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Abstréct

Let Xy, +++, X, be iid samples drawn from an m-dimensional population with a prbbability
density f, belonging to the family Cis, 1.e. the family of all densities whose partial
derivatives of order & are bounded By a. It is desived to estimate the value of f at some
predetermined point @, for example a=0. Farrell obtained some results concerning the best

.. possible convergence rates for all estimator sequence, from which it follows, for example, that
there exists no estlmator sequence {y.(0) = 'y,,(X1, cer X,,, 0)} ‘such that sup Ef['y,.(O)—

F(O)2=0(n=2 m*’"’) This article pursues th1s problem further and proves that there ex1sts
no estimator sequence {y,(0)} such that
AHGtm (o (0 — £(0)) —5 0, £or each F € Cray

P, S as
where — denotes convergence in probability. T

§ 1. Main R‘esQult'and It»s’ Applications

Let Xy, +--, X, bo iid. samples draw_nvfr'om an m—dianSional population with a
probability density funoction f, The problem is to estimate f(2) by an estimator of
the form y,(Xy, -+, X, ). In the following wo shall simplify 7a(Xs, -+, X, 0)
t0 7 (0). N -

Since the appearance of Farrell’s work [1], a number of authors (see [1—61)
disoussed the following question: Given a family of m~dimensional densities %, we
want o estimate f(0), with f € Z. Then what is the best acouracy in various senses
which:.can be achieved. by “suitably choosihg- the estimator 7,,(0) 2 Of course, the
acouracy referred to should be valid to each f& ﬁ‘, and not to. some members of &
only. S ‘
In this respect, the most important work up to now is Farrell’s [2]. Owing to
its closge relation to the present arﬁlgle, Wwe quote j_;he ma;nv result of [2] in the most
mterestmg case Uy, as follows | .

Suppose that % is a posﬂalve 1nteger and a>0 Denote by O the family of
densities f satisfying the followmg conditions: f possesses all partial derivatives up to
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the order k—1, each (k—1)-th order partial derivative of f is absolutely continuous
with respect t0 each of the variables @, -
k;[, ey, km with 2]05=]C, we have

k LR

weRm b 8
Farrell proved in [2] the followmg

Theorem. (Farrell) Les '{y,,’(O) , n=1, 2, «} be an arbitrary sequence of
estimators of f (0), and{a.} s @ sequence of constants. Suppose that
lim nf Py(|74(0) = ()| <aw) =1, @

., @m. Also, for any non-negative integers

<o

Then
Tim gt/ @+ = oo, (@)

From this theorem it follows easily (see [2]) that there exists no sequence of
estimators {y2(0)} such thab

sup Bly(0) —f(0)]*=o0 (= 20/ @)y | 3

The weakness of this result lies in the fact that condition (1) is too strong. This
condition amounts to requiring that

tim Py(|7s(0) —f (0) | <aw) =1 @

should hold uniformly for f €0y, Hence, this result cannot answer the question of
whether or not a sequence of estimators {y,(0)} can be found such that
By [75(0) —f (0) 12 =0 (n ¥/ @+m) , for each f € Uga, (8)
Another question concerning the rate of couvergence is as follows: Let {7,(0)} bea
sequenoe of estimators of £(0) and 4,—»>oo_ If v
lim A,(y,(0) —£(0)) =0 a.s. for each f € Cya

N—00

or
lim | Sup | 4 (72(0) —F(0)) | <oo a.s. for each f € Cha,

Wwe say respeotlvely that ,(0) converges to f(0) with a rate of 0(4;™) or (0(4;") in
the family Oy.. No conclusion concerning this question can be derived from Farrell’s
theorem.

Tn this article, we first give a modification to Farrell’s theorem as follows:
* Theorem 1. Let {v,(0)} be @ sequence of estimators of f(0), and {a.} be @ sequence
of constants, such that (4) holds for each f €Cyq. Then
lim inf @n¥ @™ >0,

In turn, this theorem can be employed in establlshmg the following result.
Theorem 2. There ewists no sequence of estimators {7,(0)] such that

@My, (0) —F (0)] —2> 0, for eath f€ Cha, ©
From this theorem it follows that '
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1. There exists no sequence of estimators {7»(0} satisfying (B).
On the other hand, by choosing suitably a kernel function K and constant >0,

defining the kernel estimator

fuw) = B E(ES).

we can golb

sup B[ fa(0) = (O =0 /™). ™

. F€0ka -
Therefore, with respect t0 the whole family Oys, the best convergerice rate of the

MSE for any estimator of £(0)is the right hand side of (7), both in the uniform and

non-uniform senses, and this optimal rate is attainable.
9. There exists no sequence of estimators{y,(0) }suoh that
70 (0) —F(0) — o (n~ W/ @™) a. 8. for each f € Cra. (8)
~ On the other hand, the present quthor shows in [7] that the kernel estimator
Fa (0), defined by suitably chosen Kand h,, satisfies . ’
lim s/ @™ (logn) -2 sup | Fu(a) —f (@) | =0, a.s.

e )

for any constant &,—>0 and f € Cra.

This is equivalent to (see Appendix) _
sup |Fal@) —f (@) | =0 (4 @™ (logm) /%),  a- 8. toreach f €0k (10)

Thus for the best oconvergence rate of ya(0)—f(0) and sup | ya (@) —f (@) |, the

exponential —k/ (2k+m) is acourate. The author does not know if there exists
ostimator sequence {Ya} such that
sup yn(@) —f (@) | =0(@™ @em) g, g, for each [ €Ok

Or eveIL
va(0) —F(0) =O(n ¥/ ™) a. 8. for each f € Ora.

§ 2. Proof of Theorem 1

‘We employ the idea develdped in [2]. The new feature is that we introduce 'a
limiting process in order to avoid the agsumption (1). We shall.use the notations of
[2] whenever possible.

Choose A >0 sufficiently large and a>0, 0< g0<1, both sufficiently small, such
that a function F can be sound satisfying: 1° FEOuapn 2° F (&) =0 for lo| <4, 8°
f (#)>a for |#| <8, Denote by Z the set of ‘211 such function ¥, '

Lot O(5) be a continuous inoreasing funciion defined in [0, o0), such that
©(0) =0 while ¢ (8) >0 for 3>0, The exact form of 0(3) will be chosen later. For
a constant >0 and an m—dimensioﬁal density f, define :

s (@) =F (@) +0(9) 0 (),
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where e is defined by (2.18) of [2]. It is easy to see that if f€Cam and 3>0
sufficiently small, then hs,s € Cy,as2, Write |

8(g, 8)=1{9: §€Z, sup I§(w>—9(w)l<§},

Now suppose that {y,(0)} is a sequence of estimators of f(0), {a@.} isa sequence of
consfants, such that (4) holds for each f € Oy, For any d € (0, 1), define

O (d) =1{9: 9€Oha, Py(|72(0) —F(0) | <an) >d, for any n=>N7},
Then the condition (4) can be written as

C’J O (d) = Oyay for any d€ (0, 1), (11)

We proceed to verify the following assertion: There exists a positive integer NN,
f €Oy and §>>0, such that

e €O (@), for 0<5<3, - (12)
Note the following two trivial fact: If €&, g€O0R(d), then '

8(g, &HNOR @) =Z
for >0 small enough. If g€.F, g€OR(d), d<d'<1, then S(g, 8) =0 (d) for
s>0 small enough. Further, if g€ Z and 8>0, then hy,;€8(g, &) for >0 small
enough. :
. Now suppose that the assertion is false Then there exists 8; € (0, gp), such that
B3, EOR (d), Write g1=hj,s,. Find §;>0 small encugh, such that

8(gs, 80O =,
Using onoe again the supposition that the assertion is false, we can find 8,&
(0. min {8;/2, 2~ @+m1) gsuch that '

Pt €8 (91, 81/2), b, € OR2 ().,
Write ga=hy,,s- Find g2>0 small enough such that
8(ga, 82) 8 (g1, 1), S(ge, 82) NORR (D) =,

Ropeating this process, one can determine three sequences, {¢9:}, {&} and {3},
satisfying '

1% ;€ (0, min{§;_,/2, ¢~/ F~—™}), i}i 0 (8;) <a/2(see later),
. =

2% go=F, Gir1=Rguom, $=0, 1, +,

8% S(g:, 8) NOR@) =, 8(girs, 8:41) S8(g, 8.
T+ is not difficult to prove that not only g; itself, but also all its partial derivatives
with an order mnot exceeding k, converges uniformly in the whole space R™ to a
cortain function g¢*, the derivatives being with the corresponding order, and the
function ¢* having the properties, 1° 9" €0, 2 g* (@) =0 for |o]|=>4, 3° ¢ (@)>a
for |@| < so. In fact, from the property of i appearing in the definition of e, as
pointed out in [2], it follows that there exists a congtant M, such that
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lgi—g:l <|gora— 9| + | g2 — Gia| +oo— | 95— -l ‘
<SM[O (B 131) ++--+0(8;) 10, when j>i—>o0, (138)
Similar estimation holds true also for
|3“g Qas - Basly — Dg; /Dt eve Baiir | (L<SusSK)
with the only difference of changing k-1 to k+1—u, This proves the convergence
property of g; mentioned above. : : '
Take & € (d, 1). Since ¢* €Cis, there exists N such that ¢ EO’,‘GZ) (@). Also,
¢ (@) =0 for |o|>A and &'>d, so S(¢*, &) cO® () for s>0 small enough. Since
¢:€Z for each ¢ and g, €8(g", ) for ¢ large enough, we have ¢;€C{(d). On the

other hand, we have ¢;€CH(d) and CL(d) SO0 (d) for >N, Thus we reach a
contradiction, which proves the assertion mentioned earlier: One can find positive

integer N, f€F and §>0, such that (12) holds Oonsidering (4), one can assume

FEON(d) by inoreasing N, if necessary.

Now choose arbitrarily b>0, Write b’=03b/4, where Us is deftermined by
J " 6, () dt =a0; %+ /4

(see[2], (2.21), replacing #(8/2) in it by &/ 2). Use the relationship
O (3,) =4b'/ (csm) =b/n . - (19
40 define 8,. We have 8, | 0 for n—>co, From these, and using an argument similar

‘t0 that used in deducing (8.7) of [2], we get

Phi,s, (|72 (0) —hs,s,(0) | <) <[P5(|72(0) — — k3,5, (0) | <a@n)1Y2(AA-Y/m)"2
< [Ps(|72(0) — A5y, e/, (15)

The first exprossion in (16) is no smaller than d when n>N, Hence

Pi(| 74(0) = 3,5, (0) | Saw) >d% ™", (16)
On the other hand, when n>N we also have '
: Pi(|7x(0) =T (0) | <aw) >4, P
Now we choose d in the definition of Of (d) to satisfy
0<d<l, d+e?d>1, (18)

From (16)—(18), it follows that for n=>N
24, F (0) —P1,5,(0) | =C (3n) |€42, (0) |.
Write T'= (k—1) (5—2) /2. By (2.20) of [2] (changing 7(5/2) to 8/2), we have
20,20 (8,) 270%, : (19)

From (14) we have .
5” — bi/(2k+m)n—1_/ (@B+m)(y~2/ (2k+-m) (30 . (20)
Since 8,—>0, O(3,)->0 when n—> oo, from (20) we ses that 3,=>n~Y@*™ for n
sufficiently large. By (19) and the fact that O(3) is a strictly inoreasing function
of 3, we have on writing R= 271 ' : '

a,,,> RO (n—l/(2k+m)) n—k/(2k+m)bk/(2k+m) ' (21)
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Now take arbitarily positive integer sequence {B,}, with B;>A and B, { oo where A

is chosen such that i (R2)-t<a/2, Choose a striotly increasing function C(9),
n=A ’

satisfying 0 (0) =0 and

O (/8 = (RB), n=1, 2, -, (22)
Then {3;} satisfies the conditions 1°—8° mentioned earlier, and by (21), (22)
Yim Anf B,ayn @tm) = b/ @im (23)

Since b>0 is arbitrarily given, (23) implies
1lim B,,w,,n"/ @+m) = oo . (24)

n~>e0

Since (24) holds true for any B, 4 oo, We finally get
lim inf a,n®/ @™ >0,

n~>00

which concludes the proof of Theorem 1,

§ 3. Proof Of Theorem 2

The following elementary lemma is needed,
Lemma 1. Suppose that (bms, m=1, 2, -, n=1, 2, «+) is @ double array of
constants satisfying _
Hm by =0, for m=1, 2, «-, (25)

00

Then there ewists a positive sequence {Da}, such that 1limb,=0 and 1im bu./bs=0 for

m=1, 2, e,

Proof For any sequence{a,tending to zero, there exists a sequence {a,} tending
40 zoro such that ¢,=|a,|, and @i>af>---, Hence without losing generality we can
assume by >bpes>-->0 for m=1, 2, -+, Also, we can assume

buy<bap<ban<-+ form=1, 2, =
by replacing ?)mn with b, =max {bin, ***, bma}, if necessary.

Define a subsequence ry<ry<-++ of positive integers as follows: Choose 7. such
that ~/Ba, <1 for n>ry. Choose ry>ry such that bay <1/2 for n>ra, In general,
after 1y, -+-r; are determined, we ch00s® 7.1 >7; such that N bia,s <1/ (@+1) forn>
ris1. Such an 7y exists in view of (26), Now define

 by=wby for n<ry = /b fOr rig<n<ri, =2, 8, -,
Then b,<1/4 for n>r;, hence b,—>0, Fix m, For n>>rn_i, there exists ¢ such that
i=>m and r;_1<n<r; Since By =>byms for i>m and b <1 for r;_1<n<<r;, we have
Bus/bn=Duun/ N B < Drun/ N b = N B
which tends to zero when n—>co, We can assume that b,>0, for we can replace b,
by b,-+n* if necessary. The Lemma, is proved.:
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Turning to the proof of Theorem 2, for any positive integer sequence {B,}, with
B.>A and Bi<By<-+ (4 was defined in the proof of Theorem 1), we choose the
function O(d) as follows: For S=p L/ @M =1 2 ..., define 0 (9) as in (22), and
let C(3) be linear within the interval [(n1) Y@m pi/@m], n=1, 2, -, The
set U of all possible values of 0(3;), with i=0,1, 2, - (80=0, O (80) =0) and {Bi}
arbitrarily chosen with the above-mentioned property, 1is denumerable. Write
U = {uo, wa, =}, and fi=hi, $=0, 1, 2, -

Now suppose in the contrary that there oxish a sequence {y,(0)} satisfying (6).
In particular, (6) holds for f=f; i=0, 1, 2, -, Therefore, for each %, ¢=0, 1,
2,'---,.a positive constant sequence {@1, @i, *++ yoan be found such that lim @;,=0,

and . '
lim Pf‘( I Vn <O> _f (O> ‘ >a’m{n’—kl(2k+7n)) .:'_':1; 'Z’=01 1) 2) . (26)

By Lemma 1, we can find a positive constant sequence {a,} such that lit? a,=0 and
lim i/ Ga =0 for $=0, 1, 2, -+, Considering (26), for this {@,} we have |
1im Py, (| 74 (0) —f (0) | = aun @™y =1, §=0, 1, 2, - @7

From (27) and a glance at the final part of the proof of Theorem 1, it follows that

im B,,w,,,fn‘”/ (2k+mypk/ @r+m) = Jim ‘ B,,C&,, =00

for any sequence {B,} with the property mentioned earlier, This in turn implies
lim inf @, >0,

n-yoo

which contradicts to the fact that lim a,=0, concluding the proof of Theorem 2,

n—roo

Appendix

To deduce (10) from (9), we need the following 1emmd,
Lemma 2. Let {X .} be a sequence of random variables defined on the probability
space (Q, B, P), satisfying the condition .
lim 8, X ,=0 a. 8., for any constant &, 10, ' (28)

n—»eo

Then

lim sup | Xa| <00, a. s. (29)

Proof Put
A={w, ®€Q, liririiup | Xp(w) | =00},
‘We want to prove P(4) =0, Suppose in the contrary that P(4)>0, Transfer to
the mew probability space (4ANL, AN4%, P(+)/P(4)), we can assume without
losing generality that A=0. Find a sequence of positive integers ny<fng<++ such
that
P(max | X;|>%) >1—9~@ =1 2. (30)

N L
1€j<ng
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Such a sequence exists, since 4=0, Write
D={w, 0€Q, maXlXj(co)|>q, i=1, 2, *},

By (30) we have P(D)>1/2, Now deﬁne gs 4 0 as follows, Put gy=++= sni—l and
g; =472, for m_1<y<m, =2, 8,
Then for w €D we have

max |&X;(w) | =42, i=1, 2,
1<ji<ng

Therefore we cannot have lim s,,X (@) =0 for ®€D, Since P(D)+0, Lemma 2 is

n~rce

proved,
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