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Abstract

This kind of problems is discussed: When we use certain smooth approximations of the
Brownian motion W as substitutes for it in stochastic line integral and stochastic differential
equation, do these resultant integrals and solutions converge to the original onep The
corresponding approximation theoroms for two kinds of apprximétions are proved, which
are wider than those discussed in [1]. Some limit theorems about stochastic line integral and
solutions of stochastic differential equations with respect to tandom walks are obtained by
using the idea of “gmbeding a random walk into the Brownian motion” first proposed by
A.V. Skorohodtt, It seems to be remarkable that the method used here is not only effective

for the one dimensional case, but also for the multi-dimensional case.

Introduction.

Considering the irregular character of Brownian motion sample functions w, we
hope to use a certain smooth approximation of W as asubstitute for W in the integral
and in the equation. However, do these resultant solutions convergé o original one?
This meaningful problem both in theory and in application hag been disoussed by
several authors (cf. [1—8]), in particular, recently Prof. N. Tkeda and Prof. S.
Watanabe in their excellent book™ discussed the ‘problem for a wider kind of
approximation of W by a unified way.

On account of all approximations for W used in [1] were based on deterministio
sequence of parbitions for the time space [0, oo), the purpose of this paper is to
extend the kind of approximations disoussed in [1](§ 1), and to prove corresponding
approximation theorems (§ 2), then to obtain some limit theorems about stochastic
line integrals and solutions of stoohastic differential equations with respect to random
walks by use of an idea proposed by A. V. Skorohod in[11]. It seems to be remarkable
that the method used here is not only effective for the one dimentional case bub also

for the muiti-dimentional case.
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The author would like to express his hearty gratitude to Prof. N. Tkeda and Prof.
. Watanabe for their kind guides when the author was writing this paper at Kyoto
University. _ '
1. Assumptions and Definitions.
Assumption 1.1 {o®} (=1, 2, -+, =0, 1, 2, ..} be a sequence of stopping
times defined on (Wi, BW), (B:(W1)) >0, P)*, such that
Jor each 1=1, 2, -, oP=0, oP>0 and oP (w) =021 (w) +0(@rp,w), (0.1)

lim B (o) =0, (0.2)
B0 <c[B($)T™, (0.8)

a[([ 1w as) | <olBo)]* and B[ (e '0s] o[BGO, (o)
BL(eP)*<c[B(of)1% (0.5)

Assumptionlﬁ. Suppose that on(W5, BWE), (B,(W5), P)
Sor every 1=1, 2, +--, {0h}mo (E=1, 2, +++, T) are T SoqUences of stopping -

times such that {4 tnso only depend on w' and 0%’ =0,

o () = ohty () + 0} (Bopse’) for n>1, | (0.1)"

o1+ >0 and B(ot") =B(o}®) =-»=H(ot) =3 >0asifeo, (0.2
BL(oY)*1<c[B(ot )1, (8

B[([7" oo 1ds) <ol (at)] (0.4

B[ (s #ds) <ol BT, (05

and hence by writing vh= (o' , -+, ob™) we have

o (w) =751 (W) +71 (05, w) for n>1 (c.6)’

where (B -+, ww) (8)=(Brw?) (), -, (0w (). ,

Definition 1.1 A family {B.(¢, w)= (BL(t, w), -, Bi(t, w)) }is1 of r-dimen-
sional continuous processes defined on (W, P) is said to be an approvimation of I-class
of the Wiener process(W(£) = (W), - W (t)),ef

(1) for every wEWS, tH> By (t, w) ds piecewtse continudous differentiable.

(I1) Bi(0, w) s B, w—measurable, | .

(111) B;(t+a,(c‘>, w) =Bi(t, Gopw) +w(o®) for every k=1, 2, +, and &0,
we Wi, _

(IV) E[Bi(0)]1=0, fori=1, 2, =, 7,

(V) E[|Bi0, w)|®] <c[E(cP)]1® for i=1, 2, -, 75

¥ Hxcept speciél explanation, the notations of this paper are the same as in [1].

#% ATl pogitive congtants ¢, ¢'y 1, Cgp *+ ge++in this paper are independent of %,
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oy ([ 1B 10s) J<etBET® for =1, 2, v

whéaﬂe

a1 'w)—————-B;(t w) for i=1, 2, (1.1)
Ag an example, it is easy t0 see that the piecewise linear apprommatlon satisfies all
conditions (1)—(VI),

Definition 1.2. A family [B:(¢, w) = (B, w), ., Bj (¢, w))}ima of r-dimens-
sonal continuous processes defined on (W35, P) is said to be an approwimation of D-class
* of the Wiener process (W @) = (W), - W@®), if
(1) for every wEWo, t>B, (4, w) is piecewise continuious di fferentiable.

(A1) B0, w) s B —measurable, where

%k—%“(W 5@ W)@+ @Bt (W), |
4(111) B(B(t, w)- B,( 5 —-—, B )'+B(T,c> for every k=1, 2, -+, t>—7;— and wE WS,
(IV) EB(BL(0))=0G=1, 2, =, 7).

V) E(lBi(0)|6)<c[5(l)3] (’b 1,2, 1),

(VI) E[(L |B§(s)|ozs) l<el3®7 (=1, 2, - 1), wher

B () =SB fori=1,2, T
Definition 1.8. Let « be @ differential 1~form on R’ given by

o= é o, (@) dat | _ (1.2)

§=1
where oy(x) €O*(R) and oV (&) €O (R") for i=1,2, -, r, and let {Bj}1>1 be am
approw?}matq}on of I-class of D-class of W. We define stochasmc line integral A(t, o w)
and A(t, o By) respectively by

A(t, o fw)=f o a=’_‘é’%j:oai(w(s))odwi(s) (1.8)
and J w0, i=1 .
A(t, @ By) =ij0¢] —_-g j o (Bi()) Bl (5) s, (1.4)

Assumption 1.8, (i) For the approwimation By of I ~class, there s a skew-
symmetric 1 X r-matri® (Siy) such that o

1113385?(1) =8 for 4, j=1, 2, - (@@.5)
where
590 = B[ L[ B OB @ - B OB O],
( E(P) L2
(1.6)
0t () = E(qﬁ)) EUO {(5) [ Bi(o®, w)— Bi(s, w) Jds
for 4, j=1, 2, =, 1, 1=1, 2, >, k=1, 2, +; and (i) For the approzimation By of
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D—class, there is a shew-symmetric X r—matria (Sy) such thas

llmS“)(l) Sy for 4, j=1, 2, .5)’
where

IO <ka<Z>>-1E[1j (Bt (5)BI(5) ~ B§<s>Bf<s>>ds]
09y =ea@)-a[ [ (B (Bt (§)-Bi(o))as ]

2. Approximation for stochrstic line integral.
Lemma 1. Let {K (1) }1n1CZ* be a sequence such that K (1) A oo as 14 oo, Then

for £>1  (1.6)

~under Assumption 1.8

Ol (k1)) = Oy (tim Ol (K 1)) =0i) for 4, j=1, 2, =, 1 @)
where |

Oy=Sut- - 84 =Byt 8y) for i, =1, 2, =, 7, 2.2)

Proof It is similar to that for lamma VI-7.1 of [1],
Theorem 1. Let {Bi(¢, w)} (=1, 2, ---) be an approwimation of T-class of W
satisfing Assumption 1.8, and {n())}i-1CZ™ be a increasing sequence with
limn@)*B (o) =0, |

Then for any inoreasing sequence {IV (DY} S 2+ which satisfies the following conditions

Lim N(@)=ococ, N(I)=0(mod n(})), O<_§i;1§1:§1 N E(c{) <o, (2.8)

the equality

lim H[ sup ]A(t;“; B)—A(¢, o w)-—-f’ _;2=1 Sijaeai(w<3>)d312] =0 (2.9

e o<t<oF,
hOZdS where 3%—-—%—-— 0l (7/ j 1 2 );

Proof Just the same as the proof of theorem VI-7.1 of[1], it is enough to show

that

lim E[ sup \J:’ w(By(s, w))Bi (é, w)ds— J: u(w.(s)) odw? (s)

e o<t<ofn

‘(318 ds|” 2.5
~ [ (Zsm@w))is | ]=0 (2.5)
for any T>0, j=1, 2, -+, r. Here uEO.2 (R"). and all of its partial derivatives
vu,- (x) = —a%— u(x) are bounded. Now seb
68 =gy, for k=0, 1, 2, -+, I=1
[s1i (w) =68 (w)
517 () =60 (w)
ml<t1 ’II))—]C: [t]f(’?/l)) >=6.7(cl): for Z=1: 2: *
Then, similar to (7.21) of [1], we have the following for I<j<r

2 eee

2 2 2

if 6 (w) <s <o (w) for k=0, 1, (2.6)
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ju(Bxs w))dB{ (s, w) = || w(w(s))odw'(s) - j’ﬁswuxw(s»ozs
= — [u(B,(t, w)) —w(B,([]7, w ) [BI([E1F, w)— ~B{(t, w)]
— [w(B([]7, w)) —w(w([t]))] [BI (], w)— —Bi(t; w)]
 —aw(9) 1B ([1¢, w) —Bi(, w)]
(B L7, w)) —u(w( 1)) B (LA, w)—Bi ([T, w)1
+u(w([£17) ([BI (L8, w)—Bi([£r, w)]
+31 [ (BB B (o) [BICE) — Bl ()1

—u(w( 7)) [/ ()~ (L7 .
(0 W () —w ()] - || u(w@)dw ().

e j t[t]- ;210‘7% (w (s) )'ds

+"S (B(6P)) ~u(w(60))] LB () — Bl (5]

my@)—1

+"3 u((@P)) (B (68) ~w!(36in)]
2
my)—1

=S ww (69)) B (6)—w(6)]

=

ma(d)—1

S u(@ o) 68 ~w (6] = [ s )

28 [ [u,uaz(s)) —u((6§7)) 131 (8) [BI (622) — Bi ()1 ds
+2"S w0 LB ) (BI(68) — B (8)) — Oy 1ds
N r m;}%;l iy (a( M) [O,E}) (n) =0l (6581~ 61>

Y
~ U
=

=
=
o
S
(N
|

+ 1 JG . Wi(’“’(“”))“%(’w(s))]ds’ow

g1, W

=
]
<

=I(t)+ +I5+§_‘,I (&) +IL7 (@) +113(t)+21 4(tj+---+§ Iz, (2.9

Tn egtimation of these terms, of course, we can make full use of those steps used in

theorem VI-7.1of [1], In addition, if we use following estimates respectively

B

[(J "’IB“<S>IdS) (J’” | B (s) lds>p’”<cz1 ﬁ (Hy— )™ (E(aa”))%”“_ (2.8)

E[ sup (A+w([t]: )‘-"]<d2(1+N(Z)2E(a§”)2) (2.9)

o<t<o P

s[> 1u<w<w>>>—u<w<s>>|2ds]<oz3n<z>s<.m<a;w>>a e
B (0f0) ] <ds, (2.11)
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~

then it ig easy t0 vemfy that

E[ sup II(t)I*’]—»OaSZTooforg =1, 2, 4, 6, 10; (2.8)’
- o<t<oy,

E[ sup |Ii.(#)|"1—0 aslToofor =1, 2, +
o<t<ae¥y

B[ sup |I;(t)]?1—>0asl? oo for j=3, 5, T; (2.9)
o<t<o i, ' .

B[ sup |Is(8)+Iss(8)]|?1—>0as 4 oo (2.10)
o<t<o Py,

E[ sup |I%() |21 —>0asl-—>oo fori=1,2, -, 7 (2.11)
o<t<o iy, ' :

hold, and S1m11ar1y as in [1], we have

B[ sup |L;®)[*1—>0 asZTOOfory =9, 11, 12, (2.12)
o<t<ofy .
To prove B[ sup |Iis(#) |1 —>0asl? oo for i=1, 2, «, r, we first note that
o<t<o¥ln '

my()~—

La="$]" wCweon|7r [Bi(s) (BI(6#) Bl () ~0) (n®) ~1)]ds

mz(d)—

" @) [ (5 (B 0) — BI(6) ~ Y )1

S w0 —otho)
+ ”% L (ofi—09 ] [0 () ~ 0 (n—1)]

where 0P (k) = 1 - Bi (s) (B{ (0'“)) —Bj(s))ds |. Beoause of
) (G:‘L))

-b) T (n(l))—> 0 as 1} oo,

it is easy to show that
B[ sup I.Il(t) 12] <cln(l)3E(ai‘>)—>O as b4 oo,

ost<o@®p
1
B T (8 7] <oa| —oe - —= O} 0asl4 oo, 2.14)
L sup 1) 1105 5 i) |0 usiten @1
E[ sup IJs(t)[2]<03[Oj(n) — 0 (n() —1)1Pn(l) ~*—>0 as [ 4 oo,

o<t<ofy

Thus we conclude the proof of Theorem 1. As an immediate consequence of the
theorem, we have

‘Corollary 1.1. Under The conditions of Theorem 1, we hawe

| lim B[ sup |w(¢)—Bi(t, w)|"]1=0, ' (2.15)

‘; Itee ost<ofl,
' Corollary 1.2. " If a sequence {IV Q)= satisfies the conditions of Theorem 1, and
- for any T'>>0
lim P{c@y>T} = 1 (2.16)

1toe
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then for any §>>0
T 2
lim P{ sup \A(t, o, B)—A(t, a5 w)— jt S 84004 (w (s),)olsll =g} =0,
1o Lost<Tvo P 04=1 |
@.17)

Proof From Theorem 1 and Corollary 1.1 thls is obvious,
Theorem 2. Let B,(t, w) (¢=1, 2, --+) be an approwimation of D-class of W
satisfying Assmption 1. 8, and {n (1) }1»1CZ+ be an increasing sequence with 11mn(l) 0]

=0, Then for any increasing sequence {N (D)} 151 S Z which satisfies foZlo'wvm,g conditions

1111132 N()=o0, N(@)=0 (mod n(l)) O<111¥13°N(Z)8(Z) < oo, | (2.18)
the equality '
ll]gl E[ 0s<1t1£ A@, a; B) —AQ, o w)— J ég@i,@;aj(w(s))dsr]=0 (2.19)
holds, 'wkefre 0,04 = 8 2oyt f=1, 2, =, 1),

Proof Just as in the proof of Theorem 1, we may achieve the proof of Thearem 2
provided we can show that for any given T>0and ISj<r

tm 1 sup ||| B = [ (@) @~ [, 53 o) ] -0
(2.20)
where u € C*(R") and all of its partial derivatives u; €O3(R"). Let
§=n®)3(Q) [s1*(§) = (+1)87 |
- 18 } if BS<s< (h+1)§ @20

m (1) = [t]-(g> /§ [s]i =ot: D

s 1, 1,
Z, j } if ohip<s<otuma.
[s]li =omi

we have

J: u(B(s))dB1 (s) —K w(a (s)) odu () — j’ S, (w(s) ) ds

= — [w(Bi(®)) —u(Bi([t]17))] [B{([1") —Bi®)]
— [w(B([1]7)) —u(w(Fhn))] [Bi (1) - Bi®]

- —u(w($he)) [BI(1T) —B{(®)]
+ [u(Bi([£]7)) —u(w (@)1 LB ([1*) — Bi([1]7)]
tu(w (Ba)) [BI [£1+) —~B{ (1] ]

5[ wBOEHO @) -FHOM
—u(w ($h) ) [w? () —w! (850) ]
i) [ ()~ @) = | u(@(®)dw ()

[t1- é=1

- Jt 2 Owu«r ('w <s> )ds
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+ 7S @) ~u(wE)I B (G+D)3) ~ B (5))
+ " u@@) BB DS 0/ (GH)] |
B

m()~—1

+ 3 u(w(@h)) (B (88) —w' (847)]

k=

(=

| 4 g 01 w(w (%)) [ (510) W (3] -fr w(uw($)) ' 5)
mt)—1

M*a

. J‘(k+1)6 [us(Bo(s) — (Bl(kS))]H (s) [Bf ((k+1) &) —B{(s)1ds

§=1

It

m()—1

M-
Ml L

-+

J<7c+1) u;(B;(kS)) [B‘ () (Bj((k_l_l)@) ~Bj(s)) - aj(n)]ds

il
fuy
J

$

l (=4

£)—1

S w(Bi(k8)) [0} (n(@)) ~ 018

m

~

M\x

4

<
]
=1
(=1

m(t)—

GO (B (8)) ~ (w0 10Ty

+
M‘!

=

i=

PR RS ACES FHORSAOEREY O

7 r r r . ‘ .
3 T+ 3 L@+ 2 T ® + Z Lo O, : (2.22)
where #, =, Among the estimates of these terms, the places where the estimates

are different from those of theorem VI-7.1 of [1] are only in I, Is+1 13 and Ly,
but by use of the estimaties : . _

B[ sup @A+ w@ED) [DI<ds (2.28)
B[7 1w by —h() 2] <de®® ©(2.20)
U"‘”"’ | (857 —a (s) | 2ds] <dibFn ()50 (2.95)

we have thab i '
E[Oilggr | I:(%) l2]<c4817'-+0 as[f oo, (2.28)
B sup | Is(£) + L15(8) [T1<es—>0 as 1} oo, , (2.24)

and .

| B[ sap '!Iié(t)|2]<c£%->o as 1) oo (4=1, 2; =, T) (2.95)"

and thus, we conclude the proof of Theorem 2,

3. Approximation for the solution of stochastic differential equatm*a

Let {B;(£)}»1 be an approximation of I-class of W and’ {B};»1 be an approxi-
mation of D-class of W defined by the Defininitions 1.1 and 1.2 respectively. In
this section we will consider the approximations of solutions of SDE (3. 1) and
(8.1)', X(¢) and X,(%), to the solution X of SDE (8.2), where
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{Xﬁ { (5, w) = ﬁ (Xt W) BYCE, 0) +5 (Xt WD) .0

X, (0)=ah i=1,2, , &, | |
{X‘(t w)= za,,oz,(t w))B”(t fw)—l—b*(X;(t w)) @y
Xi(0)=ah =1, 2, -, &,

aXi(, w) Ewp(X(t w))dw"(t)+b‘(X(t w))

+ 33 ool (X, )i @2

© pg=lla=1
XH0)=ab 4= =1, 2, +,.d, :
and zo= (a}, +-, @b) ER?, d;)(®) c0; (R’) b*(w) €CL(RY.
Theorem 3. Ij {|n(®)}i1 and {N (1) }1o1 satisfy the conditions of Theorem 1, then
Sor any gwen T>0 and @0 € R°, _ _ ‘
im B[ sup |XG, w)-—X,(t, w) |21 =0, (3.8)

11oe o<t<TAoPy

Proof We will complete the_proof by using the same way as for theorem VI-7.2
of [1], First, we have a decomposition as follows | .

Xi(8) — XH(H) = gﬂp(t) for i=1, 2, =, 1 (3.4) |
where ‘ | - '
Hi)=- 3 ji”’ (X)) Br(s)ds+ 3} [ ey 6w )
+ 33504, (@) (X))

RO T TON: (O ML ICIONED
_ % 3o j”’ (daout ,,)X(s))ds} zﬂg(t) o

=1 &1 (3.5)
H= 5[ a(Xi)Brods- g [P @ave

- 3 S04, @pa x©)as

H ) =f; b (X,(s))ozs;j: B(X (5))ds

and ’

i) = 3 120)
710 ="8 a4 (X i(080r)) [ G~ 0P = [ AT )

14 ="} (X (00)) —ah(Xa(oio-))1 (B (G6h0) B 61
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mit) - . R
12(8) = 3 a4 (X1 (080-1)) [BI (%) —w? (8510 ]

k=1
11 ="} (X (otho-2)) BB —wr(6)]
150 - 38 [ 0,a,(X:6) [ B an(Xi) B+ (X))

' i r
« (BIE%) ~BI@) s~ [, 33Oy (Ooat) (X D)ds.  (8:6)
Among these terms, only the estimates for I} and JZi of 12 are different from' those
we used in theorem 7.2 of [1], therefore we may obtain the proof of this theorem
provided that we can achieve necessary estimates for If and Ji,. However, by

P{max (01 Aoflo— A7 Aotle) =5} <emDB@) /& D)

and hence also _
E[(Pﬁf, ([£1F Aoy — [E17 A oftu)] <cgn(D)2—>0asl? oo,
<t< : .
we have that for any & € [0, T'],

E{ sup '|1g(t)|2]<cgj:E[ sup | Xu() — X () |F1ds+o(1) as 14 oo,

ost<thiAc®y 0<s'<sAa P -
| , (8.8)
my(t) (F%
As tor Th(®) =S8 [ at0,(Xu(6)) ~ k0ot (X ()10 i (B, §=1, -, ), wo
have '
T
E[ sup |J4%() 171 <010U E( sup |X, (&) —X(s)|*1ds
0<t<ti ATl 0 o<s<saofly _
T
+Jo B sap | X () — X2 ([s10) |*1ds
o<s<o¥ip

+ E[sup (E1F Aol — (17 NoSa)?]
o<t<T

=L+ Lo+ Ls for t,€[0, T]and g=1, 2, -, 7, (8.9)
Now it is not difficult to obtain that

Li<eu[n@)? (B (o) F-+n@) B(oP)]—>0as 11 oo
Ly<tsa[n(®) 2+ (n(@)*E (0©))*] >0 as 11 oo, (3.10)
s0 that for any £, € [0, T']
E[ sup |H:(®)|%] <013J: E[ sup [X(&)—X() |21ds+o(1), (8.11)

o<t<tiAo i, 0<s’<SATH

Mhe rest is easy, hence we conclude the proof here,
Corollary 2.1 Under the assumptions of Corollary 1.2, for any given T>0 and

>0 y
lim P[ sup |X@)—X;(@)|>e}=0, (8.12)

1t pat<TVodsp

Tts proof is similar to Corollary 1.2,

* Of. (7.68) of [1].
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Theorem 4. Let the matrie (Cpo), (9,-4=1, 2, =, r) in (8.2) be (Cp) of
Temma 1 corresponding t0 the case of D-approvimation {Bj}, and {n()}, '{N OF
satisfy the conditions of Theorem 1, then for any given T >0 and o€ R,

lim B[ sup | X, (s, w)—X (¢, w) |21 =0, (3.18)

1A o<t<

Proof The proof is the same as for theorem VI-7.20f [1] provided we substibute
respectively w*(6%") and wh (8Ll (n=1, 2, -, r) for w*((kd) and w”((la—i—l)S) in
the représenta,tion of J4(k) (Cf. [1], P 418), and the substitutions do not lead to
any imporiant change of the proof there, thus we obtained this theorem.

4. Some limit theorems for stochastic line integrals and solutions of
SDE with respect to random walks.

In [11], to study 1imi$ theory of stochastio proocesses, A. V. Skorohod proposed a
probabilistic method: assume that {&) (=1, 2, .-+) is a sequence sf continuous
stochastic processes, which converges to Brownian motion £(¢) in certaln sense (for
example, in mean, in probability. ete.). 10 find the limit distribution in law for
certain speocific classes of functionals F(g,), we can consbruct a sequence of processes
whose distributivs laws coincide with thore of corrosponding functionals but the
study of the asymptotic behavior of the later is cagier than the original. By use of this
idea, in this sebion we will shoﬁv that, the limit distributions which are what we want
for SLI and solutions of SDE with respect to a sequénce of certain random walks
are just the distributions of those integrals and solutions of SDE which are obtained
by using Brownian motion as a substitute for random walks in corresponding line
integrals and SDE. To do this, first, we establish the limit theorems for random
walks which can be imbeded into Brownian motion by theorems 1~4, then, as an
immediate consequehee of them, we obtain the expectant theorems. v

Now we define {o’}, {B};>1and a family of processes {W isson (Wo, BW5), P)
by 3 ‘

oP=0, of’(w) ——=inf{t= lw(®) | =J—"i—} and
o0 () =P (w) +0f (B, w) Tor p>1, 1=1, 2, =0y (4.1)

(o) if =0,

E(t, w ={ 4.2

(@, ) linear if 0%’§t<a§31, (%2
w(oP) if t=—7-0-,

Wi, w) = L kel -3

linear if 3 <IS—7

for k=0, 1, 8, =, 1=1, 2, - and i=1,2, -0, .

 Owing to E[(c?)] =.%_ and E[(e?)™ <ds(—1z—>m for m>1*, it is easy t0 verify that

* Of. K.. Tto[9], pp- 3839 forr=1and 3. Port & 0. J. Stone [10], Pp. 98—29 for r>1.



180 CHIN. ANN. OF MATH. : Vol. 5 Ser. B

{B,}1>1 i an approx1mat10n of I-class of W and {cr“’} satisfies the conditions (c.1)
—(¢.5).
Theorem & Under the assumptions (4. 1) (4 8), for any given T>0 and s>0,

we have :
hmP{supIA(t a W) — A(t o w) | =8} =0, (4.4)

Too Ot
'wherre o; (w) € 0?(RY) with bounded partial derivatives ol € Of (R")
Proof For simplioity and without loss of generality we assume tr=d—'——1 ﬁrst.
Then we introduce a lemma below, :
Lemma 2, For {oc{’}. {B} and {Wi} deﬁmd by (4.1)—(4.8) and any given
T >0, we have

: @M_ N = .

P(lz]tlg 1Szt | TF 7 ) -1, (4.5
P(lll}mosup |ofy—t| =0)=1 - (4.6)

P(lim snp |W,() ~Bi(#) | =0) =1, R

Proof (4.5) was proved in [9] (of. pp. 88—389), Next, the estimate '

SUP |ofh—¢|< sup
0<k<IIT]

and (4.5) immediatily lead to (4.6), Finally, from
Sup | W2, w) —Bi(2, ’w)f

<%+ sup |w(ofh) —w(®) |+ sup |w(®) —Bi(, ) [0 as 14 oo,

(4.7 becomes obvious.
If for any given sequence {n(l)}, which has been chosen to satisfy the conditions

a;‘?-—-]il —l——:zl—

of Theorem 1 we set v

NO=0RT+D]+m@) (4.8)
where the non-negative integer m(l) be so chosen that N(7)=0 (mod n()) and
0<m (@) <1, then evidently this NV () also satisfies conditions of Theorem 1. Moreover,

by lm —N—Z(—Q—>T the condition (2.16) is satisfied. Therefore, due to corollary 1.2,

1Too
it is sufficient to show

lzifnl P{OSItipT |A(t’ d; Wl) —4 (t: 12 Bl) [>8}=0 \4"9)
0o <i< . } -
For any given >0, To prove this, let’s consider that

Sup |A®, o Wi —A(, & By

t .
[/ %W @)W i(5)ds | + s
T . <t<T

f @, B i

< sup
t€[0,T1]

=K@+ K (). . (4.10)

Evidently, K;(£)—>0 a.s. as !4 oo, Besides, we have
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O fedve
sup J N a(w () dw(s) '—>O a.g8. as [} oo
O<t<T aifhhat :
and :
oV ' L
sup J a’(fw(s))ols‘—ao a.s. asl? oo
o<t<T | oAt

by noting Y @) =J1 a(w(s))dw(s) € ./%5 and (4.6). Hence, we know K3(!) converges

10 0 in probalility, and we proved (4.10). and also(4.4),

" Theorem 6. Let the processes X, and X be the solutions of SDE (3.1) and (8.2)

respectively, and X,= (2% 1(2, w)) be the solution of SDE (8.1) which is obtwined by

using W, as o substitute for approwimation of I-class By, then for any given xo, T>0

and >0 we have ‘ _ :
| lim P{sup | £,()~X (&) |>e}=0. (4.11)

Proof Withon} loss of generality, we only sketoh theé proof for the case of
r=d=1 here. In the first place, under transformations #, and #, which are defined by
(Z=1) 2, '") ' |

h(0) ==k A"z) +2 it op<i<ofts | |
i for k=0, 1, «-» (4.12
 H@®) = (t—Z;—)lAa(”Jro,?) 1fﬁ <t<f‘bli.1. . o )

The process X, defined by X, (t) X (@) for € [0, o) isa solution of
a Al : ¢ A . Fon a .
£, —z= |, 6(R()) Bo)ds+ | Bili(5))ds (4.13)

where 5,(£:(8)) = (I o) =1 (X, () for oP<t<oa (h=1, 2, o),
Now we are going to prove the followmg agsertion,
I SN G AORS 0NN AOR X(t)]ﬂ)] 0, (4.14)
0<t<1‘/\¢r,&m .
In a similar Way as in the proof of Theorem 3, we may estimate, for ¢ € [0, 7],
Bl sp |H,®)|" (p=1,2, 8 4) and E[ sup |5, @11 (p=1, 2, 3, 4)
o<t<t, Ao, - o<t<tiAcP,

corresponding X,(t) — X (¢) and X (&) —X (@) respeotlvely, and so 1ong as we use
1
E| sup (J ° P (8)ds*]—>0 as 1 Too ‘
myHn-1

O<t<odly,

m®

b3 E[(J qn,(s)ds'>4]—->0 as 14 0o

k=1

SE [( J o (S)ds) |2 0asT>00

k=1 &P

"Bl sup |t—£(#)|*]>0asitoo

O<t<tiAcPy,

Bl s [-h@F10esitee, @1

o<t<tinc Pl
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where @,(t) = (I do®)~* for a'“’<t<a§3,1 (k=1, 2, -++), we have
E[ sup  |Hi()|*]—>0and E[{H312]——>0 as 14 oo

O<t<o P,

A @1 A
Bl sup | Ba(h)|f1<eu) BL sup |2:()—X () [dsto)
0<t<t1/\a“(,, 0 0<s’<sAo iy,

E( sup |ﬁ4<t>|21<cmj:‘E[ sup | Xu() — X (&) [Tlds+oD)

ost<tine i . 0<s’ <3 A%y

B[ sup |Hi(i(®)|?1~>0 and E[H,|*1—>0as11 o

o<t<oRy,
: [ (£} .
E[ sup [Ha() l”]<cmj B[ sup |X()—X()|ds+o()
o<t<tiAoly, 0 0<S'<8/\_0%<)n ’
o 1 o
B[ sup |H.@) |2]<017J Bl sup |X(&)—X()|*ds+o(d) (4.16)
o<t<ty Aahi 0<s’<sAc il

where #; € [0, T'] and o(1) converge to 0 uniformly on [0, T] as 1 oo, Thus, by
Gronwall’s inequality, (4.14) becomes obvious, and also (4.11),

As an immediate application we get the following limit theorem:

Theorem 7. If for every 1=1, 2, -+ on any (Q,, %, P thei.d.d. random
variobles {EL} (70—1 2, ++) are given such that

(1) &= -, &) and
(it) P,{\§k|—~/ } =1 and on the surface Si= {wER’ |w| = ,\/——}thedq,stm

bution of & is uniform distribution,
then random walk process {W,(t) = Wi (@), -, Wi(®)} defined by

o if 1=0
_ . _
' A s 1 il — — = ree
W) = S+t 8 it 7 k=1, 2, . (4.17)
| linear b if lg <t <<—— I‘Hl_l k=1, 2, «=

have the same distribution as {W,(t) ywhich defined by(4.8), Moreover,
(1) {A@, o Wi)}is1 converges to A, o w) in law;
(i) the solutions {X,} of SDE

{X”(t) Ewp(Xz(t))Wp(t)+b°(Xz(t))
Xi(0)=abh ¢=1,2, -, d

converges to X defined by (8.2) in law, providod «, {at} and {b'} have same smoothness
as above.

(4.18)

Now let’s set for every =1, 2, -+

obi=0, o' (w) =inf{ £ | (0| =J—%—}
and
okt (w) =kt (w) + ot Bopsw) for b>1, é=1, -, 1
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Then it is obvious that o%* satisfies the conditions(c.1) '—(¢.b)", Hence it is oasy to
know the processes {W;(t)}:»1 defined by

fwi(cr%‘") if t——=l{—

Wi@t) = ' (=1
. . E+1
linear - if —-Z-—<t<~——l-—

) 2,

vy I=1, 2, )
are an approximation of D-class of W. Therefore, by Theorems 8 and 4 we may
obtain following conoclusion:

Theorem 8. If for everyl=1, 2, «-- on any (@i, B, Pi) a sequence of random
variables {&,= (&4, -, EEM)} ds given such thai

(i) for everyl, &', «-, &&" are mutually independent, and

then random walk processes {W(t)} defined by (4.17) have the same distributions as

[W,(#)}11. Moreover,

(M) {A(t, a5 W) }is1 converges to At, o w) n law, and

(IT) the soutions {X1} of SDE (4.18) converges to X defined by (3.2) in law
provided «, {ab} and {b} have same smoothness as above.
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