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Abstract

In his pervious paper®], Prof. Chen Xiru proposed a question: can the rate of
asymptotic normality of linear permutation statistics be arbitrarily slow when one of {4}
and {B,} satisfies the condition W and the other satisfies the condition N9 This note shows
that it can. Moreover, a wrong statement about this problem is corrected.

§ 1. Introduction

Let -An= {05”1,
of real veotors, and {Rui, +-*, Ran,} be a random vector with a uniform distribution

eor, @py,} and By={bu1, **, baw,}, n=1,2, =, be two sequences

over the set of all permutations of (1, 2, -+, N,), where lim N,=oco, Call

00 N

Na
Ln = g} bni 7Y (1)

the linear permutation statistios generated by A, and B,. Define

R
7 Nn & n

! Ny, _.
11e (Ag) = 1\% 3 (Gm—Gn)", n=1, 2, -, and r=2, 8, +,
n t=l

and similarly for b,, w.(Ba). We have

o BT Ny, 03 Var Ly gy pia(ds)pa(Be)-
Wo say that {4,} satisfies the condition W or N, if
SUp iy (Ay) /(12 (Ar) 17*<M <00, for each integer r>3 (2)
or .
Tim N, 7% 1, (4n) /12 (4s) 172 =0, for each >3 @

respectively, where M is iudependent of 7. Likewise for {B,}.
The well-known theorem of Wald-Wolfowitz-Noether [1, 2] guarantees the
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asymptotic normality of (Liy— An) /0 under the condition that one of {4,} and {B,}
satisfies the condition W while the other satisfies the condition N. Recently, Chen
[8] considered the rate of this convergence and obtained some results. Among the
results in Ohén’s paper, there is an. attempf to establish the faot that the above-
mentioned convergence rabe can be arbitrarily slow when {4.} and {B,} both
satisfy the condition N. Buf in reality, his result does not establish this faot for
obvious reason. One aim of this note is to establish the correct result (Theorem 2 of
the present paper. Note the difference between our Theorem 2 and Theorem 4 of[3]).

Chen also proposed the question: does this result remain true in the case that one of
{A,} and {B,} satisfies the condition W and the other satisfies the condition N? The

second aim of this note is 10 answer afirmatively this question (Theorem 2, 100).

 §9. The Main Results and Proofs

Choose a sequence of even positive iptegers{N o} with lim N,=o0,and a sequence

of striotly decreasing positive numbers {g.},such that
lim ¢ N¢=oc0 (4)

and
lim¢,=0, . (5)

n—roo

where 0<a<1/6 is a constant. Without 1OSing generality we assume that ¢y <-%— for
all n==1. Write p, ==—§—— - Define

'“M::l/Dn fOl"I'/=1, 2; °°y [PﬂNn]
“ni=—1/D» for 'i’=[pnNn] +1; °*ty 2[1pnNn] _
Aa=1 g, =0 for i =2[paN.] +1, ++, Na—2 (6)

11
L“an—:L: QE NZ/Dy=—sn,,

21
=N fori=1,2, -, =N,

Bn—' 1 1 (7)
lbni= —N, % for 73==——2— Ny+1, <, Ny,
where
D2=N;*(2[palVsl +2¢,N») =1—20,/N,, 0<0,<1, (8)

Tt is not difficult to verify that {4,} satisfies the condition N with a,=0 and pua(4s)
—1 while {B,} satisfies the condition W with 6,=0, [bg (By) =1/Na,

Denote by L, the linear permutation statistio gemerated by A, and B, and
denote by F, the distribution of Ly/ NVar Ly,

Theorem 1. Under the above notations we have



No. 2 Bai, 5. D. NOTE ON RATES OF NORMALITY OF STATISTICR 237

(i) Fy N D, as n—>»oo,
(i) |Fp—B|=c g2, for nlarge enough, where ¢ is @ positive constand éndependent

of n.

Proof Assertion (i) follows from Noether’s Theorem. For the proof of (:.1), sotb

A:_‘{wm-—wmfor@ =1, 2, -, N,—2, ©

ay, =0 fori=N,—1, N,,,
Ny . . .
and Lf =3 by asg,,. It is easy to verify that {4,} satisfies the condition W. Denote by
=1

F* the distribution of L;. By Theorem 1 in [3]
sup | F2(@) — B (w/~/2p) | <sup| P(Li/~/Var Li<a/~Var Ly ) = (w/~/Var ;)|
[ @

+sup |® (w/ v/ Var Lz) —B(w/~/2ps) |
—o (N3 +sup | B (a/~/Var L) — (o/~2pa)|.  (10)

Since Var L= (2 [PaN1/D2) =2p,(1+0(1/N,)), the second term on the right

- hand side of (10) is equal to O(1/N,). Hence
sup | Fn(@) — —&(0/~/2ps) | =0 (W), )

Lot @,=L,—L,. By the deﬁm‘mon of A,, A and B,, we see that Q,. assumes
only three poss1ble values: 0 and & /D Thus we have
P(L,<&) = P(In<a, @=0)+P(Ls<w, Qy=—2¢; /Dn>+P(L,,<w Qn= 241,/1?,.)
=P(Li<w, @=0)+ P(Li<0+247/Dy, Qu=—2¢? /D)

1 1 ,
+P (Li<w—2¢7/D,, Qn=2q,%/Dn)=Il+Iz—Is, , (12)
where
' I,=P(Li<w),

1 ' 1 ’
I,=P(s<L, <@-+2¢2/D,, Qn=“2q3/Dn) v (18)

1
' Is= P(w-—2g,?/Dﬂ<L <2, Qn_2q /-Dn)
Applying Eq. (11), we have

I;=B (a/~2p) +o(N.%), (14)
Furthermore
1 L 1 ‘
I,=P (‘U<L:<lb’+2qz/pn | Q= — 2¢2/D,) P(Qy=— 297 /Dy), (15)
It is easy to compute that |
P@u= 24t (L W /mw-=Trowmy,  a®

. 1 2
On the other hand, We\can split the event (Q,= —2¢2/D,) into <-%— N ,,) mutual-
dlsjo:lnt eVéntS Eij'——_ (.Rm\r”_1=’l:, RﬂNn=j>: ’l,=-% Nﬂ+1) °*t Nn; .7=1) s —%_ Nn. |
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T4 is easy to see that
1 1 :
P(w<L:§<zv+2q,%/Dn|Ei,-)=P(w< *<w+2¢2/Dy| By, 1)

for'i;=—:'2i- No+1, +«, No; j=1, -, —%—N”. Henoe

1 1
P(w<L:<w+2qJ%“/Dlen— —2g2 /D)

= 2 EP(w<LZ<w+2q #/D, IEu)P(Eu)/P(Qr—2q 7/Dn)

_1y a1 =1

2
=Pa<Is <w+2qé—/an By,1).
Set
A = {Gm=an, fori=1,2, = Na=2},
| b= NoE, fori=1, 2, -, —%—N»"l
B, .
by=— N2, for i=—5 Ng, -, N.—2,}

1n

o~ Ny—2 ~ .
and lot Ly= 2 DuiOn,,y Where (Bat, *+, R,y,—») is a random vector, each of the

(N,—2) ! permutations of 1, 2, -, Ny—2) being with the equal probability 1/

(NV,~ 2) 1. Similarly, as in the derivation of Eq.(11), we can prove that
P(w<Ln<w+2qn/Dn) — D ((5-+2g2) / N/3pw) — B/ ~/2pw) +0 (N,
Tt is easy to see thatb

. _
P(a:<L,,<w+2q 3/D,) = P (o< Li<o+2¢7/Da| By,.1).
From this relation and Eq. (15), (16), (17), (18), we oatain

1,= 1 (0 (o 20D)/ VT~ B/ T+
In a similar way we can dorive that
13=.i<@<w/~/z“p”>—@<<w.—zé‘f>/~/2’§;>>+o<N;“>.
From (12), (18), (14), (19), (20)we obtain
P (L) =0 (@/ N5 -+ (& @+248) N B0) - @W@;))

———@(W«/TJ)- D (x—247 )/\/210»))+0(N”“))
=®(x) A+ oo (N7,

where : v
A1=d5(w/\/§§;) -0 (),

o = 1L D@+ 20D 29 — 200/ N2) +((o~20D) /)]

Pirst we observe thatb

(18)

(19)

(20)

(1)
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el P uf el -Hor ) o

1 2 v21’n-1> 1 wt
=T exp{ } , { —Q—t?—l— ,-——2pn}dt

f,
“‘1 oxp |~ 4@” T (0 )
ol

—={——— s o ()L

Since 1/M2p, =1+4¢n+ 3 ¢2+0(g2), we have

= w2 3 2 a;3 2 2
v \/_av exp { TN }[m It @Gt 5 qn] +o(gh). | (22)
Secondly, we observe that

| A2=———~1; { J (weadu) /2 _ j o3 .}e“%*ﬂdt

AN 20 |Jovam; (e—2b )25

==ﬁé—?{qug/vm<exp(—%(t+w/\/2§:)2>——exp<—%—(t-w/d%)ﬂdt}

0

e N v e e v RS

L ca Fwar@p) F - 2 op) 4o (gF
= o eXpP 4 — Don “an(gpn) +xQn(2Pn) ""—3‘— Qn(gpn) +o0 (Qn)

1 i &
= 4\/—271;— eXDp {" 429” }{ Bqn— 20 gn 3 Qn}o'l" (%&) (23)

Combining (21), (22), (23) and noticing the fact that ¢ i T @+0@)), we
gotb

_ __1r—%wag__1_3 o s
P(Ly<a) ~0(a) ~ = (5 o—5) dd+ol@d.

Sinco Var Ly=- NN 5 (A iz (B) =N/ (Ny—1) =1+ 0(L/H.), wo got
el 1 ;
Fo(@) = P(Ln<a Ver L,) = (a) - \/2 1 (G o5 0°) diro@d.

Inserting s=1, we get

|Fo—@|=|F (1) —2() | N +o(gd).

From this and assumption (5), assertion (ii) follows and the proof is
concluded. |

Theorem 2. For an arbiirarily given mon-increasing positive-valued fumction
o (@), @(@)—>0 as a—>00, there ewist {Au} and {Ba} satisfying the conditions N and W
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a~63pectwelry, such that the distribution Fy of (Ly—2An) /0w confvergescto @, but for n Zarg@
enough | Fo— @] =p(Nu).

Proof Choose arbitrarily a sequence of positive even integers N, such that
N,—>o0 as n—>o0. Then ¢ (IV,) is a sequence of positive numbers with @(N,)—>0. Choose
a sequence of positive numbers {¢,} such that 1) ¢2=>1242me p(N,) for all large =,
(2) g2N%—>c0 ag n—>c0,  (8) g0 as n—>o0,

Then {4,} and {B,}, constructed according to Theorem 1, satisfying the
conditions N and W resp‘eotively, are such that

| F— D> 2> (N,) for a11 large n,

12 /——— q
which proves Theorem 2.

In Theorem 1, if we construct A,. and B, w1th gn=N,%, where cE( %) is a

constant, then {4,} satisfies a condition stronger than the condition NV, i. e.

(A Ta (A 17 =O(N, &0, (24)
We shall say that {4,} satisfies condition N, if (24)holds. In this case we have
| F,—®|>O0N;*, Therefore we get
Theorem 3. For each ¢ € (0, 1/24), there ewist {44} swtzsfymg the condition N,
and {B,} satisfying the condition W, such that
| Fo—@| =0N*,
where F, is the distribution of (Ln—M)/0n which is the standardized linear
permutation statistics generated by {A,} and {B,}, while O is a constant independent of n.
Remark 1. If the bound M in(2) is dependent of r, we say that {4,} satisfies
the oondltlon W*. In Theorem 1, choose NV, bemg 6n set
bu=1/~38nif ¢=1 2, -+, 2n,
””{ b= —1/24/3n if i=2n+1, -, 6n,
and define {4,} as before, then we can prove [Fs —@| >Oq3/2.
Hence we have
Theorem 8 If c€ (0, 1/18) is a constant, then there ewist {Au} samsfymg the
condition N, and {Ba} satisfying the condition W*, such that | Fy—@|=ON;*,

Remark 2. Since the estimate (29) in [3] is not true, we cannot know

whether the asserfion of Theorem 8 in [3] is true. If so, Theorem 8 and Theorem 3’
would be valid also for ¢€ (0, 1/8) and ¢€ (0, 1/6), respectively.
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