A NOTE ON THE RATES OF ASYMPTOTIC NORMALITY OF LINEAR PERMUTATION STATISTICS

BAI ZHIDONG (白志东)

(University of Science and Technolong of China)

Abstract

In his pervious paper^[3], Prof. Chen Xiru proposed a question: can the rate of asymptotic normality of linear permutation statistics be arbitrarily slow when one of $\{A_n\}$ and $\{B_n\}$ satisfies the condition W and the other satisfies the condition N? This note shows that it can. Moreover, a wrong statement about this problem is corrected.

§ 1. Introduction

Let $A_n = \{a_{n1}, \dots, a_{nN_n}\}$ and $B_n = \{b_{n1}, \dots, b_{nN_n}\}$, $n = 1, 2, \dots$, be two sequences of real vectors, and $\{R_{n1}, \dots, R_{nN_n}\}$ be a random vector with a uniform distribution over the set of all permutations of $(1, 2, \dots, N_n)$, where $\lim_{n \to \infty} N_n = \infty$. Call

$$L_n = \sum_{i=1}^{N_n} b_{ni} \alpha_{nR_{ni}} \tag{1}$$

the linear permutation statistics generated by A_n and B_n . Define

$$\overline{a}_n = \frac{1}{N_n} \sum_{i=1}^{N_n} a_{ni}$$

$$\mu_r(A_n) = \frac{1}{N_n} \sum_{i=1}^{N_n} (a_{ni} - \overline{a}_n)^r$$
, $n = 1, 2, \dots$, and $r = 2, 3, \dots$,

and similarly for \overline{b}_n , $\mu_r(B_n)$. We have

$$\lambda_n = EL_n = N_n \overline{a}_n \overline{b}_n$$
, $\sigma_n^2 = \operatorname{Var} L_n = \frac{N_n^2}{N_n - 1} \mu_2(A_n) \mu_2(B_n)$.

We say that $\{A_n\}$ satisfies the condition W or N, if

$$\sup_{n} \mu_r(A_n)/[\mu_2(A_n)]^{r/2} \leqslant M < \infty, \text{ for each integer } r \geqslant 3$$
 (2)

 \mathbf{or}

$$\lim_{n \to \infty} N_n^{-\frac{r}{2}+1} \mu_r(A_n) / [\mu_2(A_n)]^{r/2} = 0, \text{ for each } r \geqslant 3$$
 (3)

respectively, where M is independent of r. Likewise for $\{B_n\}$.

The well-known theorem of Wald-Wolfowitz-Noether [1, 2] guarantees the

Manucript received Jaly 7, 1982.

asymptotic normality of $(L_n - \lambda_n)/\sigma_n$ under the condition that one of $\{A_n\}$ and $\{B_n\}$ satisfies the condition W while the other satisfies the condition N. Recently, Chen [3] considered the rate of this convergence and obtained some results. Among the results in Chen's paper, there is an attempt to establish the fact that the above-mentioned convergence rate can be arbitrarily slow when $\{A_n\}$ and $\{B_n\}$ both satisfy the condition N. But in reality, his result does not establish this fact for obvious reason. One aim of this note is to establish the correct result (Theorem 2 of the present paper. Note the difference between our Theorem 2 and Theorem 4 of [3]). Chen also proposed the question: does this result remain true in the case that one of $\{A_n\}$ and $\{B_n\}$ satisfies the condition W and the other satisfies the condition N? The second aim of this note is to answer affirmatively this question (Theorem 2, too).

§ 2. The Main Results and Proofs

Choose a sequence of even positive integers $\{N_n\}$ with $\lim_{n\to\infty} N_n = \infty$, and a sequence

of strictly decreasing positive numbers $\{q_n\}$, such that

$$\lim_{n\to\infty} q_n^2 N_n^a = \infty \tag{4}$$

and

$$\lim_{n\to\infty}q_n=0,\tag{5}$$

where $0 < \alpha < 1/6$ is a constant. Without losing generality we assume that $q_n < \frac{1}{2}$ for all $n \ge 1$. Write $p_n = \frac{1}{2} - q_n$. Define

$$A_{n} = \begin{cases} \alpha_{ni} = 1/D_{n} & \text{for } i = 1, 2, \cdots, [p_{n}N_{n}] \\ \alpha_{ni} = -1/D_{n} & \text{for } i = [p_{n}N_{n}] + 1, \cdots, 2[p_{n}N_{n}] \\ \alpha_{ni} = 0 & \text{for } i = 2[p_{n}N_{n}] + 1, \cdots, N_{n} - 2 \\ \alpha_{nN_{n}-1} = q_{n}^{\frac{1}{2}} N_{n}^{\frac{1}{2}}/D_{n} = -\alpha_{nN_{n}}, \end{cases}$$

$$(6)$$

$$B_{n} = \begin{cases} b_{ni} = N_{n}^{-\frac{1}{2}} & \text{for } i = 1, 2, \dots, \frac{1}{2} N_{n} \\ b_{ni} = -N_{n}^{-\frac{1}{2}} & \text{for } i = \frac{1}{2} N_{n} + 1, \dots, N_{n}, \end{cases}$$

$$(7)$$

where

$$D_n^2 = N_n^{-1} (2[p_n N_n] + 2q_n N_n) = 1 - 2\theta_n / N_n, \ 0 \le \theta_n \le 1.$$
 (8)

It is not difficult to verify that $\{A_n\}$ satisfies the condition N with $\bar{a}_n = 0$ and $\mu_2(A_n) = 1$ while $\{B_n\}$ satisfies the condition W with $\bar{b}_n = 0$, $\mu_2(B_n) = 1/N_n$.

Denote by L_n the linear permutation statistic generated by A_n and B_n and denote by F_n the distribution of $L_n/\sqrt{\operatorname{Var} L_n}$.

Theorem 1. Under the above notations we have

(i) $F_n \xrightarrow{c} \Phi$, as $n \to \infty$,

(ii) $||F_n - \Phi|| \ge c q_n^2$, for n large enough, where c is a positive constant independent of n.

Proof Assertion (i) follows from Noether's Theorem. For the proof of (ii), set

$$A_n^* = \begin{cases} a_{ni}^* = a_{ni} \text{ for } i = 1, 2, \dots, N_n - 2, \\ a_{ni}^* = 0 \text{ for } i = N_n - 1, N_n, \end{cases}$$
 (9)

and $L_n^* = \sum_{i=1}^{N_n} b_{ni} a_{nR_{ni}}^*$. It is easy to verify that $\{A_n^*\}$ satisfies the condition W. Denote by F_n^* the distribution of L_n^* . By Theorem 1 in [3]

$$\sup_{x} |F_{n}^{*}(x) - \Phi(x/\sqrt{2p_{n}})| \leq \sup_{x} |P(L_{n}^{*}/\sqrt{\operatorname{Var}L_{n}^{*}} \leq x/\sqrt{\operatorname{Var}L_{n}^{*}}) - \Phi(x/\sqrt{\operatorname{Var}L_{n}^{*}})|$$

$$+ \sup_{x} |\Phi(x/\sqrt{\operatorname{Var}L_{n}^{*}}) - \Phi(x/\sqrt{2p_{n}})|$$

$$= o(N_{n}^{-\alpha}) + \sup_{x} |\Phi(x/\sqrt{\operatorname{Var}L_{n}^{*}}) - \Phi(x/\sqrt{2p_{n}})|.$$
 (10)

Since $\operatorname{Var} L_n^* = \frac{1}{N_n - 1} (2 [p_n N_n] / D_n^2) = 2p_n (1 + O(1/N_n))$, the second term on the right hand side of (10) is equal to $O(1/N_n)$. Hence

$$\sup_{\alpha} |F_n^*(x) - \Phi(x/\sqrt{2p_n})| = o(N_n^{-\alpha}).$$
 (11)

Let $Q_n = L_n - L_n^*$. By the definition of A_n , A_n^* and B_n , we see that Q_n assumes only three possible values: 0 and $\pm 2q_n^{\frac{1}{2}}/D_n$. Thus we have

$$P(L_{n} \leq x) = P(L_{n} \leq x, Q_{n} = 0) + P(L_{n} \leq x, Q_{n} = -2q_{n}^{\frac{1}{2}}/D_{n}) + P(L_{n} \leq x, Q_{n} = 2q_{n}^{\frac{1}{2}}/D_{n})$$

$$= P(L_{n}^{*} \leq x, Q_{n} = 0) + P(L_{n}^{*} \leq x + 2q_{n}^{\frac{1}{2}}/D_{n}, Q_{n} = -2q_{n}^{\frac{1}{2}}/D_{n})$$

$$+ P(L_{n}^{*} \leq x - 2q_{n}^{\frac{1}{2}}/D_{n}, Q_{n} = 2q_{n}^{\frac{1}{2}}/D_{n}) = I_{1} + I_{2} - I_{3}, \qquad (12)$$

where

$$\begin{cases}
I_{1} = P(L_{n}^{*} \leq x), \\
I_{2} = P(x < L_{n}^{*} \leq x + 2q_{n}^{\frac{1}{2}}/D_{n}, Q_{n} = -2q_{n}^{\frac{1}{2}}/D_{n}) \\
I_{3} = P(x - 2q_{n}^{\frac{1}{2}}/D_{n} < L_{n}^{*} \leq x, Q_{n} = 2q_{n}^{\frac{1}{2}}/D_{n}).
\end{cases} (13)$$

Applying Eq. (11), we have

$$I_1 = \Phi(x/\sqrt{2p_n}) + o(N_n^{-2}).$$
 (14)

Furthermore

$$I_{2} = P(x < L_{n}^{*} \le x + 2q_{n}^{\frac{1}{2}}/D_{n}|Q_{n} = -2q_{n}^{\frac{1}{2}}/D_{n}) P(Q_{n} = -2q_{n}^{\frac{1}{2}}/D_{n}).$$
(15)

It is easy to compute that

$$P(Q_n = -2q_n^{\frac{1}{2}}/D_n) = \left(\frac{1}{2}N_n\right)^2 / N_n(N_n - 1) = \frac{1}{4} + O(1/N_n)_{\bullet}$$
 (16)

On the other hand, we can split the event $(Q_n = -2q_n^{\frac{1}{2}}/D_n)$ into $(\frac{1}{2}N_n)^2$ mutual-disjoint events $E_{ij} = (R_{nN_{n-1}} = i, R_{nN_n} = j)$, $i = \frac{1}{2}N_n + 1$, ..., N_n ; j = 1, ..., $\frac{1}{2}N_n$.

It is easy to see that

$$P(x < L_{n}^{*} \le x + 2q_{n}^{\frac{1}{2}}/D_{n} | E_{ij}) = P(x \le L_{n}^{*} \le x + 2q_{n}^{\frac{1}{2}}/D_{n} | E_{N_{n},1})$$
for $i = \frac{1}{2} N_{n} + 1$, ..., N_{n} ; $j = 1$, ..., $\frac{1}{2} N_{n}$. Hence
$$P(x < L_{n}^{*} \le x + 2q_{n}^{\frac{1}{2}}/D_{n} | Q_{n} = -2q_{n}^{\frac{1}{2}}/D_{n})$$

$$= \sum_{i=\frac{1}{2}N_{n}+1}^{N_{n}} \sum_{j=1}^{\frac{1}{2}N_{n}} P(x < L_{n}^{*} \le x + 2q_{n}^{\frac{1}{2}}/D_{n} | E_{ij}) P(E_{ij}) / P(Q_{n} = -2q_{n}^{\frac{1}{2}}/D_{n})$$

$$= P(x < L_{n}^{*} \le x + 2q_{n}^{\frac{1}{2}}/D_{n} | E_{N_{n},1}).$$
(17)

Set

$$\widetilde{A}_{n} = \{\widetilde{a}_{ni} = a_{ni}, \quad \text{for } i = 1, 2, \dots, N_{n} - 2\},$$

$$\widetilde{B}_{n} = \begin{cases} \widetilde{b}_{ni} = N_{n}^{-\frac{1}{2}}, & \text{for } i = 1, 2, \dots, \frac{1}{2} N_{n} - 1\\ \widetilde{b}_{ni} = -N_{n}^{-\frac{1}{2}}, & \text{for } i = \frac{1}{2} N_{n}, \dots, N_{n} - 2, \} \end{cases}$$

and let $\widetilde{L}_n = \sum_{i=1}^{N_n-2} \widetilde{b}_{ni} \widetilde{a}_{n_{nni}}$, where $(\widetilde{R}_{n1}, \dots, \widetilde{R}_{nN_n-2})$ is a random vector, each of the (N_n-2) ! permutations of $(1, 2, \dots, N_n-2)$ being with the equal probability $1/(N_n-2)$!. Similarly, as in the derivation of Eq. (11), we can prove that

$$P(x < \widetilde{L}_{n} \leq x + 2q_{n}^{\frac{1}{2}}/D_{n}) = \Phi((x + 2q_{n}^{\frac{1}{2}})/\sqrt{2p_{n}}) - \Phi(x/\sqrt{2p_{n}}) + o(N_{n}^{-\alpha}).$$
(18)

It is easy to see that

$$P(x<\tilde{L}_n \leq x+2q_n^{\frac{1}{2}}/D_n) = P(x< L_n^* \leq x+2q_n^{\frac{1}{2}}/D_n|E_{N_n,1}).$$

From this relation and Eq. (15), (16), (17), (18), we oatain

$$I_{2} = \frac{1}{4} \left(\Phi\left((x + 2q_{n}^{\frac{1}{2}}) / \sqrt{2p_{n}} \right) - \Phi\left(x / \sqrt{2p_{n}} \right) \right) + o(N_{n}^{-\alpha}).$$
 (19)

In a similar way we can derive that

$$I_{3} = \frac{1}{4} \left(\Phi\left(x / \sqrt{2p_{n}} \right) - \Phi\left(\left(x - 2q_{n}^{\frac{1}{2}} \right) / \sqrt{2p_{n}} \right) \right) + o\left(N_{n}^{-\alpha} \right). \tag{20}$$

From (12), (13), (14), (19), (20) we obtain

$$P(L_{n} \leq x) = \Phi(x/\sqrt{2p_{n}}) + \frac{1}{4} \left(\Phi\left(x + 2q_{n}^{\frac{1}{2}}\right) / \sqrt{2p_{n}} \right) - \Phi(x/\sqrt{2p_{n}}) \right)$$

$$- \frac{1}{4} \left(\Phi\left(x/\sqrt{2p_{n}}\right) - \Phi\left(x - 2q_{n}^{\frac{1}{2}}\right) / \sqrt{2p_{n}} \right) + o\left(N_{n}^{-\alpha}\right) \right)$$

$$= \Phi(x) + \Delta_{1} + \Delta_{2} + o\left(N_{n}^{-\alpha}\right),$$
(21)

where

$$\begin{split} \varDelta_1 = & \Phi(x/\sqrt{2p_n}) - \Phi(x) \,, \\ \varDelta_2 = & \frac{1}{4} \big\{ \, \Phi((x + 2q_n^{\frac{1}{2}})/\sqrt{2p_n}) - 2\Phi(x/\sqrt{2p_n}) + \Phi((x - 2q_n^{\frac{1}{2}})/\sqrt{2p_n}) \big\} \,. \end{split}$$

First we observe that

$$\begin{split} & \varDelta_{1} = \int_{x}^{x/\sqrt{2p_{n}}} \frac{1}{\sqrt{2\pi}} \, e^{-\frac{1}{2}t_{2}} \, dt = \int_{-x}^{0} \frac{1}{(\sqrt{2p_{n}}-1)} \, \frac{1}{\sqrt{2\pi}} \, \exp\left\{-\frac{1}{2} \left(t + \frac{x}{\sqrt{2p_{n}}}\right)^{2}\right\} dt \\ & = \frac{1}{\sqrt{2\pi}} \, \exp\left\{-\frac{x^{2}}{4p_{n}}\right\} \int_{0}^{x\left(\frac{1}{\sqrt{2p_{n}}}-1\right)} \, \exp\left\{-\frac{1}{2} \, t^{2} + \frac{xt}{\sqrt{2p_{n}}}\right\} dt \\ & = \frac{1}{\sqrt{2\pi}} \, \exp\left\{-\frac{x^{2}}{4p_{n}}\right\} \int_{0}^{x\left(\frac{1}{\sqrt{2p_{n}}}-1\right)} \left(1 + \frac{xt}{\sqrt{2p_{n}}} + O(t^{2})\right) dt \\ & = \frac{1}{\sqrt{2\pi}} \, \exp\left\{-\frac{x^{2}}{4p_{n}}\right\} \left[x\left(\frac{1}{\sqrt{2p_{n}}}-1\right) + \frac{x^{3}}{2\sqrt{2p_{n}}} \left(\frac{1}{\sqrt{2p_{n}}}-1\right)^{2} + O\left(\left(\frac{1}{\sqrt{2p_{n}}}-1\right)^{3}\right)\right]. \end{split}$$

Since $1/\sqrt{2p_n} = 1 + q_n + \frac{3}{2} q_n^2 + O(q_n^3)$, we have

$$\Delta_{1} = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^{2}}{4p_{n}}\right\} \left[x q_{n} + \frac{3}{2} x q_{n}^{2} + \frac{x^{3}}{2} q_{n}^{2}\right] + o(q_{n}^{2}). \tag{22}$$

Secondly, we observe that

$$\Delta_{2} = \frac{1}{4\sqrt{2\pi}} \left\{ \int_{x/\sqrt{2p_{n}}}^{(x+2q_{n}^{\frac{1}{2}})/\sqrt{2p_{n}}} - \int_{(x-2q_{n}^{\frac{1}{2}})/\sqrt{2p_{n}}}^{x/\sqrt{2p_{n}}} \right\} e^{-\frac{1}{2}t_{2}} dt$$

$$= \frac{1}{4\sqrt{2\pi}} \left\{ \int_{0}^{2q_{n}^{\frac{1}{2}}/\sqrt{2p_{n}}} \left(\exp\left(-\frac{1}{2}(t+x/\sqrt{2p_{n}})^{2}\right) - \exp\left(-\frac{1}{2}(t-x/\sqrt{2p_{n}})^{2}\right) dt \right\}$$

$$= \frac{1}{4\sqrt{2\pi}} \exp\left\{ -\frac{x^{2}}{4p_{n}} \right\} \int_{0}^{2q_{n}^{\frac{1}{2}}/\sqrt{2p_{n}}} \left[-\frac{2xt}{\sqrt{2p_{n}}} + \frac{xt^{3}}{\sqrt{2p_{n}}} - \frac{1}{3} \left(\frac{xt}{\sqrt{2p_{n}}}\right)^{3} + O(t^{4}) \right] dt \right\}$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{x^{2}}{4p_{n}} \right\} \left\{ -xq_{n}(2p_{n})^{-\frac{3}{2}} + xq_{n}^{2}(2p_{n})^{-\frac{5}{2}} - \frac{x^{3}}{3} q_{n}^{2}(2p_{n})^{-\frac{7}{2}} \right\} + o\left(q_{n}^{\frac{5}{2}}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{x^{2}}{4p_{n}} \right\} \left\{ -xq_{n}-2xq_{n}^{2} - \frac{x^{3}}{3} q_{n}^{2} \right\} o + (q_{n}^{2}). \tag{23}$$

Combining (21), (22), (23) and noticing the fact that $e^{\frac{x^2}{4p_n}} = e^{\frac{x^2}{2}}(1+O(1))$, we get

$$P(L_n \leqslant x) = \Phi(x) - \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \left(\frac{1}{2}x - \frac{1}{3}x^3\right) q_n^2 + o(q_n^2).$$
Since $\operatorname{Var} L_n = \frac{N_n^2}{(N_n - 1)} \mu_2(A_n) \mu_2(B_n) = N_N/(N_N - 1) = 1 + O(1/N_n)$, we get
$$F_n(x) = P(L_n \leqslant x \operatorname{Var} L_n) = \Phi(x) - \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \left(\frac{1}{2}x - \frac{1}{3}x^3\right) q_n^2 + o(q_n^2).$$

Inserting x=1, we get

$$||F_n - \Phi|| > |F(1) - \Phi(1)| > \frac{1}{6\sqrt{2\pi e}} q_n^2 + o(q_n^2).$$

From this and assumption (5), assertion (ii) follows and the proof is concluded.

Theorem 2. For an arbitrarily given non-increasing positive-valued function $\varphi(x)$, $\varphi(x) \rightarrow 0$ as $x \rightarrow \infty$, there exist $\{A_n\}$ and $\{B_n\}$ satisfying the conditions N and W

respectively, such that the distribution F_n of $(L_n - \lambda_n)/\sigma_n$ convergescto Φ , but for n large enough $||F_n - \Phi|| \geqslant \varphi(N_n)$.

Proof Choose arbitrarily a sequence of positive even integers N_n such that $N_n \to \infty$ as $n \to \infty$. Then $\varphi(N_n)$ is a sequence of positive numbers with $\varphi(N_n) \to 0$. Choose a sequence of positive numbers $\{q_n\}$ such that (1) $q_n^2 \ge 12\sqrt{2\pi e} \, \varphi(N_n)$ for all large n, $(2) q_n^2 N_n^{\alpha} \to \infty$ as $n \to \infty$, (3) $q_n \to 0$ as $n \to \infty$.

Then $\{A_n\}$ and $\{B_n\}$, constructed according to Theorem 1, satisfying the conditions N and W respectively, are such that

$$||F_n - \Phi|| \geqslant \frac{1}{12\sqrt{2\pi e}} q_n^2 \geqslant \varphi(N_n)$$
 for all large n ,

which proves Theorem 2.

In Theorem 1, if we construct A_n and B_n with $q_n = N_n^{-2c}$, where $c \in (0, \frac{1}{2})$ is a constant, then $\{A_n\}$ satisfies a condition stronger than the condition N, i. e.

$$\mu_r(A_n)/[\mu_2(A_n)]^{r/2} = O(N_n^{(\frac{1}{2}-\delta)r-1}).$$
 (24)

We shall say that $\{A_n\}$ satisfies condition N_o if (24)holds. In this case we have $\|F_n - \Phi\| \geqslant CN_n^{-4c}$. Therefore we get

Theorem 3. For each $c \in (0, 1/24)$, there exist $\{A_n\}$ satisfying the condition N_o and $\{B_n\}$ satisfying the condition W, such that

$$||F_n-\Phi|| \geqslant CN_n^{-4c}$$

where F_n is the distribution of $(L_n - \lambda_n)/\sigma_n$ which is the standardized linear permutation statistics generated by $\{A_n\}$ and $\{B_n\}$, while C is a constant independent of n.

Remark 1. If the bound M in (2) is dependent of r, we say that $\{A_n\}$ satisfies the condition W^* . In Theorem 1, choose N_n being 6n set

$$B_n = \begin{cases} b_{ni} = 1/\sqrt{3n} \text{ if } i = 1, 2, \dots, 2n, \\ b_{ni} = -1/2\sqrt{3n} \text{ if } i = 2n+1, \dots, 6n, \end{cases}$$

and define $\{A_n\}$ as before, then we can prove $\|F_n - \Phi\| \geqslant Cq_n^{3/2}$.

Hence we have

Theorem 3' If $c \in (0, 1/18)$ is a constant, then there exist $\{A_n\}$ satisfying the condition N_o and $\{B_n\}$ satisfying the condition W^* , such that $||F_n - \Phi|| \geqslant CN_n^{-3c}$.

Remark 2. Since the estimate (29) in [3] is not true, we cannot know whether the assertion of Theorem 3 in [3] is true. If so, Theorem 3 and Theorem 3' would be valid also for $c \in (0, 1/8)$ and $c \in (0, 1/6)$, respectively.

References

^[1] Wald, A. & Wolfowitz, J., Ann. Math. Stat., 15 (1944), 358-372.

^[2] Noether, G. E., Ann. Math. Stat., 20 (1949), 455-558.

^[3] 陈希孺,应用数学学报,4:4 (1981), 342-355.