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Abstra.bt

A full proof of a matrix lemma stated in [1] is given, and the notions concerning
.cannonical argument and signature of a triple of the Lagrange planes in a complex phasé
space is formulated. Then a formula is established, which generalizes that one of J. Leray’s
in real phase space case. Finally, some applications of the formula are given.

§ 0. Introduction

In this paper we shall discuss in full the fopic -touched briefly in §8 of [1]. In
§ 1, we give the full proof of a matrix lemma, i. e. Lemma 1.6, which generalizes a
Jemma used by J. J. Duistermaat in [3], and wasannounoed in § 8 of [1]. In § 2, we
proceed. to formulate the notions concerning cannonical argument and signature of a
triple of Lagrange planes in a complex phase space, among which one is real in,
essence, the other negative somi-definite and the third positive semi-definite. In Theo-
rem 2.16 of § 2, we establish a fomula which generalizes that one of J. Leray in real
phase space case. In spite of its elementary nature the proof is fairly long and a bib
intricated, as we did not expect before.

The main potential application of the results outlined above we have eonoeived
of is nsing them to devélop «Analyse Lagrangienne» for complex phase case, pafallel
0 what J. Leray did in [2] for the real phase case. It seems 10 bs quite possible, and
we expect to work it out in another occasion. In this paper we only give other two
comparatively minor applications in §8and §4 respectively. In § 3, we show that
Hérmander’s t:ross index suitablely generalized is still the backbone in the notion
of almost analytio Maslov line bundles, used in [4], as well as in the real phase
case. In § 4, we give an invariant formulation for a one dimensional. Cech co-cycle
with coefficients in the sheaf of germs of real valued continuous funcrion on 2
positive complex Lagrange-Grassmbnn manifold, which was used in several Soviet
Jitoratures such as [7] and (8] without complete rigor, as it appeared to us.

Manuscript received June 5, 1982.
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§ 1. A fundamental lemma

Definition 1.1. Let Pbe an nxn complex symmetric matriw, Ahs---h be the
esgenvalues of it. If ImP>0, then Im ;=0 (or if Im P<0, then Im ,<<0), j=1, 2,
., n. We define the canonical argument of the matriz P by setting

k+—argP=j§”:]iarg M(or]u-—argP=§} arg A ), 1.1)
e =1 . :
where _
0<<arg A<ov (or — mw<<arg 1,<0),j=1, 2, -+, m,
arg Aj=0 for A;=0,
And we cleﬁne the signature of the mairis P by setting

n~ dim (ker P) -~; b_—arg P when Im P<0,

sgn P=4 1.2)

n— dim (ker P)—-—-?U— ky—arg P when Im P>0,

(For a real symmetric matrix P; this definition agrees with the common one, whether:

ImP is consgidered 0 bez=>0 or<0).

Remark 1.2. This definition is introduced by the suggestion of the method of
stationary phase. Following the conventional usage, by G'L (n, O) we denote the set.

of all nXn complex nondegenerate matrices. Set

G.(m)={PEGL(n, C); P='P, ImP>0},

G_(n) ={PEGL(n, C); P='P, Im P<0},
Obviously, both G4 (n) and G (n) are closed contractible subsets of GL(n, O),
Tt is easy to see that k. —arg P(or k_—argP) is just tnab single-valued branch of the-
argument of det P which vanishes for P =1 and is a continuous function of P in G (n)-
(G-m).

It is not difficult to verify that if P is a complex symmetrio nXn matrix, with
Im P>0(or Im P<0), then
ky—arg P=h_—arg(— P) + [n—dim (ker P)]w

(or h_—arg P="F,—arg(—P) — [n—dim(kerP)]m), (1.8)
If, in addition, P is nondegenerate, then Im P1<0(or Im P~*=>0), and
%, —arg P=—k_—arg P~*(or h.—arg P=—F.—arg P™), 1.4)

Proposition 1.8. Suppose that P is & complen symmetric matriz, and that Im P-

>0(or Im P<<0), then & necessary and sufficient condition that s-+iy Eker P is that @,
yEker (Re P) Nker(ImP), '

Proof Let X =Rep. ¥ =Im P. Assume g+iyEker P, 1. e. (X +4Y) (a;+'by) =0,
then

Xo=Yy, Yo=—Xy, 1.5):
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Hence

' WY y+taY o=0,
Since ¥ =>0(or Y'<0), we have 'yY y=0, 14V 3=0, thus Yy=0, Yo=0. And by (1.5)
wo obtain Xo=0, Xy=0. Therefore =, yEker X NkerY. This completes the proof
of the necessary part of the proposition. The other part of it is obvious. . |
" (Corollary 1.4 Let P be a non-zero matris and satisfy the conditions of Proposiiton
1.8. Then '

(i) there ewists such & real orthogonal matric Q that

Po| 0 \.
1Q PQ=|———)|, det Po#0; (1.6)
0160

(i) kby—argP(or b_— argP)is just that branch of the argument of the determinant
of the restriction of P on the orthogonal complement of ker P (i.e. on the range of P), as
that meniioned in Remark 1.2. | \ :

Proof Suppose that Pisa nXn complex matrix as statecd in the corollary, dim
ker P—=n—r. We choose a real orthogonal matrix ’

Q= (ug, **, un):
where .41, ==, UaEker (Re P) Nker (ImP). Then it can be easily verified that
this @ is just the one we need. . |

Proposition 1.5. Let matric P satisfy the condition in Definition 1.1, and matric
T be real nondegenerate, 8 ="TPT . Then

k. —argS="Fk.—arg P(or b.—argS="h_—argP), d.7

Proof Let us first consider the case when detP+0. Since 7' can be decomposed

_into a product of an orthogonal matrix and a positive definite real symmetric
matrix, by Definitition1.1l we may assume with no loss of generality that 7' is.
positive definite. Then we only need to consider the following homotopy

8, =T,PT,, 0<6<1, To=(1—6)T+061,
o complete the proof. In fact, since det S =det P x (detT)?, there existts an infeger-
valued function & (§) such that ‘
ki——arg89=lai-—argP+2avk(9), o<o<l, - (1.8)

By Remark 1.2 %(6) must be a continuous fanotion of §, and therefore, is actually
a constant. But k(1) =0, hence & (§) =0,

Now assume -that dim (ker P) =n-—r, 0<r<n; thus, by Corollary 1.4 (and
notice that dim (ker§) =dim (ker P))and Definition 1.1, we may suppose that

S | 0 Pyl 0
5= P=

s} ——|
)

0 |Oper 0 |Oper|

det S0, det Po#0,
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Therefore, multiplying both sides of the equality

Se| O Py O
=T | ——|——] T (possiblly with a new T')
0 On—r 0 On—r
I, |0
by | = 0—~ both from’ the left and from the right simultaneously, we obtain
0 n—¢
Sot O "T'oPoTo 0
00w \ 0 | Onr [

where T, is the block at the upper left corner in the blook expression of T’ similar to
those of § and P. Then it follows that N

ki——argSa-ki—argSo————ki—argPo=ki——argP, (1.9)

Lemma 1.8. Let P be an invertible n X n comples symmetric matric with Im P<0.

Suppose that for P and P~ we have the following block partitioned expressions,

yespectively,

A| B RI| S
—. (1.10)

8| R

Then we have _
k. —argP=k_—arg A—k,—argl —w dim (ker 4)

—}_—arg O—ky—arg R—w dim(kerC), (1.11)
bo—arg Pt=h,—argT —h.—arg A+w dim (ker 4)
— k. —arg R—k_—arg O+ dim (ker 0), (1.12)

Remark 1.9. When P is real, this is just the lemma proved by Duistermaat
(of.[8] Lemma 4.1.2.). The result in general case is due to Wang Rouhwai (cf.
[an.

To prove Lemma 1.6, we need to prove an auxilliary proposition beforehand.

Proposition 1.8. I the conditions of Lemma 1.6 are satisfied and in addition A

" 4s nondegenerate, then ‘
k_—argP=k_—argA+'k_——arg(O-—tBA'lB) —k_—arg A—kb,—argT, (1.18)
Proof Consider the homotopy
Py=6P—i(1—0) I, Ag=0A—~i(1—-0)1,, O, =00 —i(1L—0) I, (0<0<1),
where we suppose that A is an r X r matrix, and that 0 isa (n—1r) X (n—r) marix.
Tt is easy to see that Py, 4o (0<<f<1) are nondegenerate and

Ao

Py=
G°B| O,

0<f<1).
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From the equalily

I, 0 4|08\ L |-64;7B
984y T |\6B|Co \ O =
4 | 0
- _ (0<h<1), (1.14)
0 |0—6"B4"B
we conclude that Op—62*BA;* B is nondegenerate and
| x| « |
Pyl . - (0<f<1).
T |©e-"BATB)”

Therefore, Im (Oy—6*BA;'B) <0 and (0—!BA™*B)*=T, From (1.14), we obtain
det P, =det A, det (Cp— 6" BAs 1B)  (0<O<1),
Moreover, from Remark 1.2 it follows that .

b —arg Po=h_—arg Ag+h_—arg (0, — % BA;1B) -+2mmq (o<f<1), (1.18)
wher i, is an iniiegér—valued funolion on the interval 0<0<1. Because we know
all the terms in (1,1B) are continuous funotions on the interval 0<<O<I: ex0oph
v, me mush also be 0. In view of me=0, We have me=0(0<0<<1). Seb f=1in
the equality (1.18), then (1.18) follows. : :

Proof af Lemma 1.6 From (1.8) and (1.4) oue may see that we only mneed to
prove the first equality in (1.11). To do this, assume that A is an r X r matrix. Note
that if det A==0, then Proposition 1.8 says that the fact we want to prove is frue.
Therefore, only the cage when deb A =0 needs to be disoussed.

We first consider the extreme case when hoth A and O are zero-matrices. In this
case, the facts that P is n(_mdegénerate and ITmP<0 imply that B is a real nondege—

nerate marix, and

0 |'B*
Pi=
Bt 0
Hence, if we notice thab the characteristio polynomial of P is
AL |- B Mo
det | ———— |=det : |=det(32—*BB),
_tB| AL Y

and thus that the eigenvalues of P are +u;(j=1, 2,%, 1), where u2(j=1, 2, ++, 1)
aro the eigenvalues of the positive definite matrix BB, so we can see thab @.11)
holds indeed in this case.

Now suppose that one of A and O, for instance, 4 is & NON-ZEr0 matrix. In this:
case, by Corollary 1.4, there exists a real orthogonal matrix @ such that



220 CHIN. ANN. OE MATH. Vol. 6 Ser. B

Ay O
1Q4Q—{-——],
0] 0
where A, is an s X s matrix, 0<s<r, det 4,+#0. Hence

| Ay | 0 | By
11 0 0 1
< ‘ ) 4 ‘ B Q ‘ 0 _| 010 }B,
0 |Ins tB\ o \ o) \"plem o0

where (%‘—) ='QB. Thus, by 'Proposiﬁon_ 1.5 and 1.8, we have

- 2
Ors | B,
‘B, ’ O—tB,A-*B,

h.—arg P=k_—arg Ao+k_—arg

Or—s B,
B, C—1tB,A5'B, |

=fk_—arg A+k_—arg

Moreover, if notice that

-1
O, ‘ B, X %X| K

’

B, |0—'Budi'Bs k| T

then it can be seen that by means of induction on the dimension n, the proof of this
lemma can be reduced to the simple case when

b
By the nondegeneracy of P, we have 50, and by ImP<0, b must be a real
number. Besides, obviously

0 b :
P=< . ) (b, ¢ are complex numbers), (1.16)

P_1_<——b2c b"i)
bt 0/

P—(O b> (0<<A<1)
“\b e D

Set

then det Po= —b?, so

b_—arg Po=—mw+2mm, (0<XO<1), (1.18)
where m, is an integer-valued function on 0<<f<1. By a similar argument as the
.one in Proposition 1.8, it follows that m, —=mo(0<<<1). For =0

b 0 b
°“\p o)

which has eigenvalues b and —b. So
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k_—arg Py=—w,
Henoe me=0, and m,=0(0<0<1). Substituting this into (1.18), and taking 6=1,
we obtain | :
k_—arg P=—um,
Therefore, for the case when Pand P-! are expressed as in (1.16) and (1.17)
respectively, the lemma is true, and this also completes the proof of the lemma.

§ 2. The Leray formula on the positive complex
Lagrange-Grassmann manifold

Let (M, o) be a real symplectioc vector space of dimension 2n, with symplectio
hilinear form &, (M°, o) be the complexifieation of (M, o). We denote byA(M°)
the set of Lagrangean subspaces of J°, and write :

Pp={LE A(M?; L is real, in essence, namely, L=T1},

L= {Lec A(M); L is positive somi-definite, namely, Im o (u, u) >0 Vu€ L},

& ={LE A(M°); L is negative semi-definite, namely, Im o (u, u) <0 Yu€ L},

 Definition 2.1. Let AC %, BEY.,0€%,, A NB={0}, BNC={0}. Then
there exists a unique linear mapping T A—B, having O as its graph. We define
Q(a, a)=0Ta, a'), Vo, o €A, : (2.1)
Tt is not hard $o check that Q(a, &) is a symmetric bilinear form on 4. By k.—arg
(4, B, O) and sgn (4, B, O) we denote, respectively, the canonical argument and
the signature of the matrix associated with @ relative to any real basis of A.
Remark 2.2. From A€ %, BEY., 0€Y,, wo have =
0<Imo(a+Ta, a+Ta) =Im[o(a, a)+o(Ta, a)+o(a, Ta) +o(Ta, Ta)l
<2ImQ(a, a), Va4,
Therefore k. —arg(4, B, O) in the above definition is full of meaning. Again by
Proposition 1.5, we seo that the definitions of ky—arg(4, B, 0) and sgn(4, B, C)
are independent of the choice of real basis of A.

By analogy with this definition, for AC ¥y, BEX., 0€ %, ANO={0}, BNC
= {0}, we may define k_—arg(4, O, B) and sgn(4, O, B),

Proposition 23. If BEZ-, O€Z,, then BN O is real in essence.

Proof We choose a basis of M such that (M°, o) =0 x Cp, and that

B. ©=B,
0. =0, A
where Bo, O, are symmetric matrices, Im Bo=>0, Im Co<<0 (both B and O are
transversal to C}),
If (&, £) €BNO, then(Bo—0o)§=0. Set
B,~=Re By, Ba=Im By, Oy=Re 0o, O3=ImC,, u=Ref&,v=Im¢,



222 OHIN., ANN. OF MATH, ' Vol. 5 Ber. B

By Proposition 1.8
(B;—Opu=0, (Bi—C1)v=0, (Bs—0)u=0, (By—0z)v=0,

Therefore by Bs=>0 and 0,<<0, it follows immediately that

tyBau=0, wBew =0, u0u=0, *v030=0, Bou=0, Bav=0, Cqu=0, Cqv=0,
Hence ‘

T=Bof, £=0Co¢,

namely, (z, £) € BNO; this completes the proof.

With D being any subspace of M we seb

Dr={z€M°% o(z, y)=0, Vy€ D},
Tf D is real in essence and isotropio, namely, DCD’, we define
w0 @1, ?72) =0 (Y, yz)Vgi: (?/'2EDU/D;

where 44, ya are representatives of Y1, Ja respectively. Obviouly, (D°/D, w'o) is &
complex symplectic vector spaoce. |

For any B € A(M°), we define

E/D=[END°+D]/D=(END")/(DNE). -
Tt is not hard to cheok that E/DE A(D°/D) and for AC%r, BEZL-, O€EY., we
have that A/D, B/D, O/D are real in essenoe, semi-positive, semi-negative,
. respectively.
Proposition 2.4. Let A€ Zr, BE 3_, ocY,,
- (i) If ANB={0}, BNC={0}, then

sng(4, B, 0) =sgn(4/(4N0), B/(AHO) C/(ANO)). (2.2)
Gi) If ANC={0}, BNO={0}, then '
sen(4, 0, B) =sgn(4/(ANB), 0/(ANB), B/(ANB)). (2.3)

Proof We only prove (i), because the proof of (i) is analogeous. If AN B={0},
there is nothing fo prove. Therefore assame thab AN B+{0}. It is not hard to check
that A/(ANB), B/(ANB), C/(ANB) are mutually transversal, hence according to
Definition 2.1 the right of (2.8) is woll defined. :

Choose X € %, such that X is transversal to any of A, B and 0. Next choose &
symplective basis of M, such that (M, o) ~0ixC, X=~C, A=~QCr, and moreover

‘ V5o
B. a=Bf, Bo=| ——|, detV +0
010

C. =0, detCo+0,
where B,, Co are nxXn complex symmetric matrices, Im Bo>0, Im Cp<<0. Correspond—
ing to0 partlmoned form of Bo, the standard real symplectic basis chosen above will
be denoted as ¢, e, f1, f1, where ,

ruf=q1, 2, -, a,
={d, e}, A={fr, fi}.
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It is obvious that
B={fr+eV, fit, ANB={f1},
A+B= {6I: fI; f?}o
If we also assume that
RIS

06‘1 =l —f—
ST

2

then
O = {d+FB+f8, d+fS+fiT},

Therefore it is easily seen thab

A/(ANB)={fs}, B/(AN B) = {fr+e'V},

0/(ANB) = {e¥+f1B}, X/(ANB)={e}.
Hence

sgn(4/(ANB), 04N B), B/(ANB)) =sgn(R—V"H™7,

Observing that ‘ _
sgn(4, 0, B) =sgnCo (Bo— Co) By,

and
(R—V %)~ \ 0
0 \ 0 ’

Co (Bo — 00) “1Bo= (B()Ofo - I) “1By=

we conclude that (2.8)is true. ,
In Definition 2.1, we considered the cage only when B is transversal to A and
O. For the general case, imitating Leray’s idea, we give the following
Definition 2.5. Let AC Yy, BEZL-, ocY.. Set D=ANB+BNC+ONA,
then A/D, B/D, 0/D€ A(D’/D)are mutually transversal. We define.
h.—arg(4, B, ) —k,—arg(4/D, B/D, C/D),
sgn(4, B, 0) —sgn(4/D, B/D, C/D), (2.4)
k_—arg(4, C, B) —k_—arg(4/D, G/D, B/D), '
sgn(4, O, B)=sgn(4/D, O/D, B/D),
" Moreover, we also define
sgn (B, 4, 0)= —sgn(4, B, 0), sgn(0, B, A)=—sgn(4, B, 0), . (2.5)
sgn(0, A, B) ——sgn(4, 0, B), sgn (B, O, A)y=—sgn(4, C, B),
Remark 2.6. Certainly, it is possible that D°=D. (for instance, when among
A, B and O at least two of them coincide). In this case, D°/D={0}, hence we
naturally regard k.—arg(4, B, 0), eto, as zero. |
Remark 2.%. By Proposition 2.4, if is in agreemen?t with Definition 2.1 to
define sgn (4, B, ) and sgn(4, O, B) by (2.4). Now we explain that it is also
vight to define sgn (B, 4, 0), - by (2.5). This is'not very obvious. For instance,
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denoting by sgn (B, 4, O) the sgn(B, 4, C) defined by (2.5) for the time being,

the problem, when A, BE ¥r, CE Xy, is whether ,sgg(B, A, 0) equals to sgn (B,

A, O) defined by (2.4).
Proposition 2.8. Let /fi,/ BE Py, O€ZL,, then
sgn (B, 4, 0)=sgn(B, 4, 0), 2.6)

Proof By (2.4), the general problem reduces to the case when A, B, C are

mutually transversal. We can ohoose a real symplectic basis of M such that (M°, o)
~Qrx 02, B=(:, A=~C}, and moreover
0, 5=04f, detCo#0,

‘Then by Definition 2.1, we obﬁain

sgn(A, B; 0) =Sgn(—00),
sgn(B, 4, 0) =sgn 05",
But from (1.2), (1.8) and (1.4), we have

(2.7)

~ sgn (—Co) = —sgn oqY,
which, combined with (2.5) and (2.7), gives (2.6).
Proposition 2.9. For Ac %y, BEY., 0c Y., sgn(4, B, 0) is an altermate
Junction.
" Proof By (2.4 and (2.5), it suffices to prove

| sgn(4, 0, B)=—sgn(4, B, C) | 2.8)
when A€ %, BEZ., OC &, are mutually transveral.
We choose such X € %p that X 18 sransversal to A, B, 0. And we choose a.

symplectic basis of M, such that (M°, o) =0uxC, X ~0, A=C}, and moreover
B, x=Bo, det Bo#0,
0. w=0of, detCo#0,
where Im Bo=>0, Im Co<<0, and Co— Bo is nondegenerate.
It is obvious thab - :
sgn(4, B, 0) =sgn By (0o~ Bo) 00,
sgn (4, O, B) =sgn 0o(Bo—Co)™*Bo,
Hence, noticing thab i
Bo(Co— By) "*Co=— Co(Bo—0C0) By,
we obtain (2.8).
Proposition 2.10. For any real in essence linear subspace D’ of D=ANB+BN
C+O0ONA4, we have
| bo—arg(4, B, O) =ks—a1g (4/D', B/D', C/D), @.9)
sgn(4, 0, 0) —sgn(4/D', B/D, c/D),
Here we assume A€ L, Bc Y., OEZ:, |
Proof Setb
" p'=A/D'NB/D'+B/D no/D+0/DNA/D,
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It is not hard o verify stepbby step thatb
D'~D/D, D'"°=D°/D', D" /D" ~D°/D, (A/D)/D"=A/D,
(B/D')/D"=B/D, (0/D")/D" ~0/D,
And these evidently imply (2.9). _
Definition 2.11. Let AC %z, BEZ ., 0C Z., BNO={0}, and define
O(a, @) =0 (d, Psa), Vo, d €4, (2.10)
where Pp @ is the projection of a upon B along O (similarly Po @ is the projection of @
upon O along B) . It is not hard to check that Q /(\a, &) is @ symmetric bilinear form on
A. We shall denote by k.—arg(4, B, O) and sgn (4, B, O), respectively, the canonical
argument and the signature of the matrie associated with Q relative to any real basis of
A, _
Here something similar to Remark 2.2 applies, we do nob explain it in detail.
Proposition 2.12. Let/{ €Sy BEL., O€ L, BNO={0}, then
sgn(4, B, 0) =sgn(4, B, 0), ‘ (2.11)
Proof (i) The case when ANB={0},
For every a € A, Ta in Definition 2.1, is just—Pp @ in Definition 2.11, so thab
| O(a, @) =Q(a, &), Va, d €A, |
Henoe (2.11) is true.
(ii) The case when A B+ {0},
We follow the idea in the proof of Proposition 2.4 and adopt the notations in if,
but here we réplace the agsertion det Op#0 by deb (Bo—0p) #0, and assume-
Qu1 | Quo
(Bo—Co)t=| —1—}
' : Q12| Qua
where the block partitioning is similar to that of Bo. Then it is easy 0 see that
O m {iQus+FQua & (VQu—1), fiQus+FiQu+eV Q=0
Hence '
A/(ANB) ={f}, B/(ANB) ={fr+eV},
0/(ANB) = {# (VQu—1I)+fQu}, X/(4NB)= {'}.
Moreover, we can verify that B/ (AN B) is transversal o A/(ANB) and C/(ANB).
Thus, by Proposition 2.10 we have :
sgn(4, B, O) =sgn(4/(ANB), B/(ANB), C/(ANB)) =sgn(V =V QuV).
But it can be seen that
san(4, B, 0) =sgn Bo(Co—Bo) *Co=sgn[Bo— Bo(Bo—Co) *Bo]
| V-VQuV
=ggn I

0

0 0

Henoe (2.11) is true.
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Base/dgpon Proposition 2.12, we will adopt only the notation sgn(4, B, C)
and not’sgn(4, B, C). It is worth while to notice that when B C={0}, to compute
sgn (4, B, C) according o Definition 2.11 is often convenient.

Proposition 2.18. Let A€ ¥, BEY., 0€Y,, BNO= {0}, then the formula

—sgn(4, B, 0)=sgn(4, X, B)+sgn(B, X, O) +sgn(C, X, 4) (2.12)
 is valid for all X € Ly, transversal to A, B, C.

Proof We choose a symplectio basis of M such that M, o) ~G x 0, X=0;,
A=~(C}, and moreover

B, z=Bf,

0, o=0i;
where By, O are nXn complex symmetrio matrices, Im By>0, Tm C,<<0, det(Bo—Co).
#0, ' ‘

By Definition 2.5 (or Proposition 2.12), it is not hard to establish that

sgn (4, B, C) =sgn By(Co—Bo) O,
sgn(4, X, B) =sgn(—By),
sgn(B, X, 0) = —sgn(Co—Bo) 7,
sgn(0, X, A) =—sgn(—00),
Hence, (2.12)is just the equality
—sgn Bo(Co— Bo) Co= sgn( — By) —sgn(Co— Bo) t—sgn(— O’o)
and by the definition (1.2)this in turn is the same as ‘
—arg (Bo—Co) ~*+h_—arg(—Bo) .
=k_—arg Bo(Bo—0o) "*0o— k. —arg(— O’o) — dim (ker Cy), (2.18)
Here we have used the equality
dim (ker Bo(Bo— Co) ~1Co) =dim (ker Bo) +dim(ker C),
which follows easily from the reasoning appeared in 'the last part of the proof of
Proposition 2.12. : ‘
(i) The cage when AN B={0}.
In this case, det By#0; thus using (1.4)we may write (2.13) as
k—arg(Bo— Oo) *— k. —arg(—Bs*)
=Fk_—arg Bo(Bo—0o) *Co— kb —arg(—Co) —mdim: (ker Co). (2.14)

But by Lemma 1.6 and
L . ’
~-B*| I, Bo(Bo—Co) 0o |Bo(Bo—Co) ™

(Bo—Co)™*

Iy

-0 (Bo—0) 1B,

we know that(2.14) is valid.

(i) The case when A ) B+ {0}.

In this case det By=0. Certainly, we may assume that By is non-zero (otherwise
what to be proved is clear). Thus, by Corollary 1.4, we may assume with no loss of
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generality that

. V1o \ ' |
Bo=|—"—") V—r*r matrix, detV #0,
010

Corresponding to this, Wo write (Bo—Cb) Lina gimilar partitioned form

Q11 | Quo
(Bo—Co Lo ——— .
Q0| Qaz
Then
VQu1|VQua | ' QuV| O
Bo(Bo‘“Oo)_1= —_— (Bo“oo)_iBo—”‘ _—
0 0 Q.| 0
‘ VQuV — Vi 0
Bo(Bo— Oo) “104=
| 0 0
And it is not hard o check thatb
-1
V2 0| I.| 0 VQuV—=V]| 0 VQj_.i V Qi
0 |Ine| 0|0 0 sl 0] O
I, 0 o QulV 0 | Qu | Qu
1 -0, S I
0 0 CHQual 0 | Qu | Qe
VsV -V| 0 R
B Bo (Bo —_ Co) ":1.'
= 0 I N1

_______________——-—-——-—____________——-—-—

(Bo—00) B0 | Bi=C™ | -

Henoe, by Lemnda 1.6, we gob

VQ:]_:]_V—V 0 VQj_j_V"‘V 0
k-—axrg _ fpp—arg(—Co)—wm dim ker| ———"
0 y - . 0 . (Lpr
-V 0
==k-—a1‘g(B6——00)’1——k+——arg _——1,
0 | Inr
namely

b —arg Bo(Bo— Oo) 0o~ k+—21g (—Cp) —mdim [ker (VQuV -1
=k__'—ar‘g(Bo—00)—1+1c_—arg(—130), (2.15)

In view of
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dim (ker Bo) +dim (ker Co) =dim [ker Bo(Bo— o) 0]
=dim [ker (VQuV — M1+ (n ), .

dim (ker By) =n—7,
we have

dim [ker (VQuV — V)] =dim (ker C o).
Substituting it into(2.15), we obtain (2.18).

Proposition 2.14. Lei (M°, o) be the complexification of @ real symplectic vector
space of dimension.2. And let A€ Lx, BEY., CEZ,, then the formula (2.12) is
valid for all X € L transversal to A, B, C.

This may be verified directly.

Proposition 2.15. Let A, B, X € %, 0EY,, then (2.12) is valid.

Proof 1t will be enough to give the proof for X transversal to 4, B, C. In
fact, if this has been done, by choosing such ¥ € Fp, that it is transversal to 4, B, ¢
and X, then we shall have immediately ' V

sgn(4, X, B)+sgn(B, X, O)+sgn(C, X, A)=—sgn(4, ¥, X)
—sgu(X, Y, B)—sgn(B, ¥, A)—-sgn(B, ¥V, X)—sgn(X, Y, 8))
—sgn(0, Y, B)—sgn(0, Y, X)—sgn(X, Y, A)—sgn(4, ¥, C)
—sgn(4, ¥, B)+sgn(B, ¥, 0)+sgn(C, ¥, 4) | | |
=—sgn(4, B, 0), (2.16)
Weo shall make induction on n-—=-%— dim M to finish our proof. When n=1, by

Proposition 2.14, the asgertion is valid. Now we assume that when n equals 1, 2, -,
m—1, the assertion is valid, and prove that it will also be true when n=m.
C’ase I ANBNO+{0}. We take D=ANBNC, then from the induction
hypothesis and Proposition 2 .10, we obtain:
the loft side of (2.12) = —sgn(4/D', B/D, o/D) =sgn(4/D', X/IV, B/D")
+sgn(B/D', X/D', C/D) +sgn(0/D, X/D', A/D’) =the right side of (2.12).
Case IT ANBNCO={0}, ANB#{0}, BNO#{0}, ONA+{0}, Choosing Y€
r such that it contains the real in essence isotopio subspace D=ANB +BNO+
CNAof M° and a real in essence subspace D’ of ANB, then from the induobion
hypothesis and Proposition 2.10, we have
~sgn(4, B, 0) = —sgn(4/D, B/D', C/D)
—=sgn(4/D’, Y/D', B/D') +sgn(B/D, Y /D'y +sgn(0/D, Y/D', A/D")
=sgn(4, Y, B)+sgn(B, Y, 0)+sgn(C, Y, 4),
Hence using the resuld of Case I and imitating the proof of(2.16), we obtain (2.12).
Case ITT B(O={0} or ANC={0}. By Proposition 2.13 we know that (2.12) .
g valid.
Case IV ANB=1{0}, BNO+{0}, CNA+{0}. We write D'=ANC and choose
such Y € #5 that Y OD'+BNCand Y N X = {0}. (By Proposition 2.8 and Theorem
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8. 4.2 in[8], we know this is possible). By the induction hypothesis and Proposition
2.10, we have '
—sgn(4, B, 0) ——sgn(4/D, B/D, o/D")
—sgn(4/D, Y /D, B/D") +sgn(B/D, Y/D, 0/D") +sgn(C/D, Y /D', A/D")
—sgn(4, ¥, B)+sgn(B, Y, O) tsgn(0, ¥, 4)., | (2.17)
Bocause Y NANC=D'+#{0},Y NBNC=BNO#}0} and X i8 sransversal to 4, B, C
and V', usinig the result of Oase I, we get
—sgn(C, ¥, 4)=sgn(C, X, V) +sgn(¥, X, A)+sgn(4, X,0),—sgn(B, Y,0)
—sgn (B, X, Y)+sen (¥, X, O)+sg(0, X, B), (2.18)
But in view of AN B={0} and Proposition 2.18, we have
—sgn(4, Y, B) =gsgn(4, X, Y)+sgn (¥, X, B) +sgn(B, X, 4), (2.19)
Combining (2.17), (2.18) and (2.19), we obtain (2.12).
Aftor these preparations, we may prove the major theorem in this section.

Theorem 2.16. Let A, X €%, B €Y., 0Ly, then the generabized Leray’s
formula (2.12) 48 valid. :

Proof We also use induction on n-—-—12— dimM. Almost repeating word for word

the proof of Proposition 2 .15, we may complete the proof in Cases I and IL. Now
we consider the other cases. _
Case IIT B O={0}. By Proposition 2,18, we know that (2.12) is valid.
CaseV. BNC#* {0}, ANB={0} or ANO={0}. We write BNO=D" and choose
Y € %5 such that Y DD'. By the induction hypothesis and Proposition 2.10, we then
obtain (2.17). By assumption A, Y € %» and Proposition 2.1, we see that the firs
‘equality in (2.18) and (2.19) are valid. Again because YNBNC=D'+{0}, by the
result of Case I, we see that the last equality in (2.18) is also valid. Combining
2.17), (2.18) and (2.19), we obtain (2.12). The proof of the theorem is completed.

§ 3. A remark on the notion of the almost
analytic Maslov line bundles

As an application of the results in the previous two sections, we shall now show
that the transition funoctions of the almost analytic Maslov line bundle on a complex
positive conic Lagrangean manifold constructed ingeniously in[4] may be expressed
invariantly in terms of what we call the generalized Hérmander cross indices. This
serves to bring out the parallelism between the notions of Maslov line bundles in
real and complex cases more clearly.

Agin § 2, let(M, o)be 2 real symplectic symplectio veotor space of dimension 2n,
and leb M° be its complexification. And we shall use the mnotations AM, L=
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LMY, ¥ =L (M 0): Lo=Lo(M°), ofc., without repeating their definitions.
Fix a Lagrangean plane F e Py, and for each L€ A(M°), lob
A (L) ={4€Zs; ANL={0}},
A~ (L) ={4€ZL_; ANL={0}}.
Definition 8.1. For every patr (Li, Ly)of & and every A€ A*(Ly) NA*(Le),
we define .
oL, 1. (4) ———[sgn(F Ly, 4) —sgn(F, Ly, 4)] (3-1)
as the generalized Hormander cross index of the pairs (¥, 4) and (Ly, Ls),
Proposition 8.2. 1) VI, L,EZ_, or,n.(A) is a continuous funotzon of A€
A+ (L) NA* (La);
) o, (4) 95 continuous with respect to Ly, Ly€ A- (F) and A€ A+ (L) N
A+ (Ly),
Proof i) VAe€A*(Ly) NA*(La), ohoose X € Ly such that it intersects F,

Ly, Ly and A, trans Versally By formula (2.12), we have

01,1, (4) ————[sgn(ﬁ Ly, X) —sgn(F, Ly, X)—!—sgn(f Lg, A)

| —Sgn(g, Ly, 4], (3.2)
But whenever A€ A*(Ly) N A*(Ls) is close enough to Ao, X will also intersect 4
transversally, so the expression on the right of (3.2) is obviously continuous with
respect 1o A € A* (Ly) N A* (L) at Ay, This oompletes the proof.

The proof of ii) is similar.

By the way, we point out that, sinced* (L) and A+(L) N4*(L') are contractible
whenever I and I/ € %_, and the collections {4*(L), Le ¥} and {4*(L); L&
Fr}, or even certain finite subcollections of them, all constitute relative open
coverings for %, the assertion i) of the above proposﬂnon has its implication

“relative to the cohomolgy of Z.. Here .Z‘ as in [4], denotes the totallity of the

striotly negative definite members of Z_.

Now, in order to fix the terminologies and notations, let us repeat the Definition
6.1 of [4].

Definition 8.8. Let the F € %x fiwed arbitrarily is the complemﬁcatwn of @
Lagrangean plane F of M Then for a plane /163 v, we say abasis e=(ey, =+, €a) for
A is admissible if there is @ basis f=(f1, ** ., fu) in F and a plane LE L™ such that
¢; 1S the prroyectwn of f; along L for oll j. We write this as

e=E,(f, L),
and denote by B(4) the set of admfbsszble bases, equipped with the product topology
From A X oo x A(n—times).

Prop051t10n 3.4. - The unique funciton Sa: H(4) x B(A)—>0\{0}, specified and

constructed in Proposition 6.2 of [4]1, can be ewpressed as
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1 wi
Sae, &) =|e/e | T2 "L

when e=H.(f, D), ¢ =E.(f, L"), (3.3)
where e/¢' = (es N+ New) / (GL A+ NEy).

Proof Set up sympleotio linear coordinates (z, &) in M as that in the proof of
the Proposition 6.2 in [4], so that F is given by #=0, 4 by z=AE, L and I/ by
£=B7and & — B'%, respeotively. Then e and ¢ can be identified with (I —B4)7'R,
(I—-BA)R/, respectively, where R and R’ €GL(n, R); thus

¢/¢ =det(I—BA)™*R/[det (I-B'A)R],
Now, notice that.

dot (I—BA) = (—1)" det ( —IA _IB>,

(—B I >‘1 ==(A(I—]BA)“’~ (I-—-BA)™ )AP°
I -4 (I-BA)™* (I-BA)™B)™ ’
80 '
det(I —BA)™ = |det (I — B4) | -2 exp {4now -+ ik —arg P},
But, by meas of Lemma 1.6, we have
b —arg P=h_—arg A(I—BA)™— b, —arg (—A) —m dim (ker 4)
=Io+—argA(BA—I)'i—k+—arg(-A) —nm
=l —arg[F, L, 4) —k,—arg(F, X, 4) —nm,
where X is the plane & =0; therefore

T

(de‘h (I —_— _BA_) "1> /2 | de-b (I _BA) l -1/2 6—9'2—- o, (4)

This and the similar result for(det(I —B'A))Y? yield
efe ==xT| e/e’lifﬁelg' onute (8.4)

where the plus sign is valid precisely when B and R, that is f and f’, bave the same

orientation.

o

We assert that the phase factor ¢ # 722 3o uniquely determined by e=FEa(f,
L)and ¢ =E,(f', L'). First, suppose ¢—=¢'. Then in view of the homotopy
B,=(1—1)B+tB/, Im B;<0 (0<t<1),
R,= (I—BA)(I—B'4) 1R’ = (1—§) R+tR €GL(n, R"),
(I-B4A)7*R=(I- B,A)R,=(I—-B AR,
we can infer from (8.4) that '
1= 67 OFP o<, . (8.B)
where L(t) is the plane & = B,z belonging t0 -, But according to Proposition 3.2,
the phase factor on the right side of (8.B) is a continuous function of ¢€ [0, 1], so
only the plus sign is correéct in (8.B), because this is so when t=1. Set ¢=0 in
(8.5), we get therefore
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% o Ly .4
1 =g F T Din g € B(F)s.8.Ba(f, 1) —E,(f, I). (3.6)
From this the truth of the assertion follows easily:

Zogud) elgi[ono.nu)wn,r,v(4>+au. wo) _ Sou

if e=HE.(f, L) —E,(f°, L° and e =E.(f, L") =E,(f°, L',

Tn short, if we define Ss (e, )by (8.3), then it is single valued, and it has all
the properties specified in Proposition 6.2 of [4], as can be seen from Proposition.
3.2 and (8.4). This concludes the proof. :

Since the construction of the transition functions of the almost analytio

J

“Maglov” line bundle on 2 positive conic Lagrangean manifold in [4] is based solely
on the function Sa and the notion of admissible coordinates, our Proposition 8.4
already implies what we promised to show at the beginning of this soction.

§ 4. A coordinates free description of the Maslov
Co-cycle on the positive Lagrange—Grassmann manifold

Ags before, we denote by (M, o) a real symplectic vector space of dimension 2n,
and M° its complexification. We shall also make use of the related notations L=
£, (MO, =X o (MC) and so forth, as before.

" Oongider {4*(L); LEZL+ (MC)}, where A+(ILy={4¢€ Z(MO); ANL= {0y}, It
is known that there are some finite sub-collections of this, each of which covers
. (MC) completely. By the way, we recall that each A+ (L) is a relative open and
contractible subset of Z.(M°). ‘ | _

Fix a plane F € Zr (MC)arbitrarily, and for every Li, Ly € Zr(MC)we define

——Cy _—_%[sgn(ﬁ, Ls, 4)+dim(FN L) —sgn(F, L, 4)

—dim(F N Ly)] for Ae A+ (L) N A+ (La). (4.1)
By Proposition 3.2, this is a real valued continuous function with domain A% (L) N
A+ (Lg), which is also contractible. Thus the collection {mz,r, (A)}, or even any one
of its sub-collections, for which the corresponding (A* (L), A (Lg)} covers
. (MC), makes up a 0o dimensional Gech co-cycle on the positive Lagrange-
Grassmann manifold Zx (MC), which we chall call the Maslov co-cycle. We ghall
show that this is just the one used implicitly in Maglov's work[5], and [6] and
explicitly in 7] and [8]. |
To do this, choose a symplectic basis {eg, *=y ens S '..,, F7 for (M, o), so that all
fie F, and that we can identify MC with T *(O0n)=0% XO? , F with C%. Then every
vector v €.MC will be sdentified with its corresponding symplectic coordinates (z, &)
= (@, *, o &y, oo, €. And for each gubset IC{1, *, n}, with its complement
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denoted by I , we denote by F; the coordinate Lagrangean plane {a7=0, £;=0} €
Lo(HO), where Fp= (@, =, ), &r=Eu, +++, Eur), Whenover I= (s, =+, ),
I= (w1, =, Pn—k). '

Cosider the collection {U,=A*(F;)} with T ranges over all subsets of{1, +--, n},
including the empty one. It is known that {U;} covers £(M°).

For every A€U;NU;, because each of the (@, &) and (@, €;) can be taken as
linear coordinates on 4, the following are three symmetric complex matrices with

their imaginary parts non-negative deﬁnlte assoo1ated with 4:

P;(4 awI , P A) = — , Pr _________3(5& éJ_a) s
(4) = o s (4 gJ a(4) . o la
(Ii=INJ, I,=INT, Is:=INJ, I,.=INJ). (4.2)

Computing by the methods developed in § 2, it is not hard to find out
—arg(F, F1, A) =k, —arg P:(4)
b,—arg(#, Fy, A)=k,—arg Py(4)
sgn(F, F;, A) =sgn P;(4), ' (4.3)
sgn(F, F;, A) =sgn Py(4),
sen(F, F,, F;) =0, sgn(FJ, Fy, A) =sgn Py, (4),
And applying the generalized Leray formula (2.12), we got
sgn(F, F;, A) =sgn(F, F;, A)+sgn(F,, Fi, 4) +sgn(F, Fi, F,,) (4.4)
Now we are ready to state the following result.
Theorem 4.1. i) We have

mip, () == by —arg Pr.s(4) | Ie|, YAEUINT,, 4.5

And hence the collection of functions shown on the right side really constitutes a one
dimensional Cech Co-cycle with coefficients in the sheaf of germs of real valued continuous
functions on & (M),

ii) ‘We also have

Ly —arg 22| ~Lp —aurg 02 | by arg Pros(4) = | T
A 08, 14
=g, 5, (4) + | Ls| — | Ia|, VAEUNT,, (4.6)

Thus the oollection of functions shown on the left side also constitutes a one dimen-—
sional Cech Co-oyocle of the same kind as akove.
Proof i) From (4.8), (4.4), and Definition (4.1), we see immediately thab

g, 7, (4) =5[| 7| = | 7| —sgn Pr.s(4)]
= 11 Ll = 1 L] = | Za] = | To| +2 by —arg Pry ()

=—r,1;’k+—arng,J(/1) ~ | ZLs[.
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Sinoe P;,;(4) is invertible, when A€U;NU,;, we have
sgn Pr,s (A)= | L] 4 To| =2 by —arg Prs (D).
ii) Note
sgn(F, Fy, 4) —n—dim F N F;—dim F n/l—% k,—oarg(F, Fi, A),

sgn P;(4) = | I| —dim (ker Pr(4)) — ?W_ by —arg Pr(4),

0 in view of (4.8) we have
dim ker (Prd) = ||+ |T| —ntdim FnAd=dimFn4,

and ‘
sgn(F, Fy, A)=— |11+dianA—% b —arg(— Pr(A),
Similarly
sgn(F, 7, 4) =17 +dimfr’nz1-% b_—arg(—Ps(A)),
and therefore
i, () = g (= () = g (o) + | ol = [T

Comparing this with (4.5) yields (4.6). The proof is completed.

To end up, we should like o point out that the proof of the second half of the
agsertion i) given in [7] and [8] seemed incomplete. And it was the motivation of
giving an invariant formulation, and hence an accurate proof, that led one of the
authors [1] to consider the generalized Duistermaat Lemma, i. e. Lemma 1.6 in

§1.
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