ON THE PROBLEM OF BEST CONVERGENCE RATES OF DENSITY ESTIMATES

CHEN XIRU (陈希孺)

(University of Science and Technology of China)

Abstract

Let X_1, \dots, X_n be iid samples drawn from an m-dimensional population with a probability density f, belonging to the family $C_{k\alpha}$, i. e. the family of all densities whose partial derivatives of order k are bounded by α . It is desired to estimate the value of f at some predetermined point α , for example $\alpha=0$. Farrell obtained some results concerning the best possible convergence rates for all estimator sequence, from which it follows, for example, that there exists no estimator sequence $\{\gamma_n(0) = \gamma_n(X_1, \dots, X_n, 0)\}$ such that $\sup_{f \in c_{k\alpha}} E_f[\gamma_n(0) - f(0)]^2 = o(n^{-2k/(2k+m)})$. This article pursues this problem further and proves that there exists no estimator sequence $\{\gamma_n(0)\}$ such that

 $n^{-k/(2k+m)}(\gamma_n(0)-f(0)) \xrightarrow{P_f} 0$, for each $f \in C_{k\alpha}$

where $\xrightarrow{P_f}$ denotes convergence in probability.

§ 1. Main Result and Its Applications

Let X_1, \dots, X_n be iid. samples drawn from an m-dimensional population with a probability density function f. The problem is to estimate f(x) by an estimator of the form $\gamma_n(X_1, \dots, X_n, x)$. In the following we shall simplify $\gamma_n(X_1, \dots, X_n, 0)$ to $\gamma_n(0)$.

Since the appearance of Farrell's work [1], a number of authors (see [1-6]) discussed the following question: Given a family of m-dimensional densities \mathscr{F} , we want to estimate f(0), with $f \in \mathscr{F}$. Then what is the best accuracy in various senses which can be achieved by suitably choosing the estimator $\gamma_n(0)$? Of course, the accuracy referred to should be valid to each $f \in \mathscr{F}$, and not to some members of \mathscr{F} only.

In this respect, the most important work up to now is Farrell's [2]. Owing to its close relation to the present article, we quote the main result of [2] in the most interesting case C_{ka} as follows:

Suppose that k is a positive integer, and $\alpha>0$. Denote by $C_{k\alpha}$ the family of densities f satisfying the following conditions: f possesses all partial derivatives up to

Manuscript received May 6, 1982.

the order k-1, each (k-1)—th order partial derivative of f is absolutely continuous with respect to each of the variables x_1, \dots, x_m . Also, for any non-negative integers k_1, \dots, k_m with $\sum k_i = k$, we have

$$\sup_{x \in R_m} \left| \frac{\partial^k f(x_1, \cdots, x_m)}{\partial x_1^{k_1} \cdots \partial x_m^{k_m}} \right| < \alpha_{\bullet}$$

Farrell proved in [2] the following

Theorem. (Farrell) Let $\{\gamma_n(0), n=1, 2, \cdots\}$ be an arbitrary sequence of estimators of f(0), and $\{a_n\}$ is a sequence of constants. Suppose that

$$\lim_{n\to\infty} \inf_{f\in C_{kn}} P_f(|\gamma_n(0)-f(0)| \leqslant a_n) = 1. \tag{1}$$

Then

$$\lim_{n\to\infty} a_n n^{k/(2k+m)} = \infty. \tag{2}$$

From this theorem it follows easily (see [2]) that there exists no sequence of estimators $\{\gamma_n^0(0)\}$ such that

$$\sup_{f \in C_{ka}} E[\gamma_n^0(0) - f(0)]^2 = o(n^{-2k/(2k+m)}). \tag{3}$$

The weakness of this result lies in the fact that condition (1) is too strong. This condition amounts to requiring that

$$\lim_{n\to\infty} P_f(|\gamma_n(0) - f(0)| \leq a_n) = 1 \tag{4}$$

should hold uniformly for $f \in C_{ka}$. Hence, this result cannot answer the question of whether or not a sequence of estimators $\{\gamma_n(0)\}$ can be found such that

$$E_f[\gamma_n^0(0) - f(0)]^2 = o(n^{-2k/(2k+m)}), \text{ for each } f \in C_{k\alpha},$$
 (5)

Another question concerning the rate of couvergence is as follows: Let $\{\gamma_n(0)\}$ be a sequence of estimators of f(0) and $A_n \to \infty$. If

$$\lim_{n\to\infty} A_n(\gamma_n(0) - f(0)) = 0 \quad \text{a.s. for each } f \in C_{k\alpha}$$

or

$$\limsup_{n\to\infty} |A_n(\gamma_n(0)-f(0))| < \infty$$
 a.s. for each $f \in C_{k\alpha}$,

we say respectively that $\gamma_n(0)$ converges to f(0) with a rate of $o(A_n^{-1})$ or $(O(A_n^{-1}))$ in the family C_{ka} . No conclusion concerning this question can be derived from Farrell's theorem.

In this article, we first give a modification to Farrell's theorem as follows:

Theorem 1. Let $\{\gamma_n(0)\}$ be a sequence of estimators of f(0), and $\{a_n\}$ be a sequence of constants, such that (4) holds for each $f \in C_{k\alpha}$. Then

$$\lim\inf a_n n^{k/(2k+m)} > 0.$$

In turn, this theorem can be employed in establishing the following result.

Theorem 2. There exists no sequence of estimators $\{\gamma_n(0)\}$ such that

$$n^{k/(2k+m)}[\gamma_n(0)-f(0)] \xrightarrow{P_f} 0$$
, for each $f \in C_{ka}$. (6)

From this theorem it follows that

1. There exists no sequence of estimators $\{\gamma_n(0)\}$ satisfying (5).

On the other hand, by choosing suitably a kernel function K and constant $h_n > 0$, defining the kernel estimator

$$\hat{f}_n(x) = (nh_n^m)^{-1} \sum_{i=1}^n K\left(\frac{x - X_j}{h_n}\right),$$

we can get

$$\sup_{f \in \mathcal{O}_{k\alpha}} E[\hat{f}_n(0) - f(0)]^2 = O(n^{-2k/(2k+m)}). \tag{7}$$

Therefore, with respect to the whole family $C_{k\alpha}$, the best convergence rate of the MSE for any estimator of f(0) is the right hand side of (7), both in the uniform and non-uniform senses, and this optimal rate is attainable.

2. There exists no sequence of estimators $\{\gamma_n(0)\}$ such that

sts no sequence of commutation (i.e.,
$$\gamma_n(0) - f(0) = o(n^{-k/(2k+m)})$$
 a. s. for each $f \in C_{ka}$. (8)

On the other hand, the present author shows in [7] that the kernel estimator $\hat{f}_n(0)$, defined by suitably chosen K and h_n , satisfies

by suitably chosen K and
$$n_n$$
, satisfies
$$\lim_{n \to \infty} \varepsilon_n n^{k/(2k+m)} \left(\log n \right)^{-1/2} \sup_{x} |\hat{f}_n(x) - f(x)| = 0, \quad \text{a. s.}$$

$$(9)$$

for any constant $\varepsilon_n \rightarrow 0$ and $f \in C_{k\alpha}$.

This is equivalent to (see Appendix)

uivalent to (see Appendix)
$$\sup_{x} |\hat{f}_n(x) - f(x)| = O(n^{-k/(2k+m)} (\log n)^{1/2}), \quad \text{a. s. for each } f \in C_{k\alpha}. \tag{10}$$

Thus for the best convergence rate of $\gamma_n(0) - f(0)$ and $\sup_{x} |\gamma_n(x) - f(x)|$, the exponential -k/(2k+m) is accurate. The author does not know if there exists estimator sequence $\{\gamma_n\}$ such that

nce
$$\{\gamma_n\}$$
 such that $\sup_x \gamma_n(x) - f(x) = O(n^{-k/(2k+m)})$ a. s. for each $f \in C_{k\alpha}$

or even

$$\gamma_n(0) - f(0) = O(n^{-k/(2k+m)})$$
 a. s. for each $f \in C_{ka}$.

§ 2. Proof of Theorem 1

We employ the idea developed in [2]. The new feature is that we introduce a limiting process in order to avoid the assumption (1). We shall use the notations of [2] whenever possible.

Choose A>0 sufficiently large and a>0, $0<\varepsilon_0<1$, both sufficiently small, such that a function \tilde{f} can be found satisfying: 1° $\tilde{f} \in C_{k,\alpha/2}$. 2° $\tilde{f}(x) = 0$ for $||x|| \leq A$. 3° $\widetilde{f}(x) > a$ for $||x|| \le \varepsilon_0$. Denote by $\widetilde{\mathscr{F}}$ the set of all such function \widetilde{f} .

Let $C(\delta)$ be a continuous increasing function defined in $[0, \infty)$, such that C(0) = 0 while $C(\delta) > 0$ for $\delta > 0$. The exact form of $C(\delta)$ will be chosen later. For a constant $\delta > 0$ and an m-dimensional density f, define

$$h_{f,\delta}(x) = f(x) + C(\delta) e_{k\delta}(x),$$

where $e_{k\delta}$ is defined by (2.18) of [2]. It is easy to see that if $f \in C_{k,\alpha/2}$ and $\delta > 0$ sufficiently small, then $h_{f,\delta} \in C_{k,\alpha/2}$, Write

$$S(g, s) = \{ \widetilde{g} : \widetilde{g} \in \widetilde{\mathscr{F}}, \sup_{x} |\widetilde{g}(x) - g(x)| < \varepsilon \}.$$

Now suppose that $\{\gamma_n(0)\}$ is a sequence of estimators of f(0), $\{a_n\}$ is a sequence of constants, such that (4) holds for each $f \in C_{k\alpha}$ For any $d \in (0, 1)$, define

$$C_{k\alpha}^{(N)}(d) = \{g: g \in C_{k\alpha}, P_g(|\gamma_n(0) - f(0)| \leq a_n\} \geqslant d, \text{ for any } n \geqslant N\}$$

Then the condition (4) can be written as

$$\bigcup_{N=1}^{\infty} C_{k\beta}^{(N)}(d) = C_{k\alpha}, \text{ for any } d \in (0, 1).$$
(11)

We proceed to verify the following assertion: There exists a positive integer N, $f \in C_{k\alpha}$ and $\bar{\delta} > 0$, such that

$$h_{f_{\bullet}\delta} \in C_{k\alpha}^{(N)}(d)$$
, for $0 < \delta < \overline{\delta}$. (12)

Note the following two trivial fact: If $g \in \mathscr{F}$, $g \in C^{(n)}_{k\alpha}(d)$, then

$$S(g, \varepsilon) \cap C_{k\alpha}^{(n)}(d) = \emptyset$$

for s>0 small enough. If $g\in \mathscr{F}$, $g\in C_{k\alpha}^{(n)}(d')$, d< d'<1, then $S(g,s)\subset C_{k\alpha}^{(n)}(d)$ for s>0 small enough. Further, if $g\in \mathscr{F}$ and s>0, then $h_{g,s}\in S(g,s)$ for $\delta>0$ small enough.

Now suppose that the assertion is false. Then there exists $\delta_1 \in (0, s_0)$, such that $h_{\tilde{t},\delta_1} \in C_{k\alpha}^{(1)}(d)$. Write $g_1 = h_{\tilde{t},\delta_1}$. Find $s_1 > 0$ small enough, such that

$$S(g_1, \varepsilon_1) \cap C_{k_a}^{(1)} = \phi$$
.

Using once again the supposition that the assertion is false, we can find $\delta_2 \in (0. \min \{\delta_1/2, 2^{-2/(2k+m)}\})$, such that

$$h_{g_1,\delta_2}{\in}S(g_1,\ s_1/2)$$
 , $h_{g_1,\delta_2}{\in}C^{(2)}_{klpha}(d)$.

Write $g_2 = h_{g_1, \delta_2}$. Find $\varepsilon_2 > 0$ small enough such that

$$S(g_2, s_2) \subset S(g_1, s_1), S(g_2, s_2) \cap C^{(2)}_{k\alpha}(d) = \emptyset.$$

Repeating this process, one can determine three sequences, $\{g_i\}$, $\{s_i\}$ and $\{\delta_i\}$, satisfying

1°.
$$\delta_i \in (0, \min\{\delta_{i-1}/2, i^{-2/(2k-m)}\}), \sum_{i=1}^{\infty} C(\delta_i) < \alpha/2 \text{ (see later)},$$

$$2^{\circ}$$
. $g_0 = \tilde{f}$, $g_{i+1} = h_{g_i, \delta_i + 1}$, $i = 0, 1, \dots$,

3°.
$$S(g_i, s_i) \cap C_{k\alpha}^{(i)}(d) = \phi, S(g_{i+1}, s_{i+1}) \subset S(g_i, s_i)$$
.

It is not difficult to prove that not only g_i itself, but also all its partial derivatives with an order not exceeding k, converges uniformly in the whole space R^m to a certain function g^* , the derivatives being with the corresponding order, and the function g^* having the properties: 1°. $g^* \in C_{k\alpha}$. 2°. $g^*(x) = 0$ for $||x|| \ge A$. 3° $g^*(x) \ge \alpha$ for $||x|| \le s_0$. In fact, from the property of $g_{k\delta}$ appearing in the definition of $e_{k\delta}$, as pointed out in [2], it follows that there exists a constant M, such that

$$|g_{j}-g_{i}| \leq |g_{i+1}-g_{i}| + |g_{j+2}-g_{i+1}| + \dots - |g_{j}-g_{j-1}|$$

$$\leq M[C(\delta_{i+1}) + \dots + C(\delta_{j})] \to 0, \text{ when } j > i \to \infty.$$
(13)

Similar estimation holds true also for

$$|\partial^u g_i/\partial x_1^{u_1}\cdots\partial x_m^{u_m}-\partial^u g_j/\partial x_1^{u_1}\cdots\partial x_m^{u_m}| \quad (1{\leqslant}u{\leqslant}k)$$

with the only difference of changing k+1 to k+1-u. This proves the convergence property of g_i mentioned above.

Take $d' \in (d, 1)$. Since $g^* \in C_{k\alpha}$, there exists N such that $g^* \in C_{k\alpha}^{(N)}(d')$. Also, $g^*(x) = 0$ for $||x|| \ge A$ and d' > d, so $S(g^*, s) \subset C_{k\alpha}^{(N)}(d)$ for s > 0 small enough. Since $g_i \in \mathscr{F}$ for each i and $g_i \in S(g^*, s)$ for i large enough, we have $g_i \in C_{k\alpha}^{(N)}(d)$. On the other hand, we have $g_i \in C_{k\alpha}^{(i)}(d)$ and $C_{k\alpha}^{(i)}(d) \supset C_{k\alpha}^{(N)}(d)$ for $i \ge N$. Thus we reach a contradiction, which proves the assertion mentioned earlier: One can find positive integer N, $f \in \mathscr{F}$ and $\delta > 0$, such that (12) holds. Considering (4), one can assume $f \in C_{k\alpha}^{(N)}(d)$ by increasing N, if necessary.

Now choose arbitrarily b>0. Write $b'=C_3b/4$, where C_3 is determined by

$$\int_{-\infty}^{\infty} e_{ks}^2(t) dt = \alpha C_3 \delta^{2k+m}/4$$

(see [2], (2.21), replacing
$$\eta(\delta/2)$$
 in it by $\delta/2$). Use the relationship
$$\delta_n^{2k+m}C^2(\delta_n) = 4b'/(c_3n) = b/n \tag{14}$$

to define δ_n . We have $\delta_n \downarrow 0$ for $n \to \infty$. From these, and using an argument similar to that used in deducing (3.7) of [2], we get

$$Ph_{\tilde{f},\delta_{n}}(|\gamma_{n}(0) - h_{\tilde{f},\delta_{n}}(0)| \leqslant a_{n}) \leqslant [P_{\tilde{f}}(|\gamma_{n}(0) - h_{\tilde{f},\delta_{n}}(0)| \leqslant a_{n})]^{1/2} (1 + b'/n)^{n/2} \leqslant [P_{\tilde{f}}(|\gamma_{n}(0) - h_{\tilde{f},\delta_{n}}(0)| \leqslant a_{n})]^{1/2} e^{b'/2}.$$
(15)

The first expression in (15) is no smaller than d when $n \ge N$. Hence

$$P_{\tilde{\tau}}(|\gamma_n(0) - h_{\tilde{\tau},\delta_n}(0)| \leqslant \alpha_n) \geqslant d^2 e^{-b'}. \tag{16}$$

On the other hand, when $n \ge N$ we also have

$$P_{\tilde{t}}(|\gamma_n(0) - \tilde{f}(0)| \leq \alpha_n) \geq d. \tag{17}$$

Now we choose d in the definition of $C^{(n)}_{k\alpha}(d)$ to satisfy

$$0 < d < 1, \quad d + e^{-b'/2} d^2 > 1.$$
 (18)

From (16)—(18), it follows that for $n \ge N$

$$2a_n \geqslant |\tilde{f}(0) - h_{\tilde{f},\delta_n}(0)| = C(\delta_n) |e_{k\delta_n}(0)|.$$

Write T = (k-1)(k-2)/2. By (2.20) of [2] (changing $\eta(\delta/2)$ to $\delta/2$), we have

$$2a_n \geqslant C(\delta_n) 2^T \delta_n^k. \tag{19}$$

From (14) we have

$$\delta_n = b^{1/(2k+m)} n^{-1/(2k+m)} O^{-2/(2k+m)} (\delta_n).$$
 (20)

Since $\delta_n \to 0$, $C(\delta_n) \to 0$ when $n \to \infty$, from (20) we see that $\delta_n \geqslant n^{-1/(2k+m)}$ for n sufficiently large. By (19) and the fact that $C(\delta)$ is a strictly increasing function of δ , we have on writing $R = 2^{T-1}$

$$a_n \geqslant RC(n^{-1/(2k+m)}) n^{-k/(2k+m)} b^{k/(2k+m)}$$
 (21)

Now take arbitarily positive integer sequence $\{B_n\}$, with $B_1 \geqslant A$ and $B_n \uparrow \infty$ where A is chosen such that $\sum_{n=A}^{\infty} (R_n^2)^{-1} < \alpha/2$. Choose a strictly increasing function $C(\delta)$, satisfying C(0) = 0 and

$$O(n^{-1/(2k+m)}) = (RB_n)^{-1}, \quad n=1, 2, \cdots.$$
 (22)

Then $\{\delta_i\}$ satisfies the conditions 1°-3° mentioned earlier, and by (21), (22)

$$\liminf_{n \to \infty} B_n a_n n^{k/(2k+m)} \geqslant b^{k/(2k+m)}, \tag{23}$$

Since b>0 is arbitrarily given, (23) implies

$$\lim_{n\to\infty} B_n a_n n^{k/(2k+m)} = \infty. \tag{24}$$

Since (24) holds true for any $B_n \uparrow \infty$, We finally get

$$\liminf_{n\to\infty} a_n n^{k/(2k+m)} > 0,$$

which concludes the proof of Theorem 1.

§ 3. Proof of Theorem 2

The following elementary lemma is needed.

Lemma 1. Suppose that $(b_{mn}, m=1, 2, \dots, n=1, 2, \dots)$ is a double array of constants satisfying

$$\lim_{m \to \infty} b_{mn} = 0, \text{ for } m = 1, 2, \cdots.$$
 (25)

Then there exists a positive sequence $\{b_n\}$, such that $\lim_{n\to\infty} b_n = 0$ and $\lim_{n\to\infty} b_{mn}/b_n = 0$ for $m=1, 2, \cdots$.

Proof For any sequence $\{a_n\}$ tending to zero, there exists a sequence $\{a'_n\}$ tending to zero such that $a'_n > |a_n|$, and $a'_1 > a'_2 > \cdots$. Hence without losing generality we can assume $b_{m1} > b_{m2} > \cdots > 0$ for $m = 1, 2, \cdots$. Also, we can assume

$$b_{1n} \leqslant b_{2n} \leqslant b_{3n} \leqslant \cdots$$
 for $n=1, 2, \cdots$

by replacing b_{mn} with $b'_{mn} = \max \{b_{1n}, \dots, b_{mn}\}$, if necessary.

Define a subsequence $r_1 < r_2 < \cdots$ of positive integers as follows: Choose r_1 such that $\sqrt{b_{2n}} < 1$ for $n > r_1$. Choose $r_2 > r_1$ such that $\sqrt{b_{3n}} < 1/2$ for $n > r_2$. In general, after r_1 , $\cdots r_i$ are determined, we choose $r_{i+1} > r_i$ such that $\sqrt{b_{i+1,n}} < 1/(i+1)$ for $n > r_{i+1}$. Such an r_{i+1} exists in view of (25). Now define

$$b_n = \sqrt{b_{1n}}$$
 for $n \leqslant r_1$; $= \sqrt{b_{in}}$ for $r_{i-1} < n \leqslant r_i$, $i = 2, 3, \cdots$.

Then $b_n < 1/i$ for $n > r_i$, hence $b_n \to 0$. Fix m. For $n > r_{m-1}$, there exists i such that $i \gg m$ and $r_{i-1} < n \leqslant r_i$. Since $b_{in} \gg b_{mn}$ for $i \gg m$ and $b_{in} < 1$ for $r_{i-1} < n \leqslant r_i$, we have

$$b_{mn}/b_n = b_{mn}/\sqrt{b_{in}} \leqslant b_{mn}/\sqrt{b_{mn}} = \sqrt{b_{mn}}$$
,

which tends to zero when $n\to\infty$. We can assume that $b_n>0$, for we can replace b_n by b_n+n^{-1} if necessary. The Lemma is proved:

and

Turning to the proof of Theorem 2, for any positive integer sequence $\{B_n\}$, with $B_1 \gg A$ and $B_1 < B_1 < \cdots$ (A was defined in the proof of Theorem 1), we choose the function $C(\delta)$ as follows: For $\delta = n^{-1/(2k+m)}$, $n=1, 2, \dots$, define $C(\delta)$ as in (22), and let $C(\delta)$ be linear within the interval $[(n+1)^{-1/(2k+m)}, n^{-1/(2k+m)}], n=1, 2, \cdots$. The set U of all possible values of $C(\delta_i)$, with $i=0, 1, 2, \cdots (\delta_0=0, C(\delta_0)=0)$ and $\{B_i\}$ arbitrarily chosen with the above-mentioned property, is denumerable. Write $U = \{u_0, u_1, \dots\}, \text{ and } f_i = h_{\tilde{t}, u_i}, i = 0, 1, 2, \dots$

Now suppose in the contrary that there exist a sequence $\{\gamma_n(0)\}$ satisfying (6). In particular, (6) holds for $f=f_i$, $i=0, 1, 2, \cdots$. Therefore, for each i, i=0, 1, 2, ..., a positive constant sequence $\{a_{i1}, a_{i2}, \dots\}$ can be found such that $\lim_{n \to \infty} a_{in} = 0$,

$$\lim_{n\to\infty} P_{f_i}(|\gamma_n(0)-f(0)| \geqslant a_{in}n^{-k/(2k+m)}) = 1, \ i=0, \ 1, \ 2, \ \cdots.$$
 (26)

By Lemma 1. we can find a positive constant sequence $\{a_n\}$ such that $\lim_{n\to \infty} a_n = 0$ and

 $\lim_{n \to \infty} a_{in}/a_n = 0$ for $i=0, 1, 2, \cdots$. Considering (26), for this $\{a_n\}$ we have

$$\lim_{n\to\infty} P_{f_i}(|\gamma_n(0)-f(0)| \geqslant a_n n^{-k/(2k+m)}) = 1, \quad i=0, 1, 2, \cdots.$$
 (27)

From (27) and a glance at the final part of the proof of Theorem 1, it follows that $\lim_{n\to\infty} B_n a_n n^{-k/(2k+m)} n^{k/(2k+m)} = \lim_{n\to\infty} B_n a_n = \infty$

$$\lim_{n\to\infty} B_n a_n n^{-n/(2n+m)} n^{n/(2n+m)} = \lim_{n\to\infty} B_n a_n = 0$$
With the property mentioned earlier. This in ture

for any sequence $\{B_n\}$ with the property mentioned earlier. This in turn implies $\lim \inf a_n > 0$,

which contradicts to the fact that $\lim a_n = 0$, concluding the proof of Theorem 2.

Appendix

To deduce (10) from (9), we need the following lemma.

Lemma 2. Let $\{X_n\}$ be a sequence of random variables defined on the probability space (Ω, \mathcal{B}, P) , satisfying the condition

$$\lim_{n \to \infty} \varepsilon_n X_n = 0 \text{ a. s., for any constant } \varepsilon_n \downarrow 0.$$
 (28)

Then

$$\limsup_{n\to\infty} |X_n| < \infty, a. s.$$
 (29)

Proof Put

$$A = \{\omega: \omega \in \Omega, \limsup_{n \to \infty} |X_n(\omega)| = \infty\}.$$

We want to prove P(A) = 0. Suppose in the contrary that P(A) > 0. Transfer to the new probability space $(A \cap \Omega, A \cap \mathcal{B}, P(\cdot)/P(A))$, we can assume without losing generality that $A = \Omega$. Find a sequence of positive integers $n_1 < n_2 < \cdots$ such that

$$P(\max_{1 < j < n_i} |X_j| \ge i) \ge 1 - 2^{-(i+1)}, \quad i = 1, 2 \cdots.$$
 (30)

Such a sequence exists, since $A = \Omega$. Write

$$D\!=\!\{\omega\!:\;\omega\!\in\!\Omega,\;\max_{1\leqslant j\leqslant n_i}|X_j(\omega)|\!\geqslant\! i,\;\;i\!=\!1,\;2,\;\cdots\}.$$

By (30) we have $P(D) \ge 1/2$. Now define $s_n \downarrow 0$ as follows: Put $s_1 = \cdots = s_{n1} = 1$, and $s_j = i^{-1/2}$, for $n_{i-1} < j \le n_i$, $i = 2, 3, \cdots$.

Then for $\omega \in D$ we have

$$\max_{1 \leq j \leq n_i} |s_j X_j(\omega)| \geqslant i^{1/2}, \quad i=1, 2, \cdots.$$

Therefore we cannot have $\lim_{n\to\infty} \varepsilon_n X_n(\omega) = 0$ for $\omega \in D$. Since $P(D) \neq 0$, Lemma 2 is proved.

References

- [1] Farrell, R. H., Ann. Math. Statist., 38 (1967), 471-474,
- [2] Farrell, R. H., Ann, Math. Statist., 48 (1972), 170—180.
- [3] Meyer, T. G., Ann. Statist., 5 (1977), 136—142.
- [4] Sacks, J. & Ylvisaker, D., Ann. Statist., 9 (1981), 334-346.
- [5] Krieger, A. M. & Pickands J. III, Ann. Statist. 9 (1981), 1066-1078.
- [6] 陈希孺,科学探索,2(1982),73-78.
- [7] Chen Xiru, J., Systems Sciences & Math., 3(1983), 263-272.