemma 2 it follows that the conclu-

<2max {—Z— 5
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sions (d) and (e) of Theorem 1 are also true. This completes the proof of Theorem 5,

Remark 4. Theorems 4 and B improve and generalize the corresponding results
in [25, 26] and [1], Using Theorems1, 8 and 5, we can prove that many contraction
type mappings defined in [1—26] are topologically equivalent 0 each other and each
of them is also topologically equivalent to Banach contraction.

References

[1] Rhoades, B. E., A comparison of various definitions of contractive mappings, Trans. 4mer. Math. Soc.,
226 (1977), 257—290. '

[2] Ding Xieping, Fizxed point theorems. of contractive type mappings and relations between them, Acta
Math. Sinica (to appear). :

[8] Tisher, B., Quasi-contractions on metrie space, Proc. Amer. Math. Soc., 18 (1979), 321—325.

[4] Browder, F. E., Remarks on fixed point theorems of eontractive type, Nonlinear Anal. TMA., 8 (1979) ,
651—661. :

[5] Walter, W., Remarks on a paper by Browder about contraction, Nonlinear Anal. TMA., 5:1 (1981),
2125, - :

"[6] Ding Xieping, Fixed point theorems of orbitally contraction mappings, Chin. Anm. of Math., 2:4 (1981),

511—-517.
[7] Ding Xieping, Fixed point theorems of orbitally contraction mappings (II), Sichuan shiyuan xzuchao, A
' special issue of Math. (1981), 10—14: '
{81 Ding Xieping, On some results of fixed points, Chin. Anm. of Math., 4B:4(1983), 413423
[9] XKwapisz, M., Some generalization of abstract contraction mapping principle, Nonlinear Anal. TMA., 3
(1979), 293—302.

{107 Meyers, P. R., A converse to Banach’s contraction theorsem, J. Res. Nat. Bur. Standards Sect. B71B

(1967), 73—T6. }
[11] Onotines, B. 1., ofpaluenns IPAHOAA CAMMAOIIAX oToGpamenntt, yus, 81:4 (190) (1976), 169--198.
[12] Pal, T. K. & Maiti, M., Extensions of Qiric’s quasi-contractions Pure Appl. Math. Sci., € (2977), 17—21.
{13] Banach, 8., Theorie des operations lineaires, New York, 1955.
{14] Kannan, R., Somse results on fixed point, Amer. Math. Monthly, 76 (1969), 405—408.

{151 Bianchini, R. M. T., Su un problema di 8. Reich riguardante la teoria dei puntifissi, Boll. Un. Mat. Ital.,

5 (1972), 103—108.

[16] Reich, S., Some remarks concerning contraction mapping, Canad. Math, Bull., 14 (1971), 121—124.

[17] Roux, D. & Socrdi, P., Aleune generalizazioni del teorema di Browder-Gohde-Kirk, Atti. Accad. Naz.
T incei Rend Ol Sei. Fix. Mat. Natur 52 (1972), 682—688. MR 48+ 4856.

[18] Chatterjea, 8. K., Fized point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727—730.

[19] Zamfirescu, T., Fix point theorem in metric spaces, Arch. Math. (Basel), 23 (1972), 292—298.

{20] Hardy, G. E. & Rogers, T. P., A generalization of a fixed point theorem of Reich, Cazad. Math. Bull,
16 (1973), 201—206. :

[21] Massa, 8., Unosservazione su un teorema di Browder-Roux-Soardi, Boll. Un. Mahkt. Ital., 7 (1973),
151—155. MR 47 4080. ' ‘ ' )

[22] Ciric, L. B., Generalized, contractions and fixed point theorems Publ. Inst. Math. (Beograd) (N. 8.),
12:26 (1971), 19—26. S

{23] Ciric, L. B., A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267
—273.

{24] Ding Xieping, Fixed point theorems of generalized contractive type mappings (IL), Chin, Ann. of Math.,
4B:2 (1983), 153—168.

{251 Rakotch, E., A note on contractive mappings, Proc. Amer. Math. Soc., 18 (1962), 459-—465.

[26] Reich, 8., Kaunan fixed point theorem, Boll. Un. Mat. Ital., §:4 (1971), 1—4. MR 46% 4293,



