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Abstract

For reduciblé quasilinear hyperbolic systems and for general quasilinear hyperbolie
systems of diagonal form in two independent variables, some sufficient conditions satisfied by -
the system itself are given tc guarantee the existence of nontrivial global smooth solutions

- in the whole (¢, x) spé,ce. ' '

§ 1. Introduction and Principal Results

Tt is well known that, for the Cauchy problem for first order quasilinear
hyperbolic systems, in general the solution may occur singularities in a finite time,
even if the initial data are smooth. However, some additional conditions on -the
system and on the initial data have been obtained 0 guarantee the existence of
global smooth solutions on $>>0 or to guarantes the development of singularitios in a
finite time (of. [1, 2] and their references). In this paper we consider ingtead of the
Cauchy problem the global solvability in the whole (¢, #) space for first order
quagilinear hjperbolic systems. That is, we are going to determine the conditions
satisfied by the system itself in order that the system admits global smooth solutions
in the whole (£, ) space (GSSWS). '

In the case of a single quagilinear equation, a necessary and sufﬁment condition
has been given in [3, 4] for the existence of GSSWS. In particular, the equation

aU +x<U) 1.1)

possesses nontrivial (i. e. = constant) bounded GSSWS iff there exists an interval
(U3, Ua] such that S o
N@U)=0, YUEIU, Usl. (1.2)
That is, equation (1.1) must be essentially linear on the domain under consideration.

Thig paper will deal with the same kind of problems for first order quasilinear

Manuscript received August 10, 1982,



242 . CHIN. ANN. OF MATH. Vol. 5 Ber. B

hyperbolic systems in two variables ¢ and @. For a reducible hyperbolic syétem,
introducing the Riemann invariants r and s ag new unknown functions, we can

reduoe the system to the following diagonal form

—aT—-I—?»(fr, s)—?—r':-=0,

ot - ow (1.8)
08 0s '
’a‘t‘“”(“"’ 3)-5;*—0,

where we suppose that on the domain under consideration A and p are smooth and
gystem (1.8) is striotly hyperbolic:
| M, 9>l 8). | .4
We restrict ourselves here to nontrivial GSSWS, here “pontrivial” means that
any unknown function is not equal o a constant. otherwise, the conclusion will be
trivial (when the unknown function are all equal to constants) or ‘we oan reduoce the
original problem to a gimpler problem in which equations and unknown functions
have deorease_d in pumber (when a part of unknown functions are equal t0 congtants).
Using the results in [1] (Theorems 2 and 8), it is easy 1o got the following two
Theorems. '
~ Theorem 1. If one characteristic value (say, \) of system (1.8) ds genwinely
nonlinear in the sense of P. D. Law:
%#0 | (1.5)
on the domain under consideration, then for any bounded GSSWS of system (1.8) (if
ét ewists) @t aiwwys holds that
. r=conss. - (1.6)
This is a trivial case in our disoussion. :
Theorem 2. If the characterisiic values ) and w are of the following special form

{ A(r, s) =Au(r) +Aa(s),
p(r, 8) =pa(r) +pa(s),
then system (1.8) admits nontrivial bounded GSSWS iff there exist intervals [ry, T2
and [s1, ss] such that

@

{Nl(r) =0, Vr€[ry, ral, (1.8)

wo(s) =0, V € [s1, sl
The main aim of this paper is t0 prove the following
Theorem 3. Suppose that there ewisi intervals [r1, 7o) and [s1, 821 such that

7\'(;} g) >”’(?) §>; V ;: ?e [’)"1, /’;2]) g; §E [81; 32]. : . (1.9) |
Suppose further that there ewist To, So Such 1hat - .
1o € [r1, 7ol o€ [s1, 821 (1.10)

and
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_g% (r, so0)=0, Vo€ [ry, ral,
‘ (1.11)

—%—:—(To, 8) -=—O, VSE [31: 82],

Then system (1.8) admits nonirivial bounded GSSWS.
Tt is well known (of. [1]) that if system (1.8) i linearly degenerato in the sense
of P. D. Lax: ' -

o\ 0 '
20, 2= @12

on the donﬁain under consideration, then for arbitrary initial data with bounded O
norms, system (1.3) always possesses a unique GSSWS. Theorem 8 shows that in
order to get the existence of nontrivial GSSWS, system (1.3) is not necessary to be
linearly degenerate. We.can also find a concrete example in [B] to explain this fact.
Besides, from Mheorem 2 it follows easily that condition (1.11) in Theorem 8 is
necessary under assumption (1.7), but it is still a questioh if condition (1.11) is

also necessary for the general case.
Applying Theorems 1 and 8 to the system of the nonlinear vibrating string

2t k(r—s) G0, ~

. ; (k>0) (1.18)
8'._...

5 b9 55 =0

we get immediately »

Theorem 4. (i) If there exists an interval [y, o) such that

: ¥ (a)=0, Y a€ [0, 0], {.14)

then system (1.18) admits nontrivial GSSWS; ‘ ' _

(i) If k'+0, then all GSSWS of system (1.18) are wivial: r=oconst. and s=const.

In Sec. 2 we shall at first state a generalization of Theorem 8 to general -quasili-
near systems of diagonal form with n equations, then give the proof of this general
result. In Seo.3 we shall disouss briefly the case of non-striotly byperbolic systems.

§ 2. Global Solvability in the Whole Space for
Quasilinear Systems of Diagonal Form

In this sec’oidn we shall congider GSSWS for the following quasilinear system of
diagonal form '

. yp oy Domo (1, -
Ve au(0) =0 (=1, v ), @.1)
in which U= (U, ***» Un). o

" Theorem b. Suppose that there exists UD and T® such that

MO) >0, VU V€ U, U], (b=1, -, n) (2.2)
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for i, j=1, +-, n and i<j. Suppose further that there exists U such that
UPEelUP, UP] (=1, -, n) (2.8)
and .
37“‘ 27U - U, Uy, UR, -, UD)=0, YU.EUPL, U] 2.4

for i=1, ¢, n. Then system (2.1) admits nontrivial bounded GSSWS.

Obviously, Theorem 5 is a direct generalization of Theorem 3.

Proof Tt is sufficient to prove that under the assumption of Theorem b we ocan
suitably choose a bounded initial data o (@) = (p1 (@), +*, pu(®)) such that the Cauchy
problem | ' ' . ' -

{ (2.1), @ 5)
t=0: U=p (@) )
admits a nontrivial global smooth solution on both ¢>0 and ¢<0.
“For ¢=1, -+, n, lot g;(¢) be smooth and satisfy
{7 =U®  for|a|>Y; 2.6)
pi(@) € [UP, UP] for || <1 '
and '
sup | g (@) | #0. | 2.7)
In what follows we shall prove that if
1= sup |pi(@)| (2.8)

weRl

is suitably small, then the Oauchy problem (2.5) with ‘the ehosen initial data @ (o)
gives a nontrivial bounded GSSWS of system (2.1).

According to the well known results on the exigtence of local smooth solutions to
the Qauchy problem for first order quasilinear hyperbolic systems (of. [6]), in order t0
get the existence of global smooth solutions on =0 for the Cauchy problem (2.5), it
ig sufficient to prove that for any To>0, if the Oauchy problem (2. ) admits a C*
solution on. the domain

R(T) ={(t, #) |0<i<T, |o[<oe} (T<T0), (2.9)
the O* norm of the solution on R(T") depends only on T. '

Since the C° norm of the solution is casy to estimate, we need only to pay our

U, (6=1

am 24 ...} n)e

Lot w=a(t, &) be the i-th characteristic curve passing through. the point (0, o)

attention to the estimation of the C° norm of the first derivatives ———

{ Ills @) 0@ (4, alt, ), @), T" G ats @), (2.10)
CU,;(O, a) =a,
in which ’

U'= (Ui, s Ue-i), U'"= (Ui+1: *t Un). (2'11)

Since U;(¢, m(t, «)) =¢i(x) Wwe have



where

and
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Gt at, ) ——a-fﬁ‘"  ew
%5,
Differentiation (2.10) in « gives
%{%(t, o) =3F(f.a)<1+q)f; (a)j o\ (U’(q;' (7, a)), pi(a), " (v, (7, Oﬂ)))e“F(""'“)dqz)

(2.18)

P, )=[ B2 6 als ), 0, U6 als )+ 22 (s, (s, a))ds.
- (2.14)

Using condition (2.2) and notlomg the definition of p(v), it is easy 1o see that
there exists & constant T'y>0 independent of 7 suoh that for :>T74,

Supp 2% 3U* (t %) ﬂSupp——-—-—(t o) =0, i#j] (2.15)

w5, Vw;GSupp—————(t x), a:;ESupp-—-—’-(t w), ©<j. (2.16)

Tor t<<T'y we have the fellowing
Lemma. If7is suitably small such thwt

L 2enMT , @47
i which .
M= sup My \ | (2.18)
i, j<n Uj .
: U(kemg) , U1
then for the smooth solution U=U(, @) on R(T) (T<-T1) it holds that
oUu 1
m(T)= sup \———‘-.(t, w)\<———~—. (2.19)
S T
Prroof From (2.13) and (2.14) we have .
393¢ (t o) e~mHin®) 1—n Mtethm(t)) 1 (2.20)
Tntroduce the set '
{t|0<t<T 1—the"Mt"'“>>%—} (2.21)

Obviously, I" is a closed gob in [0, T]. We point out that I is also a relatively open
ot in [0, T]. In fact, if to €I, then [0, %] € I', henoe for any € [0 tol,

ow, _i_ —nMim(t)
o0~ 2 ¢ °
‘Thus, ib follows from (2.12) that for ¢ € [0, fol

\ ou, (t, o) ‘ <2, oI, . ' (2.22)

‘hence ‘
m(E) < Qe ® < Qe HTID (2.28)
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Consgider the function

n(m) = ", (2.24)
o . 1 1 o
- [ =
For m>0, n(m) attains its maximum ST, at m= T, and
n(0) =n(+00) =0,
Noticing (2.28) and m(0) =n, it follows from (2.17) that for $€ [0, %],

m () <—rm— (2.25)

1
nMT,y’
then 1 — Mg tomto =1 — g MTe>1— -2;L—>% .

From thig it is easy. to see that I' ig open in [0, T].

Hence, I'=1[0, T7]. Takmg to—-T in (2.2b), we geot 1mmed1ately (2.19). The
proof of the lemma ig completed.

For t>T,, assumptlon (2 4) gives
3"1% (i @) =eFH (2.26)

Now we use the method in [7] to estimate F (¢, ). Passmg through a point
(¢, o:.(4, «)) on the i~th characteristic curve w=w(¢, &), we draw the j-th (j#4)
characteristic curve downwards which intersects the s~axis at the point (0, 45 (¢, @),
then

Uy(s, @i(s, @) =@; (@i (s, o). (2.27)
Thus, from the j—-th equation of (2.1) we get '
Wi (s, s, @) =g DL s, 0, o)) =g 04 4o, @) PG,
(2.28)
hence _ oo O 7))
F(, a)=§L’ EU_;‘%‘:X;@‘ (2.29).
Noticing that there exists a constant Oy >0 such that
| |} (¢, &) ~a| <O, (2.80)-
From (2.29) we get
' | F (¢, o) | <O, (2.81)

where Cy>0 is a constant. :
Thus, from (2.26), (2.81) and (2.12) it follows that for the smooth solutlon.
on R(T) it holds that

sup
@wER

———-(t a:)\<0'26‘7°’ 4=1, o, m, V€ (T, T, (2.82).

where O, ig a positive constant.
The combination of (2.19) and (2.82) gives the uniform estimation for the C*
porm of the solution on B(T) (T<Ty), then the Cauchy problem (2.5) possesses a
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nontrivial global smooth solution on ¢>>0. It is the same for #<<0. Therefore, the

theorem follows. \ :
Theovem 6. Suppose that i—th chwmctem}stq}c value s genuinely nonlémear in the

sense of P. D. Law:

M
070 (2.83)

on the domain under consideration. Then for any bounded GSSWS of éystem 2.1) Gf

it ewists), either
U,=oonst, (2.84)

/ n
or for any fiwed 1 € R, there are at least two functions from %%— and ?gm—’ which are

ot absolutely integrable on R
Proof Let p(w) be the corresponding initial data of this GSSWS. If the theorem

does not hold, without loss of generality, we may assume thab

. oM
(1). | iRl >0., (2.86)
(i) there oxists ap such thab

i (o) =204 (0, @) >0, (2.86)

and (iil) @j@) is absolutely integrable on R for j i, m,
Define the function A(U) by

oh _ i Ohi
B0, Tt 0. @-8D)

From (2.14) and (2.28) we geb

o\
| #, o= a2 (G ). (2.38)
Noticing assumption (iii), it is easy 10 soo from (2.88) that F(t, o) is bounded.
|F (¢, o) | <Fo, (2.89)
where F is a positive congtant. » |
Let ' ‘ 4
A=Tnf M >0, (2.40)

ou; .
Using (2.86) we have

1+¢} (o) ﬁ —_—gl?\i ~F@ 00 <1+ g} (o) Ae™™°%.

Then, from (2.18) ib gollows that when § increases, the denominator %%‘ (t, o) Of

(2.12) musb change its sign in 2 fnite time, hence the soltuion of the gorresponding
Qauchy problem on +=0 must develop gingularities in a finite time, Therefore we

obtain the theorem by contradiction.
Theorem 1 is a simple corollary of Theorem 6.
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§ 3. Remark on Non-Strictly Hyperbolic Systems

So far all results are obtained for strictly hyperbolic systerms. For non-strictly
hyperbolic systems, the situation will be quite different. As a simple example,

consider the following system
'- or
ot

o ﬁ
ot ox
which possesses only one family of charaoteristic curves. We have

e CADEA w 0,

(3.1)

4_}'( T, ) =0,

Theorem 7. Suppose that on the domain under consideration

Mg O .
S0, S #0, (3.2)

then system (8.1) always admits nontrivial GSSWS.
Proof T is eagily proved (of. [1]) that the Cauchy problem
‘ {(3 1),

t=0; r=ro(2), s=50() (3.3)

possesses a GSSWS iff
‘ AM(ro(a), so(a)) =const. , V aERY, (8.4)
Under assumption (8.2) it is quite easy to find a pair of functions ro(x) and
so(a) such that both ro(a) and so(e) are not constants end that (8.4) holds. The proof

of Theorem 7 is completed.
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