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Abstract '

To indicate precisely the requirements for smoothness of symbols, generalizations of

Hormander’s classes of symbols, St and STuswemr 810 introduced. The main results are

3

as follows: (1) An optimal 72-boundedness result is obtained for the pseudo-differential
operators with double symbols (amplitude) a(@, & ¥); (2) By means of the interpolation
theorem due to Fefforman and Stein ], new LP-boundedness results are ostablished. These
results are not only sharp with Tespect to upper index, but also sharp(p=>2)or almost sharp

(1<p<2) with respect to lower indices.

Qince L. Hormandet established the caloulus of pseudo-differential operators
with symbols in his classes 87, in [7], many boundedness results about this kind
of Y. d. o’s and their various generalizations appeared (see, e. g., [3, 8, 14] and the
literatures cited there). Some of these Strove for Sharpening the requirements impo-
sed on the symbols to certain oxtont. For instanoce, in [3], the usual L? boundedness
of the 1. d. o’s with symbols in the class 89,; (0<KO<p<0, 5<1) was sharpened to
the requirement that symbols need only belong to 89, .5, (a slight generaliZation of
89, s which we Shall define in § 1), where k= {-g—] 41 and n denotes the dimension of
the independent varié,ble w=(wy, -, #,). In this paper we shall present several
gimilar L*~boundedness resﬁlts, all of which are related to a problem raised by
Hormander in [7], which will be recalled presently, -

Concerning the I?~boundedness of . d. o’s, in his paper [7], Hormander
pointed out: if a(x, &) €8%s (0<d<p<<1) and 1<p<Sr<<oe are such that
| m<—n{%—%—+(1—p}max<—%-—%, %——%—, O>}, | 0.1)
then the associated operator a(w, D) €& (L?, L"); while if the inequality (0, 1) is
reversed, then generally speakin.g, this will be false. He also raised the _problem
concerning the eritical case, that ig: when (0, 1) is replaced by the corresponding
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equality, and 1<p<<r<2 or 2< p<r<oo, does one still have a(s, 0) e Z(Lr, L) or
note It i easy 1o see that p=r is the cruoial cage. Since then there were many wbrks
about the L—boundedness of . d. o’s ( of. [1—4], [9—14], [17]). In particular,
' Fefferman [4] and Chang [2] answered the above Hérnia,nder’s question affirma-
tively in the cases 0<{p <1 and p=1, 8=0, respeoctively. ‘

Tefferman’s short paper [4] is highly interesting. One of his results, judged by |

our present knowledge on L*~boundedness of ¢. d. 0’s, is that the operators a(z. D)
with symbols in 877415, aTe I?-bounded, provided that 0<<d<p<l, 3<1, p>0, 2

‘<P< +o00, mzn (1—p) (—%———;—&-), 70=[l§-]+1, In this paper we shall prove that

the condition (@, &) €85 fysr, can be sharpened fo a(w, &) €Smsn, Where the
lower indices are in complete agreement with those in the optimal L?-boundness
+theorem in [8] as cited above.

The content of this paper consists of two parts. On the one hand, we shall push
forward the results of [4] futher to its best (or almost best) possible form. And in
addition, we shall prove an optimal I2-boundedness result aboub certain class of i
d. o’s a(z, D, y) with “double symbols”, and tnen using the ideas and techniques deve—
loped in [4, 5], we areable 0 establish some oﬁtimal L#-boundedness results about
these operators. It seems that applications of such results to . d. o’s in Weyl’s

symmetrical form (of. [8]) would be interesting.

- § 1. Notations and Definitions

Let R" be an.n-dimensional Kuoclidean space. For (w1, *, w,) =o€ R" we will
use the following usual notations ‘

ol =(3}8)", <= (L[l D%

ar§=éé w;&;, where s €ER", {ER".
I= .
And when o= (ay, =, ) is a multiindex, where a; (j=1, -, m) are nonnegative

integers, we will also use the following usual notations

o] ""g &y, O =0 ***Oal , at-B=(or+PBy, *, o+ Bn)s
Oy DI (=D
Mo fix the terminology, we state the definitions of the classes of symbols used
in this paper. | |
Definition 1. et m be any real number, 0<3, p<L. a(v, £) €8s iff alo, & €E
0= and for any two multiindices o and B, there is a constant Cag, such that
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| DEDsa(w, £)| <O alEYm P, .1

Definition 2. Let & and v be nonmegative integers. If (1.1) holds for all «, B with
la| <k, | B]<v, then we say that a(w, &) is a symbol in Spus» and denote a(w, §) €
S Z#;B,v .

Definition 3. Let k, v and « be nonmegative integers and let m be any real number,
0<9, &, p<l, a(z, &, ¥) €St 0 iff for any multiindices o, B and y with |a|<
k, | B|<wv and |y|<u there is a constani Oo,5,~, SUch that

| DEDDya(e, €, 9) | <Oasy gpmmritaibtia, | (1.2)

T4 follows from Definitions 1,2 and 3 that the inclusions

Sg§f61csml.k;61.vxcsmkz:as,vr
S;onﬂ70;31,v;;ex,mc'gzgka:éa,w;%a
hold for pi=ps, 0102, 8182, Ei=ka, vi=>ve; #12>%a, My <M
For a{z, £) €EStue.v, 506

o
‘(Z l %?m = maXx {OM,B}; k1< k: V1< v,
lat| <¥o3, 1Bl <21 :

where Oo,,w is the least constant such that (1.1) holds. Obviously, for my<<mg, k1>
ks, v1>>va We have V
lalgm=lelas. 1.3)
Similarly, for a(e, &, y) €S0 us,ms»0
‘ | la %}”‘“‘:Iunsk.u%?:f.w)q,{éaﬁn’}’ k<, i, S

The analogue of (1.8) is true.

Next, let us give the definitions of pseudo-differential operators. A pseudo—
differential .operator with (left-) symbol a(z, £) and acting on the Schwartz space %
is defined as follows '

oo, Dyu(e) = [ ate, uly) dyae=[oa(o, OUOFT LD
and one with right-symbol a(z, &) is defined as |
(0, Dyu(o) = [[# aly, QU E, 1.5)
where &&= (2w)"d§ and 4(&) denotes the Fourier transform of u(w), 1i.e.
a(€) =Ief‘""*‘ u(w)d. |
In addition, a pseudo-differential operator with Syndbol a(w, &, y)i is defined as
a(e, D, gyu(a) = [ a(a, £, u)dy . (1.6)

Sometimes, these pseudo-differential operators need to be written in the forms

a(a, Dyu(o) = (o, o= )u(@)d, Ly

I
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(@, Dyu(o) = by, s—u@, (1.5
aw, D, y)u(@)=|k(a, 2=, 9)u()dy, .6y
where
| ko, 9) = [ ale, £)d @
and - ‘
k@, 5, ) =[o%a(o, & D) - @.8)

are ocalled -(the d1str1but10na1) kernel of the pseudo-differential operators (1.4),
(1.5) and (1.8) respectively. The integrals in (1.7) and (1.8) are understood to
be oscillatory integrals, eto.

We also mention briefly the definitions of the soveral function spaces used in
this. paper.

Definition 4. For —oo<s<oo u(z) € H* iff u(w) €S and

| ulge=[166) | d < oo,

Definition 5. For a nowinteger m>0,
1) If 0<m<1, then u(w) €EO™ iff there ewists a constant C such that |u| <O and
|lu(w+9) —u(@) [<Oly|"
holds for every pair @, yER",
i) If m>1, we fwfr@te m=q-+r, where g=[m], r=m— [m] >0, then uCO™ 'bﬁ'
wE O and D* uE€ O for all o with|a| =
The norm of w€ O™ is defined as

ulon= 3 suplD“u(w)l+ Seup | Du(@) ~ Du@) |

ci=q wFY ICU e
As for the notion of BMO space, we refer to the paper [6]. In what follows we

Jonote the norm on BMO space by |- |..

. =sup lQl«{ | (@) —ug|do<+oo,
where the supremum is faken over all finite cubes Q in R*, |Q] is the Lebesgue
measure of Q and U, denotes the mean value of v over Q, namely

Ug= -]l—l—jeu(m) dw.

- §2. L2—boundedn‘ess

For the pseudo—d1ﬁerent1a1 operator defined by (1. 4) we reoall the following
remarkable result: |

Theorem 1(Coifman and Meyer).  Let 0<d<p<l, <1, k= [127’—]4—1. Supposs
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a(w, &) €8Y, 10w, Then the pseudo—di flerential operator a(w, D) defined by (1.4) is L2~
bounded. * (of. [81). -

The main purpose of this section is 10 ostablish a similar result on the I
boundedness of the pseudo-differential operator a(w, D, y) defined by (1.6). Here

and hereafter we always assume that the integer b= [ 5 ]—1—1

Let 0>1 be a constant. Set
B_—{¢||§] <20}, By (£]0-2/< |£] <024, j=0, 1, 2, @.1)
Lemma 1.  There ewist p_1(&) €07 and (&) €OF, such that |
1) supp pHo, suppp1CH_y;
i) 0<p<l, 0<p_1<l;

ift) @-1(§) + 290(2 =1,

Lemma 2. Let m>>0 be not an integer. Suppose u(z) EO’” Then there ewists thei
decomposition

u(@) = 3,4,
such that
1) the spectrum of u; is containel in Ky, . e.
supp 6 (&) Iy, j=—1, 0, 1, =5
i) there is a constant O dndependent of u and g, such that
] <02 Jul o,

For the proof, see, e. g., Chapt. IT of [8].

Corollary. Let ma>my>0 and both be not integers. Suppose w(x) €O™. Then
there is a constant O>>0 independent of u, such that for any R>1, we may
decompose

u=v+w
satisfying

) supp 6(&) (€] 1€ <R

i) 0] ome <Ol gmss 20 |om<OB™ ™t om.

Lemma 8. If a sequence of functions {u;}=s satisfies the following conditions:

1) supp w,cH;, j=—1, 0, 1, =,

i) fuy<O27%, j=—1, 0, 1, -+, and |40} | <K,

then 2 uj= uCHs and,
==

where O 45 a constant independent of w and K,

¥y ‘That a pseudo—differential operator is 1.2 (or L#)-bounded means that it can be extended to being I3
(or L#)-bounded.
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Proof By the hypothesis i1) we have '
| = |6 (8) [%Eo"aE < B [ul3<BOY, j= =1, 0, L, =
where B is & constant independent of j and v;. Using the triangle inequality and the
hypotheses i), il), we can obtain

Nulte<B 3 luli<B’ 2,05

Tt follows from this that the required conclusion is valid.
¢ Lemma4. Let m>m’>0 be two real numbers and m be not an integer. Supposs
a(w, £, y) =0 whenever |£] =1 and o—>di0}a (s, £, y) EC™ for each fiwed &, y and B, ¥
with| 8| <2k, |7|<Fkand with norms not greater than 1 Then the operator a(w, D, y)
defined by (1.6) belongs to £ (H-*, H™) with norm depending only on n, M and m/,

Proof Since o0l a(w, &, y) €07, according to Lemma 2 we have the decom-~
position. ' o
a(w: g} y) = jgl b:i(w) g; y);
where the spectrum in @ of b; is contained in E; and

iagazbi(w) g} y) |<02—Mj) j= '_1: 0) 1} M) 1,8]<270, I')" <k: (2'2)

where O is a constant independent of g, j, &, B, & Y.

Now, we write

s =a(e, D, wyue) = [ ate, & uiyas =3[ ble, & Duw 8E

éﬁ; 9;(@).
TFor w€ H™*, we set
fo=s@ 1+ Blar) e
then k€ L2. Tt follows from (2.8) that
5@ =B+ 31617 )=h© + e L AOLAO HAG)

Hence

u(@) =h(@) + Z D5 (@), 2.5)
where h, E.L2 (p=1, ++, n). Substituting (2.8) into (2.8), we have
as(e) = [ byGo, €, D[p@+ Z DO lewa,
B e TR S (5 + 3 D5 b @) |y,
In view of the estimate (2 .2) we obtain

(@) <02 [ lemg1) P [1h@ 1+ F 1@ o

<Q'2™™ gé{j 1+ o=y k@) l”dy}m, |
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where %o () —=h(y) and O’ is independent of a, 4. Henoce }
"‘%‘“2<O2'W%Ilhv||2<52"’"jll“||ﬂ-k, j=-1,0,1,2, -, (2.6)
On the other hand, taking the Fourier transform of g;, we have

§io = [Bitn—¢, & e u@) L,
where 35(77, &, ) denotes the Fourier transform of b;(w, £, yj with respect to @. By
the hypo{,hesis and (2.2)
B,(n—¢, &, y) =0, if|¢]|>1 0r n—§E By
Therefore '
§,(n) =0, if ne {n] 07 —1< || <O2¥!+1},
It follows that ' :
supp ¢;(m) B, if j is sufficiently large, 2.7 |
where i is the set H; with another constant 0. Thus from (2.6) and (2.7), we
can apply Lemma 8 to the sequence {g;} to conclude that g€ H™ and
[g)an<Olu]a-,

The proof is completed.

Now, we shall give the theorem on I2-boundedness of the pseudo-differential
operators with symbol in the olass S, 2x:5, 5% : ”

Proposition 1. Let m>—g— be not am integer. Suppose that o—>0)0%a(w, &, y) €0O™

for each fiwed &, y and B, ¥ with |B| <2k, |y| <k and with their norms not gq;eater
than 1. Then the operator a(w, D, y) € L (L7, L?) and dts norm depends only on n and m,
Proof Take a function $€0F satisfying
D b@ =1, lo|<g; p@) =0 |a|=1;
" i1) (¢ —v») =1, where & denotes the set of all integers and Z"=24 X -+ x &,
ver ntimes -

Then we can write
@) = [ [ ae, & Due) dyte=Z[ ¢ alw, & PHE-PUW I,
-3t o [t ata, £v, YO W T ZeT.0). (2.8)

If we denote

u,(g) =e~u(y), a(e, & 9) =a(o, E+v, NI,

then ‘
gu(2) =0, (@, D, 1) y).

Tt is easy to see that the symbol a, satisfies the conditions of Lemma 4. Consequently

we have
lgo] am<lwolms, . ‘ (2.9)
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where m>m >—-, By means of Schwartz’s inequality, from (2.8) we have

2
613 =12 -~ g <) (g =) 1%E=22") IXE—vyT
<0(n, m) 2ol (2.10)

Here m the last step we have used the fact that the series

2KE- py~ <0 (n, m)<o0,

sinoe 2m’>n. From (2.10) and (2.9) we obtain

llgll%<0(n 'y Sl %o, “ (2.11)

By deofinition

oy = [ 10, (©) 1K€ = [18(O 16— &,

Substituting thisinto (2.11), one gets

lg13<0n, m)S| 1) %6 =) a<0 (n, ) Julk

This completes the proof of Proposition 1.
Corollary. Ifa(s, &, 4)) € 83,210,506 a0 @ 0 <1, then the associaled pseudo-
di fferential operator a(z, D, y) € Z(I2, I?) and

late, D, )| <O,

P10p051t10n2 Let 0<p<1. If

|8 aya (o, £, gy <<EHIAIHmT

for |a|<h, iB|-<2k and, |y| <k, then the assoctated operaior a(w, D, v) €L L2, I7)

and

la(a, D, 9)[<0(m, p).

Proof Let g_y and @ be the functions given in Lemma 1, supported in H_; and

B, with 0 =2 respectively. Then we have

where

Set -

g(@) —a(a, D, Yu(@) = 2 [ee oo, & Yo Hu@ I
+[[eertate, & Dea©Ous
2} j j karo-10t g (5, Qg 2ley) p (I PE (2 y) dy €

o ato, €, Dp-1@uAALZ 9@+, 1D

i) = [[oeaatn, 20, TP B, @19

6;(@, £, ) =a(@ P2l 27 p (274 PE)j=0, 1, 2, -,
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Olearly @; €89 20,10, Choose m and m' so that F>m>m'> [12"—] By the Corollary

of Lemma 2 we may decompose
a; (.'17, f, y) =y (Q}, E; y) +ag; (w: f, fl/)
satisfying '
i) the spectrum of x—8¢ &) ay; (v, £, ¥) is contained in the ball |7] <T16- 210=p)

and

“3533“15(9’; g: y) "0”’(Rg)<00) lB' <2k: |7| <k;

ii)
1088) as;(w, &, U) [ommp <Op27"—md=0),
C, is independent of 4, .
Then we have : _
9;(®) =g1;(w) +92 (@), j=0, 1, 2, -, (2.149)

where

gu(@) = [[eetay(a, & Dury)ayas, 1=1, 2.
Applying' Proposition 1 to dg,-, we obtain
“g25"2<012hm/2.2—(m_m,)j(1-p)Hu"2: j=0, 1) 2) *%% (2'15)
To estimate gy;, we write '

914(%) =§He““”‘”’f ai(@, §, Y (E—r)u@ y)dyd =21 "gs;,0(0) . (2.16)
where ) (¢ —») =1 is the partition of unity used in the proof of Proposition 1 and.

Gun(@) = [0 a3, @, £+, 9) $(©) Fun@ AT,

Fin (@) =" (27%y),
As in the proof of Proposition 1, from (2.16) we have

lgssl3<0 20 32 |2 (E49)) [0 dg = Ogae (1 @eey 2 31 —wymea,
(2.17)
Here the range of » in the summamon (2.16) and (2.17) is »~2/%"; this is orucial
for the following arguments. In fact, inclusions
supp ay;(2, §+v, 9) <{E [2HPtL | € o | <21}

supp (&) ={¢] |£] <1}

mean that we need only consider those » which satisfy
2§(1-p)—1_1< I Vl <25(1"P)+2+1.
It follows that

%—- 210-m || <8211 if j=jo, jo is large -enough.

Set
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S:Lj = {5 \ _1_:%_ 2i(1—p)< lgl <16~ 2:1'(1—,0) }’

su={é | w<lel <62 ),
Then we have

f |a(@rg) |2 ZKE—v>~ Al = L,, f

<o, liereras +], iGN, @19
where %@ S denotes the complement of S. If §E & Sy, then
Sig-n | (= iy =0 2P,

%-_ 20(1-0 £ ] <821~

Substituting this into (2.18), one gets
(160 13-y dgOprin{[, Q) PaE 420l 3k @.19)

Using the argument on the spectrum of g; similar to that used in the proof of Le-

mma 4, we can show that

supp gay(n) C{"?‘% 2oy < 8'2j<1—p)}.
Since 1—p>0, there is a positive integer N, “such that the spectra of g; and g, are
disjoint, if |4 j—»|>N. Consequenily we have '

| S 0u09] <0 Z2lols (2.20)

where C is a constant depending only on N. Moreover, since the assooiated symbolk

has eompact support in &, we can obtain

' 29’;(2”)"‘9 1

From the estimates (2.12), (2.14), (2 15), 2.17), @.19)—(. 21), we obtain
finally

,<Odluls. | (2.21)

lgle<< “ ﬁ:%(z""’) é+“jgga‘<2"’°°)+ g-1

<Sigut@r) |+ 2w @)

.f =Jo
whioch completes the proof of Proposition 2.

o+ Ol ula<Csluls,

Combining Propositions 1 and 2, we get the followmg

Theorem 2. Let 0<d<p<1, 0<e<p<1, <1, s<1, and b= [2]+1. Suppose

a(®@, £, Y) € 89.2ms,::0,%, TheN the pseudo—di fferential operator a(w, D, y) difined by (1.6)
4s LP-bounded. '
As the end of this section, we go to illustrate the sharpness of the above
theorem. '

Example 1 Leb ai(m £, y)=e @ Lo — y>~7EY2, where v and w are positive
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integers. Obviously, @1 €55,.;0,u0,u+ BY deﬁnition (1.6), .
(@, D, 9yu(@) = [<o— <& ug)dyag = [~ a¢ <o~ 1> u)d.

Mhe Fourier transform of the later convolution is G, ©)u(¢), at least whenever u€
&, where @, (¢) denotes the Fourier transform of <z)™ in the sense of distribution,
1. e. the kernel of Bessol potential of order ». To guarantee that G, ©u() €L?

would be true for any u € L2, we should have had G, (¢) € L”. But if y<m, then this .

is false, beocause the following asymptotic relations hold:
On,v‘&l‘”—" when o<p<n

G‘»(é)z{ (1£]—-0),

; -log SN y=n
€]
(see [15], pp. 289—290). So in order that ay(w, D, y) €L(L*, L) we musth demand
2u=n+1 and p>n+1. This just shows that, in the case p=3=8=0, the result of
Theorem 2 ig sharp in a reasonable sense. And for the case 0<Lp= =3d=g<1, thisis
also true, as it can be seen by the same reasoning used helow Theoren 7 in [3].
Example 2 Consider a slight modification fo the above example |
a3 (@, £, §) =e @ Ep— gy TEY I,

Obviously, agéSi,,, 0,04 The argument used in the preceding example shows thai
the operator as(a, D, y) cannot be L~bounded, if »<<n, ‘

§ 3. Some auXiliary results

For the convenience of proving the theorems on LP~boundedness in § 4, in the
present section we prove some useful lemmas and propositions first. We set u=

-;1’- (1—p) and lot

my={e[ F<1¢1<2), L= el1¢1<0,
'We call Lemma 1 with Ho and E_; replaced by Hj and B, respectively, Lemma 1/,
Lemma 5. Suppose supp;a(, &) (or a(z, §, ) <{¢]1§1<1.
1) If a(w, £ €8 a0 then the pseudo~differential operator a (@, D) defined by
(1.4) is L>~bounded, and we have the estimate
la(e, D)ul.<C|aliB]ul.,
where the constant. C does not depend on & and w.
(2) If aw, £) €S nsis0,0, then the pseudo—di fferential operator a(a; D) deﬁned by
(1.5) is L—bounded, and we have the estimate
| |a(w, Dyul<Olalh, oliulleo
with the constamt C as above.
@) If a(@, £, Y) €S niss,000, then the psmdo—dzﬁ“erentwl operator a(z, D, y)
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defined by (1.6) is L=-bounded, and we have the estimate
lla(w, -D_: (l!)u"oo<0‘“‘ﬂi,o,0“““w
with the constant O as above. '
Proof By (1.4) we have

oG, Dyu@)| = | [ ate, Hu@ayaE

<l 1 ) 100,

~ where 8y (y) is she Fourier transform of (@, £) with respeot to &, @ being regarded

as a paramoter. Clearly, it suffices to prove a.(y) € L* and _
(1. 1ay=<C el . (3.9)
For this purpose, by means of Sehwarti’s inequality, we have

[13:w) ldg=f@+ 19120+ 1917180 ay<o{[arlolnrlaw 1Pa)

<0 3 ﬂ |y* a. (@) |* &y}m.

o)<

Integrating by parts and using Parseval’s identity, we obtain

N . 5 w2 .
[l <o B [0 o 2ag] " <0"lalh,
where O, ¢ and 0" are constants independent of a. This pooves 3.1,
To prove (2), we need only notioe that

jito, D)) |<lulf | e alv+a, )€ | dy

<l gD S o

el <n+1

[eDta(y+a, Odldy<OlelBaslul-.

‘The proof of (3) is parallel to that of (2). 8o wo omit it. Lemma B is proved.
Lemma 6. Suppose supp a(m, &) (or a(z, &, 9)) ={EII<|¢ | <i7}.

@) If alw, §) €STka, then there is a constant C independent of 1, @, such that
[1X @ a=4)—K @ 5-9) |ay<Olali
halds for || <<l , 12| <1, where K is defined by €.m.
(@) If al, £€) €8k with 0<d<p<l, d<1, then there is @ constant O
independent of 1, @, such that o
[1E @, o=0) K @, 3=9) |9y<Olal s
holds for || <I, |2] <. '
3) Ifaw, & ¥) EStuatan with 0<s<<p<<1l, <1, then thero is @ constant C
independent of 1, @, such that '
1K@ o=y, 9 -K G =3, ) |y<0lalfits
holds for |o| <, |2| <, where K s defined by (1.8). '
Proof By (1.7) '
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14[1K @, o=~ G, 1=9)1dy =] [0 ata, € ~eae, 18 9.

Using the theorem of mean, we have .
I ==jdy f w ﬂ [ee+ow—2% g (v, £)i(s—2)¢
+e# (5—2) *V,a(z+0(@—2), §)d0}df\<JH e~ (o, 5) (& z)§ d¢ |dy

j «zam 08 (—75) + Vo s+ O (0—2), E)E \dy, _‘ (3.2)
By the hypothems 1<1. Ohoose a positive integer N, so that 1<<2¥ 1«2, and set |

() = 2 ¢ (216),

where @ is the function given in Lemma 1. It is obvlous that supp @c{§|—< 1€

9 and @ (&) =1lonl<|{] <I Thus for the first term in the right-hand side of

(3.2) we have
[|f1eate, sxw-—z)fdfld | [ ata, 0 @18) 0=DEdE|dy
I,. o (3.8)
pa.

Put b,= (2”1)" and hreak each I, into % arts

L,=j Jrj ATLAIL, 3.9
yl<by Y1>bs

For I, using Schwartz’s inequality and Parseval’s identity, we get

ni<op{[|fetata, O0 @10 @22 | ag}

057 {[late, ©p@10) D¢l dg] <Olali2™. @5
And for I, by Sochwartz’s 1nequa11ty

rron{[ o1 ferat, 910 @-2)EdE| al”.

Integratmg by parts and using Parseval’s identity, we also have

ri<ov 3| [afa(e, Ho@I0) @-DE &} <Cilalig 2" 3O
Combining (3.5), (3.6) and (3.4), we obtain
I,<O|a|gg?+2%, v=0,1, -, N, (8.7

where O is a constant independent of I, a. Substituting (3. 7) 1nto (8.8), it follows
that

il[>

WO

”j i a(w, £) (w— Z)édg dy<0lal5e,

Similarly we can get the following ostimate for the second ferm in the right-hand
side of (8.2),
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1 .
[a8]| [ @) Vealer 0 =2, £)d€ |dy<Tlalt,

where O is a constant 'independent of I, @. Thus, the proof of Lemma 6-(1) is

completed. , - |

As to (2), it may be proved parallelly, provided in the argument above we

apply ‘the I2-boundedness of pseudo-differential operators stated in Theorem 1,

. ingtead of Parseval’s identity.

~ For (3), from (1.8) wo have

flK(w, a—y, §) —K (2, 2—9, 9) |dy
<fIK(w, o—y, §) —K (@, 2—9, 9)| dcu+f|K(w, 21—y, ) ~K @, 2=y, ¥) |y
<[} a0y e atw, &, y+e-0G=0) =DEdE|

+J2d9jdy|fe"”‘Vza(z-l—H(m—z), &, y+2z) (w-—z)df‘,
Thus, we reduce (3) to the case of (2), and hence can complete the proof of (3)
similarly.

Lamma 7. Suppose supp; a(w, §) (or a (o, g, Y)Y |E] =11, where 0<I
<1, | B . . .
(1) If a(®, £) €8xliao with p>0, then there is @ constant C independent of 1, @, such
that the estimate \

[ K@ a=u)lay<Olelsi’
y|>21¥ _

holds for || <l,
(2) If a(w, &) € 85 thar with 0<d<p<<1, <1 and p>0, then there is @ consiant
O independent of 1, @, such that |

j |K (y, o—9) |dy<Ola|&H
: -2 ‘
holds for |o| <1, -
8) Ifa(w, &, v) €ESEus,0ee with 0<e<<p<<l, s<1, and p>0, then there i @
constant C independent of 1, @, such that ‘ o
f | K (o, a—y, 9) |dy<C|a|&8s
ly1>21P

holds for |o| <,
- The proof of Lemma 7 is similar $o0 the estimate for I’ in the proof of Lemma 6,
g0 we omit it. ‘
Lemma 8. Let 11,
@) If a(w, £) €87%is,0 with p>0, then

[ 1K@ o=9)|dy<Olali®
ly1>21
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holds for |=|<<l, where C is a constant fénde@eﬁd@nt of I, @,
(2) If a(w, &) €Sahuon with 0<d<p<, <1 and p>>0, then

[ 1K@, o-9)|dy<Olalst
1y =21

holds for |@| <1, where C is as above.
(8) If a(w, &, ¥) €8 lsua,0i0 With 0<s<p<l, g<1 and p>0, then

[ 1K@, o=y, 9|dy<0|al5s
ly1=>21 . o

holds for |@| <<l, where C 4s as above.
Proof As in the proof of Lemma 6, we have

j IK(w,w,y>ldy<f | K (2, —9) |dy
ly1=21 : lyl=l

-3 (1,012 2 7, 1M '70 12 .12
<or D[ ly17 K @, ~o) 128} <0 {[I7rata, & 12a¢]
<C'|a|L®,
This completes the proof of (1) And the proofs of (2) and '(8) are completlely
parallel.
Now, we are prepared to state and prove the following result which is crucial
for the next section. '

Proposition 8. Let k= [ ]+1 and ,w——(l -p).

) If ale, &) €8k with 0<8<p<L, 3<1 and p>0, then
la(e, Dyu},<Ola|§|ul., for u€ LN L7,
where C is a constant independent of a and u.
(2) If alw, &) T8 husn with 0<d<p<<1, d<1 and p>0, then
- la(e, D)u|,<O|a{§f|ule, for ue 2N L7
where O is as in (1) .
(3) Ifale, &, U) €85k nusn with 0<I<p<L, 0<e<p<d, e<1, <1 and p>
0, then .
la(a, &, )ul,<Olal&hs lulw for ue L2NLT,
where C is as in (1) .
Proof Let Q be any cube of diameter 2I. Without loss of generality, we may
assume that it is centered ab the origin. We are going to prove that

TQTL!“(% DYu(@) —ag|dv<C|a|52|ul«, for u€L*NL”, (3.8)

where a, denotes the mean value of a(w, D)u(x) over Q,
‘We divide the proof into three parts.
(1) Let I>1. For u€ L?NL>, set
us (@) =u (@) (@) , Ua(@) =u(e) —u(2),
where x;(«) is the characteristio function of the ball {w||z|<2l}. Then
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) .
—I—QTS |a(z, D)u(w)ldw\ lQlS la (@, D)ws(w) | do+ Lla(m, DYus(a) | do,

€]
(8.9)
For the first term on the rlght—hand side of (8.9), by Sohwartz s 1nequality and L*-
boundedness of the operator a(w, D), we have

lQlj |a(a, D)y (o) | do<< IQ\1/2 |a(z, D)us(® 5) |2

IQ|1/2 |“‘<0} ‘u1“2<01la ‘""’“uum (3-10)

where O; does not depend on @, u and I. As to the second term on the right—hand
side of (3. 9) by (1.4)’ we have

Thus in virtue of Lemma 8—(1) we obtam

T%l‘j ML D)ua(®) | do<Csla| 581~ (3.11)

where (5 does not depend on @, v and I. Combining ‘(3.1'0) and (8.11), it follows
that |

il la@ Do) |ds<Culalilul-, (8.12)
where 03 =C3+0, is, of course, a constant 1ndependent of @, u and I.

(ii) Leb I<1. Set
o (3, &) =a(w, )p-108), a'(@, §)=al®, § & —d @, £,

where @_4 is the function given in TLemma 1’. Obviously
¢ <0 |alie, el <0"lali.

Now, we are going 10 prove that

57) 1 @ Dyu@) - w0 lal Tl (3.18)
IH is easy 1o see that it suffices to show that
| (@, D)u(@) —d’ (2, D)u(z) | <Culalilul- (8.18)

holds for |»| <, [2|<I. From (1.4)’" we have
(@, Dyu(s) —a' e, Dyu(®) | =|| K’ @, a—9) —K'@ 2=)]u)dy]

<ol [ |E"@, o=9) =K', =) 148, (3.19)

| where K' (&, 4) 18 difined by (1.7) with a replaced by o'. Let N be the positive

mteger used in the proof of Lemma 6. According to Lemma 1

p_1(1€) =p-1(2V1E) + 2?(2” VIR
By means of this decomposition and using Lemma 5-(1), Lemma, 6-(1), we obtain

[1£/ G, o—9) ~ K", 2-9) |dg<Olaliz.
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Substituting this into (3.14), one gets (3.18)’,
(iii) Let I<1. What has to be proved now is that

lQlf " (@, D)u(®) |dv<Cs|a| 5 |6, . (3.15)

Set ' _
where x, (%) is the characteristio funotion of the ball {w||o]<<20}. Then

" ” 1 17 )
IQIJ |a (m D)u(a) | dw<: lQII " (s, D)u3<m>ldm+_l.QTjQ|a (@, D) us(@) |do

A11+12, | (8.16)
Using (1.4)’, we write |
L=t ( |{x” 9)dy|d
| Q_TQTLH (m, e —1y)us(y) dy | du,
where K" (w, ¥) ==je‘” a’ (v, £)TE.
Fellorar def e 1K G5y 5= |ty <CLlel .. @D

On the other hand, since supp, &” (v, £) <{¢||€| =11, by deﬁmtlon we have
ol < alg P,
Therefore, using Theorem 1, we can obtain |
[ (@, D)us(@) |s<C'|a|lus|a<O| a5 1| us|a<O5| o] £ 1] -,
As a consequence, we have

Ll e, D) wle<OtlaliPle, @9

Combining (38.17), (3.18) with (8.16), we get (8.16), _
Combining (3.12), (8.18) and (8.15), (3.8) follows. This completes the proof
of (1). The proofs of (2) and (3) is completely parallel.

§ 4. Lf’-—boundedness

Tn the present section we are going 0 establish theorems on L’~boundedness of
the pseudo-differential operators given in § 1. At the same time we give some exam-
ples to exhibit that the conditions proposed in these theorems are sharp or almost
sharp.

To prove these theorems, we will need a deep and powerful 1nterpolat10n theorem
due 0 Fefferman and Stein (ef. [5]).

Lemma 9. (Fofferman and Stein). Suppose that the mapping 2—> T, from the
closed strip 0<<Re 2<<1to £ (L?, L?)is analytic im the interior of this strip and strongly
continuous and uniformly bounded on the dlosure of the strip. Lf

sup [Tl <Moluln, for u€L?NL7, (4.1)

—co LYo
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and .
__oi‘;gm |T1pigula<Mi|uls, foruwel? (4.2)

then the estimate
|T ] <O M5 MY |us]

holds for w€ LN L, where 0<i<l, p=-§— and the constant is independent of Mo, My

and w.

Note that the condition (4.1) is only imposed on w€I?NL”, and we do not
demand that it is valid for all € L”. This iy very important for the following
applications, , ‘

We are now ready to establish theerems on LP—boundedness.

Theorem 3. Let 0<d<p<l, 8<1, p>0, b= [ ]—!—1 and 0<m\,u/——-(1—p)

Suppose a(, £) ESsxar. Then the pseudo—differential operator a(e, D) defined by

(1.4) is Lr-bounded, if O<(-%— — —12-)—) n(1—p) <m (when p=1, this inequality és to be

replaced by p=2),
Proof Set
ba(a, £ =¢"a(s, £} @=i-+is),

where 2€ {2|0<<Re 2<<1} is a complex parameter. We write

Ba(@) = [ [0 0.0, Yulw) Ay L. 4.9)
Tt is easy 10 see that
15, Qh<e~p(2) |a | <Cla| G, (4.4)

where p(z) is a polynomial of degree k and Cis a constant independent of =.
Therefore i follows from Theorem 1 and (4.4) that the family of operators {B.} is
uniformly bounded in £ (L7, L*). It is not hard to verify that the mapping
{z]0<Re 2<<1} >¢—>B,E L (L7 I?)
is analytic in the'open strip 0<Re 2<1 and strongly continuous on its closure. In
“particular, we have '
sup |lBl+;su||2<M1|w|‘ | ufg. for u€L?,

—e0 gL -

where M is a constant independent of @, u. On the other hand, by (4.8) we have

Buu(w) = [ [ee= (e *a(o, ) )ue)dy &,
T4 is olear that by (x, &) €87k and '
[0is| 687 <Ol|ali%,
where O is independent of z. Thus, applying Proposition 8-(1) to the operotor Bi,

one gets
| Bl <C|a| i |l w, for u€ LAN L7,
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Tt follows thab the family of operators B, satisfies all the conditions of Lemma 9.

Hence we obtain
| Baul <M, al 5 ol for p=2., 0<1<1L.

T+ i soen from (4.8) that the symbol of B; is
by(w, £) =¢" alw, E)KE™H,
Therefore, the pseudo-differential operator a(w, D) is L*-bounded <p=-%—> and

| |a(a, Dyul,<M,|aliuls,
if m>p(d—1)= g’ 1-p) (1——%)= (—%-—%) n(1—p) =0, | This completes the proof

of Theorem 3. :

Corollary 1. Assume the hypotheses of Theorem 8. Then the pseudo~differential
operator a(w, D) defined by (1.6) s L*~bounded, if 0<<—%———12l> n(l—p)<m (when
p=1, this cond@t%l)on is to be replaced by 1<p<<2), '

Corollary 2. Suppose a(w, £) €8 tkio.r. Then

() the operator a(w, D) is LP~bounded, 4f -

1 1\_

(ii) the operator @(w, D) is LP~bounded, if

- 0<n<21)—— —%—) <m,

Proof For any p>0, we have
| S0 xCSa ke

‘When 0<p<%—, by Theorem 8, the operator a(z, D) is L*~bounded, if

0<n(1—p)(F—2)<m—Fe.
This conditions is equivalent to

| o<n(.§_-%)<_——-—"’;:’;é Jm (p>0),

T4 follows that Corollary 2—(1) is true, hence (2) is also true.

Corollary 8. Suppose e (=, &) €8Ty, with m>0, Then

@) the operator a(w, D) is Lr-bounded, 4f 2<p<oo,

(if) the operator a(w, D) s Lo-bounded, é)f 1<p<2,

Theorem 4. Every pseudo-differential operator a(w, D) (or a(w, D)) with symbol
a (@, &) €S Busn (0<O<p<, 5<1 and p>0) is LP-bounded, iff

n(1=p) \%—%km.

Proof Sufficiency. In virtue of Theorem 8 we see that it suffices to prove the
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conclusion is true for the case 1<p<<2. As a consequenoce, it suffices also to prove it
for the operator a(w, 'D) in the case 2<<p<co. However, this can be done readily, for
it can be proved in the same manner as in Theorem 8, differences only consisting in
that Lemmas 5-(1). 6-(1), '7-(1) and 8-(1) ought to be replaced by Lemmas 6-(2),
6-(2), 7-(2) and 8-(2), respectively.

Neocossity. To prove it, it is enough to cite the famous counterexample of Hardy—
L1ttlewood—II1rsohman—Wa1nger Consider ‘

Ton(®, £) =)™/ 1+ € l"‘) €8.5,

where 0<p<1, m<p and p €0, p=0 near the origin, p=1 for |£]>2. If

‘————-—- n(l—p)>m,

then the pseudo-differential operator with symbol oom(®, £) is not bounded on Lr
(of. Hirschman [6] and Wainger [161). ‘
Gorollary 1.’ Suppose a(w, &) €S5%nom Then the associated pseudo-differential

operators a(w, D) and a(z, D) are Lr—bounded (1<p<co), if n‘ 5 -__‘ <m,

Corollary 2. Suppose a(w, £) €Si%k1,e with m>0. Then ihe operators a(w, D)
and &(w, D) are LP-bounded for all p, 1<p<<oo, -

Theorem 5. Every pseudo-differential operator a(w, D, o) with symbol a (@, f, %)
CE 85,1500 With 0<O<p<<L, 0<< s<<p<l, 8<1, s<1, p>04s Lr-bounded, iff

n(1—p>li—il<m',

The proof is similar to the proofs of Theorems 8 and 4, so we omit it.

Corollary 1. Suppose a(w, £, ¥) €80%m0.m0m. Then the associated opemtor

o(0. D, o) is L*-bounded, if n \é——%\@b_ |
~ Corollary 2. Suppose a(, £, o) ESTHutmLe With m>0, * Then the operator
a(z, D, v) is L?-bounded for all p, 1<p<2,

Note that in Theorems 8 and 4 the conditions to assure the Lf-boundedness of
the operator a(w, D) in the case 2<<p<oo and the case 1<p<2 are different, and
the latter are stronger than the former. It is natural to ask if this difference is
ossential. To answer this question, let us look at the following

Example 3 Put '

ag(w, &) =)7K, ' (4.5)
where » is an infeger. o
Obviously, as(@, £) €810, and X
as(@, Dyula) =<a>~ (<O~ W@, (4.6)

If p<n, choose p>1 so that py<n, then it follows from (4.8) that the as(w, D)
cannot be L?~bounded. ' : :
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1]
2]

i3]
[4]
5]
L6]
L7

i8]

91
103
113
[12]
[18]
[14]
1[15]

i[16]
£17]

This exrmple makes it clear that our result about the LP-boundedness of the
operators a(w, D) in the case 1<p <2 ig also almost optimal.

As to Theorem B, clearly, the requirements represented by the three lower
indioces, 2k, &, k, are the lowest. |
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