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Abstract

In this paper some lattice isomorphism theorems about one-sided and two-sided ideals in
tensor products of primitive algebras and division algebras are proved.

‘Introduction - |

In [8], Xu Yonghua showed there is an isomorphism between the lattice of
certain loft ideals of the tensor produch of two primitive algebras and the lattice of
submodules of the tengor product of two srreducible modules. His theorem is a
generalization of Azumaya-Nakayama theorer. .

In this paper, we continue his work. In section I, we give a simple proof of Xu’s
theorem and deduce an isomorphism theorem about the lattice of certain right ideals
of tensor product of two primitive algebras. In seotion II and section III, we obtain
the theorems on the structures of lattices of temsor products of simple primitive
algebras and division algebras. In the last section, We ghow that the lattice of two-
sided ideals contained in the tensor product of two primitive simple algebras it
isomorphic to the lattice of swo-sided ideals contained in the tensor product of their
associated division algebras. Throughout this paper, @ is a field, ¥ (or %) is right
primitive algebra (not necessary with an identity) over @ and © (or ©;) is the
nonzero soole of A (or %y).

1. One-sided ideals of A, QU

Lemma 1. Let % be o primitive ring with nonzero socle &, and L be the r—dim
left ideal of ©. Then there is an édempotent B of © and @ class of orthogonal primitive
idempotents

AB} ity e, FLEX, such that L=%E, BE=HE+-+E,

Proof Tt is similar to the proof of a lemma in [1] (p187) and we omit it.

Lemma 2. Let (M, @) (i=1, 2) be the vector space over @, U; be the irreducible
algebra of linear tramsformations in M;, and &, be the nonzero socle of Ws. Then we have
N (©,R:@2) =N and (©:®:82) L=1L, where N is any right ideal of ©G:1®:8, and L is
any left ideal of ©1®sSz -
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Proof We know that @1=§@@1E¢ and @2=%@@2F,, where H; and F; are

the primitive idempotents of S, and &, respectivély. Then
G, =2 @ (GLERCF)).
If u is any element of IV, then w= 2 @®Ys, (2, €GB, y; EG,F;) where I’ is a ﬁmte

subset of I, and J” is a finite subset of J. By Lemma, 1, without loss of generahty, we
can assume that {H}icr and {F;};c, are the orthogonal idempotents. We chose an
element s of G;RS,: =D B,®F;. For every xXy;, we have

T .

(@®y;) s= (@B Q@uy;F;)s= (wiEi®yiF ) (; JE EQF;) =w¢®w.

This shows us=u, that is NCN (8,®S,). The converse inclusion is trivial.
Similarly, we can prove (8,®8,) L=L, for every left ideal L of 8,XS,.
Lemma 8. S, (M;, D) are the same as lemma 2. We regard &,RS. as a left

G,RS—module and we assume that Q s its centralizer. Then, (6,839, is @ subring of

Q, where (S:®S,), denotes right multiplication of G;RB,. Moreover, Q-submodule of

©,@, coingides with (S.®Ss)—submodule of GRS,

Proof For any s€S;®S,, if (@1®@2js=o; then we have (M @M,) (8:RG:)s
=0, that is (PM@M,)s=0, so s=0. The first assertion is clear. Let N be an
Q-submodule of &,®S,, it is easy to see that N is an &;QSgsubmodule. Conversly,
if N is an ©,®S;-submodule, that is a right ideal of ;®&,. By Lemma 2

NQ=(N(8:®8,))2=N((8:0%») Q) SN (€:0%;) =N,

_ Therefore NV is also an Q-submodule.

The next lemma can be proved in a similar way.

Lemma 4. &, (i=1, 2), (M, D) are the same as Lemma 2. We regard S:QSs
as & right ©;60S—module, and 0 is its centralizer. Then (S1®S,)y, the left multiplica-
tion of ©:®Sa, can be regarded as @ subring of Q. Moreover, Q-submodule and
(B1RGy) -submodule coincide.

Let %;(¢=1, 2) be an irreducible algebra of linear transformations in a vector
space M; over a field @, and let 4; be the centralizer of M; as right Y,—module. Then
M, can be regarded as a left veotor space over 4. If M is the dual vector space of
(di, M;) associated with ¥;, then M can be regarded as a vector space over @ (in the
natural way). Then we have the tensor product space MW =M R aMb. Since M| is the
dual of M, associated with 2, %I; is algo an irreducible algebra of linear transforma-
tions in (M], 4)and its centralizer is 4; (see [1]). Therefore, M’ is a left A,RA, and
right 4;®4,-bimodule. '

Theorem 1. Let %;(6=1, 2) be an irreducible algebra of limear transformations
én @ vector space M; over @, in which 4; is the centralizer of M; as right W—module and
©, 4s the nonzero socle of Wi, Let M, be the dual of (4, M) associated with W, and let
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M =M, @M, M =W [®eMb. Then, the lattice of right fbdeals of U1 R@Ue which Zee n
©,R S, is ssomorphic to the lattice of right 4R da-submodudles of W'; the lattice of left
ideals which lie in S,®S, is isomorphic fo the latiice of 4, dy—submodules of M.

Proof By Lemma 2. it is easy 1o see that N is a right ideal of GG, iff N isa
right ideal of A;@®As. We know that &= 26—)@1117“ Sg= 2@@2[4’,, and ©;XS,=

2@(@1E¢®@2F,) where S H; and &,F; and minimal left ideals of @1 and S,

respectively. As a left &;—module, we have . B,=C . E,=M, for any ¢, ¢ '€I. Asa
loft Sg—module, we also have G F; =S Fyp= My, for any §, § '€ J. It is not dlfﬁcult to
verify that @51E,®@2F5__@1E¢,®@2Fy-—§m1®ﬁﬁ' =9 as a left S;RX0SG;—module. Using
Lomma 8 and a theorem in [1] (p 111), we conclude that the lattice of right ideals of
©,®®S; is isomorphic o the lattice of right 4;®4;-submodules of M. This is our first
statement. The other can be proved in the same way. .

I1. Representa,tmns of one-51ded ideals of G1X0G,

As above, sot M=, @My, W' =T Lot M’ x M be the product sot of M’ and
WM W x W={(a/, b) |’ €W, bEM}. Wo deﬁne the operation of (a’, b) on M as follow

w(d, V') = (2a')b, for all €.

I+ is clear that we have deﬁned an endomorphlsm of M as loft 4,R®dsmodule. We
denote it by &’®b. Being endomorphisms, a’®b-+c'@d is the sum of d’@b and ¢'Rd.
Lot PM'RM be an Abelian group generated by {#/Qb|a €W, b €M}. Then following
equalifies are clear:

(1) (di+ab) @b——-a&@b%—ag@b;

(i) o'®(bs+d2) =a/®bi+a'®bs;

(iil) o'a®b=a'Qab, o€ 41X,
Therefore, WRM is a product group of M’ and M over A1®A2 M = ami@srz is a free
left 4,®ds—module (of. [1]), so each element of M @M has the form: Z‘ai ®b;, where
b, is a base of M. If Ja;@b;=0, we shall prove ;=0 for all ¢. In fact, for any z €M,
o (S, @b;) =2 (wal)bi=0. Since every b, is a bage of M, xa, must be zero. Bub & isan
arbitrary element of M, so Ma; =0, that is a;=0.

If M'Q'M is another product group of M’ and M over Ai®A2 We define a map ¢
from MM to M'Q"WM:

ACEASY) =E o, @s.

Without loss of generality, we assume each ¥; is a base of M. If Za,@y;=0, then
# =0, ¢pvQ@y:)=22Qy=0. So ¢ is well defined. Thus we have proved the
following lemmas

Lemma 5. The product group P'QM defined as above 4s the tensor product of W'
and M over 4@ 4s. We denote it by M QM.

Now, lets s3®ss bo an element of B,®S,, where s:€8;, €S, then Mys; and
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Mase are finite dimensional veotor spaces. We assume their bases are {v1, ***s Vmp DA
{wy, *+, Wa} respeotively. Tt is known that there are elements u, €M, (G=1, -, M)
and olements #; € M5 (j=1, -, n), such that s; ean be represented as the mapping

w—»}nj (i) v; for each @ in My, and s, can be represented as the mapping y'—fi (yty)w;
© =1 Jj=1

for each 4 €My. Thus we have
(@®y) (81®82) =3, @ysa= (X () 0)) @ (2 (yty) wy) = Ej (wndh) 0@ (yP5) Wso

On the other hand
(s@0) (SUOH D6 @) = S (el @uts) (@) = Zerh @)
This implies
(@®y) (:®ss) = (@) (X (U ®t;) @ (v®w;)) , for each @y €M @M.
Therefore, si&ss= ;} (u, @) D(wi®w;) € MM, that is B,RG,CIM @M. Conversely,

if (u’@t’)@(fv@fw) cMROM, Whe_fe W EML, veEMy, ¢ e My, wEM,, then we can show
(W@t ® (v@w) € &,0S,. In fact, let sy be the linear transformation of (4, My) :a—>
(au))w, s2 be the linear transformation of (s, My) 1g—>(ytHw, then (u'@t’}@ (v®w)
= 5,®)s2 € ©;R®Ss. This shows RMCS;RDS,, therefore MM =S;S,. Thus we
have proved the following theorem: _

Theorem 2. Let %, (i=1, 2) be an irreducible algebra of lnear transformations
in @ vector space M; over @, and 4; be its centralizer. Let @@ be the monzero socle of Us. M
is the dual vector space of (4, ) asseciated with g M =R I, M =M@ M2 and
MM is the tensor product of M’ and M over 4, RXd. Then W RM =61R:Se-
Using theorem 2, we are going to obtain a re-preseﬁtation of one-sided ideals of &;@Ss.

Assume Nt be a 4i®4: submodule of M, consider WRN. For any element
pAASLE of M @R and any element Ef} ¢;®d; of WM,

(? 09‘@‘15) <§ @; ®by) =%.‘| ¢} (dsaz) ®0b; cMW RN,

This shows RN is a loft ideal of ©;®S.. On the other hand, assume L is a lefh
ideai of ©;®S,, by Lemma 2, L=(8:®8,) L= (M@M)L, It is easy 1o verify that
('R L= QML, Olearly, ML is a left 4, dy-submodule of M. Therefore,
L= ®@%N, where N=ML is 2 left 4, de—submodule of M. Similarly, we can show
that every right ideal of ©,;®S; bas the form N'RW, where N’ is a right 44—
submodule of M. So, the next theorem is truse.

Theorem 3. Let T&;, M, Ui, &,, 4 and S;RS; be as in Theorem 2. Then every
left (right) ideal of @:@Ss has the form MR (REM), where R is o 4@
submodule of M. '

III. One-sided ideals of 4:®4, ‘

In this section, we shall study the structures of lattices of one-sided ideals in
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4, d;. We have shown that I is a right 8:;0S,-module and M’ is a lefh G,08s
module. Let (M, M") be the product set of M and 9)2’ We define the left action of
(a, b) on M, Where (@, b") € (M, M), as follows

(a, b")w=(ab")w, for each zEM.

.t is easy to see that we have defined a right &,®S;—module endomorphism of m.

We denote the Abelian group generated by such endomorphisms as MOM'. In fact,
MM’ is a tensor product of M and M over G;08,. It may be verified directly.
We simply denote it by MM,

We observe that 4;®d4s is the centralizer of right 8;®Ss-module M, then
MROM' S 4:® 4y. Moreover, if S, B; € 4:@4a, where o & 4y, Bi € 4, for every ¢, we
can find an element a®b’ in MEAM such that a@b’ =a@Bi. In faot, since P} is a
dual veotor space of M, we can find » €My, &' €M} such that wi’ =a;, and yEMy,
oy EMY, vy’ =pB;, then a@Bi= (w@y)@(w’@y’) CMEM. Thus we have proved the
following theorem: |

Theorem 4. I, MW, MOM’ and A1®A2 being as above, we have MRQWM = 4,0 4da

Using the same method as we have used, we can prove the next theorem:

Theorem 5. Let %, (6=1, 2) be an drreducible algebra of linear transformations
in a vector space M; over @ fleld @, &; be the nonzero socle of %, 4; be the centralizer of M,
as fmght QI;—module M be the dual vector space associated with UA;, M=T;RQM, and

' @M. Then every right (left) ideal T(L) of 4@y has the form RO’ (MRN"),
where %(%’) is the SRS submodule of 9)?(%’) Moreover N=TMR' =M'L).

The well known Azumaya-Nakayama theorem can be regarded as a corollary of
theorem 5.

Corollary. The lattice of right ideals of 4:@4a is isomorphic to the lattice of right
B,®G, (or ;@A) -submodules of M =W OMa.

IV. Two-sided ideals

Now, we shall study structure of latlices of two-sided ideals of 4i®4, and of
8,®C,.

Lemma 6. IfRNisa mght &, Sq-submodule of M =M;RQMy, then

RN (©1®@2> =RN.

Proof It is enough to show RCN (B:0S,). Let nc}, n=’$w,-®yi where ;&

My, 4 € My. Then {we}iey, ..,m Span a- finite dimensional veotor subspace of (4, My)
and {g:}ic1,.,m Span a finite dimonsional vector subspaoe of (4s, M) . Since &, isa
dense ring of linear transformations in (4i, M), wo can find €S, such that
s =wx; for ¢=1, ---, m. Similarly, we can find s, €S, such that ¢isa=%;. Then

C 2:®y:) (5:®s2) =X @@y, This implies n=n(5:&)ss) EN (G1R8S,).
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Lemma 7. Let R be a BG,RS,-submodule of M =P RDMy, N’ be @ (G109,
4R 4e) -bisubmodule of MW’ =M RQMS, and & be 4R dg-submodule of M. Then we have
REN)R=RR'R). ' |

Proof From the definition, we can verify that (RRRN) | = (NI YR=NRN'RK).

Theorem 6. Let M;, M, M, W, MM, &, 4 be as before. Let I be a two-sided
ideal of 4:@da, then I =NRRWM', where N is @ (4:1R4s, €:10S2) ~bisubmodule of M,
Moreover, the lattice of two-sided ideals of 4,4y 15 dsomophic to the lattice o f (4:®4,,
&, B) -bisubmodules of M under the correspondence A: I - IM.

Proof First, we obgerve that if R is a (4®4z, G:RS:) —sub-module of M, then
RRM’ is a two-sided ideal of 4;®4,. Conversely, if I isa two-sided ideal of 4:®da,

‘then I is a (_211®A2, @1®@2) _Lisubmodule of M. I, as a right ideal of 4:(X®4., has

the form I=NA@M', where N isa &,QG,-submodule of M. By the Theorem b,

R=IM, 50 N is a (4@, ©,®S,)-submodule of M. Then I =RNRW = IMRW'..
‘Agsume I" is the map: N->N@W’, from the lattice of bisabmodules of M to the lattice

of two-sided ideals of 4:®4,, then it is olear that I'A(I) =1 for every two-sided ideal
T of 4,®4a. Conversely, AI' () =AR@W) = (9%@2!)2’)%)2=%(§m’®9ﬁ) =N (6;RS,)
— 9. Therefore, we have proved that 4 is a lattice isomophism.

Theorem 7. Let T, T, M, W, WM, & and 4 be as before. Let I be &
two-sided ideal of S:1@Sg. Then I has the form I=IWRN, where N is a (4@ s,
G,RXS,) —bisubmodule of M. Moreover, the lattice of tfwo.—sédeol ideals of ©1RC s
isomophic to the lattice o f (44, B, Sy) ~bisubmodules of N under the correspondence
A: I—->MI. ' '

Proof If I is a two—sided ideal of ©;®0S,, then I is a bisubmodule of M.
Conversely. if % is a bisubmodule of M, then M'PN isa two-sided ideal of &;®0,.
As 5 loft ideal of G;®S,, by Theorem 8, I has the form: I= @R, whore R =MI is
a (4:1®4s, 8,®S,)-bisubmodule of M. Define I" to be the map: N->MRON, then I’
is a map from the lattice of (4:R4a, @1®@2)—bisubmodules of M 1o the lattice of
swo-sided ideals of G;®S,. It is easy t0 see. |

A =I(NI) =WRMI=1I,
AT (R) = AV RR) =T ('QN) = WMRW) T = (4R4)N=N,
Thus A is a lattice isomophism.

As a consequence of Theorem 6 and Theorem 7, we have the following:

Theorem 8. The lattice of two-sided ideals of ©1QC, is isomophic to the lattice
of two-sided ideals of 4:X4s. : . '

Corollary. ©:®S; is a simple algebra iff L@ 4a is @ simple algebra (see [81).
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