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Abstract

This paper continues the study of [1]. In this paper, the author discusses when a
subspace of II space is a complete subspace, and gives the structure of general lincar
subspaces (in particular, that of closed linear subspaces).

We adopt the terminologies and notations used in [1],

§ 1. The sufficient conditions for a subspace
to be a complete subspace

According to the definition given in [1], a linear subspace L of II ig called a
complete subspace if it is closed and is also a IT —gpace with inner product (-, *),
Suppose that L is a closed linear subspace. In virtue of [1], Lemma 1.3,
L=Liy®L,®L¢. It follows from [1], Corollary 2.5 and Theorem 2.6 that L is a
complete subspace if and only if . | |
- L®L.=19, I=3(A®%@). = @11
However (1.1) holds if and only if 1€ p(4*4) N p(44"), which ig equivalent o 1€
p(4*4) or 1€ p(44*). Thus the condition for L to be a complete subspace is 1€
o(4*4). This condition is easy to judge. Conversely, if L is a Il-space with inner

‘product (e, ), when is L a complete subspace? i. e., when is L closed? Tt ig the main
.content to be discussed in this section.
First, we use some results of [1] o give the general form of nondegenerate closed
subspaces. |
Theorem 1.1. (The general form of non-degenerate closed subspaces) L 4s & non-
~ degenerate closed subspace of II if and only if the decomposition
L=N®P 1.2)
holds, where N and P are negative and positive closed subspaces respectively, and there
exist complete subspaces I, II' such that
I=I'i", Ncll’, PcIl", (1.3
Proof Sufficiency. The result follows from [1], Oorollary 2.7,
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Nocessity. In view of [1], Corollary 2.2, L=L;@®L,®L$, and 4, defined in
I®%=9(4) (—DJ(A), is a one to one closed operator from P (4) onto Z(4). Since L
is non- degenerate L, is also non-degenerate. Thus 1€ o, (A4*4) Uo,(44%),

For any 0<a<1, by B} and Hj we denote the spectral subspaces of A°A corres-
ponding to [0,a] and (&, o) respectively. Ei@HE,=H _. Let

(= Alm, Ah=A|peow, N'=Ly={{s, Ao}|oCH}.
With an argument like the proof of sufficiency of [1], Theorem 2.6, we have
D(A) =E, D(4)=EsND(4),
R(A) | Z(4y), A=ADA:,

Denote the spectral subspaces corresponding to [0, 1) and [1, o) by Fi and Hs
respectively, H;@®HEs=H_. From what have been proved we see that Aw | Ay for any
aCH, y€cE.ND(4). Letting a—>1, we have Ay | AE,. Thus

N={{a, Ao} |2€ H}

and
P={{w, As}|0€HND(A)}
are respeotively negative and positive subspaces, IV is closed. That P is closed can be
deduced in a way similar to the proof of [1], Theorem 2.6. From 2(4;) 12 (4s),
A (Ay) _Lg?(Ag) 1.2) follows Now put ‘
o = Bi®Z(4y), 1" =E:D%(4s).
It is easy 1o see that (1.3) holds. The proof is complete.

Lemma 1.2. Let L be o negative (or positive) subspace of (I, (¢, =)), which is
& Hilbert space according to — (+, +) (or(+, +)). Then L is a complete subspace of I
if and only if L is still @ negative (or positive) subspace, that is to say, of and only if
L is non-degenerate.

Proof The necessity is obvious. Let’s prove the sufficiency.

With no loss of generality, we assume that L is negative. Since L is a Hilbert
space with — (-, +), it will suffice to prove L=1L,

Since on L the induced topology of I space is stronger than that induced
by — (-, *), and L is dense in T according %o the topology on I, we see that L is dense
in T according to the topology induced by — (e, +). Thus for any ¢ € L, there exist
2y CL (n=1, 2, «-+) such that

lim[— (#s—2, @s—z)] =0, (1.4)

Tt is easy $0 see from (1.4) that {w,} is a Qauchy sequence corresponding to— (s, *).
Since L is a Hilbert space with inner product — (s, +), there exists wo€L such
that

Um[— (sa—a0, ea—@0)] =0, (1.5)

n—oo

By (1.4) and (1.5), we have
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— (w—ao, ®—0) =0, . (1.6)
However &—meEL. Since L is a negative subspace (that is to say, L is mon-
degenerate), we have s=s €L, 1. e. L=1T. The proof is complete.

Theorem 1.3. ILet L be a linear subspace of (I, (¢, +)). If (L, (-, ) és @ II-
space, then L is a complete subspace of II if and only 4f L is non-degenerate.

Proof The necessity is obvious. We show the sufficiency. B

As a II-space, (L, (+, *)) bas a regular decomposition .

| L=N®P, - @m
where N and P are Hilbert spaces with — (s, +) and (¢, *) respectively. -

First, we prove that N is a negative subspace. Suppose it is not. Then there mush
be a neutral vector # in the semi-negative subspace N. Since neutral vectors in a semi-
negative (or semi-positive) subspace should be orthogonal to this subspace, we have
2| N, g0 2| N. Besides, we see N | P because N_| P, therefore z | P. Thus #€ L, and
21 L (since 2z | L), which coniradicts o the assumption that L is non-degenerate.
Therefore N is a negative subspace. ‘

Similarly, one can prove that P is non-degenerate.

In view of lemma 1.2, both N and P are complete subspaces of II. From [1],
Corollary 2.8, it follows immediately that I, is a complete subspace of II. The proof is
complete. ’

§ 2. The standard decomposition of closed subspaces

Definition 2.1. Let L be a linear subspace of II space. If there is @ decomposition
L=N®Z®P ' (2.1)
where the subspaces N, Z, P are negative, neutral, positive respectively, then we call
(2.1) @ standard decomposition of L. If L is @ closed linear subspace, and N, Z, P in
(2.1) are all closed, then (2.1) is called a standard decomposition of closed subspace L,
We have introduced a standard decomposition for IT space before™. That is, II=
N®{Z+Zy@P where Z" and Z are a pair of dual subspaces. {Z-+Z"} is a complete
subspace. _ ‘
Definition 2.2. Let L be a closed linear subspace of II, which has a standard
decomposition (2.1). If there ewisis a standard decomposition of I, II=N1®{Z:1+21}
@P,, such that Zy=Z, PyoP, N 1ON, then we say that the standard decomposition of
L cam be emtended, and we call Il =N \@D{Z +Z*}@P; an extension of standard decom—
position L=N®ZDP, '
The standard decomposition will play a fundamental role in operator theory.
Thus, in this section we mainly show when a closed subspace has a standzard decom-
position, and when it has a standard decomposition which can be extended.
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Theorem 2.1. L is a closed linear subspace of 11 if and only 'zlf there ewists the

following decomposition
O=[IYI®@I®

L=N®ZOP | (2.2)

NclI®, ZclI®, PcO®,
where II® (fz, 1, 2, 8) are all complete subspaces of I, N, Z, P are closed subspace,
and Z is @ mazimal semi-positive as well as a mazimal semi-negative subspace of II®,

Proof From [1], Corollary 2.7, the sufficiency follows evidently.

Now we prove the necessity. From [1], Corollary 2.2, we may assume that L=
Ly, and under the regular decomposition I =H_@H,, A isa closed operator which
ig denge defined, one to one, and whose range is dense in H .,

Denote the eigensubspaces of A*4 and AA* corresponding to 1 by B and F
respectively (possibly, they only contain zero vector). It is evident that B and F are
closed subspaces in H_ and H , respectively. Put II®=E®@F, which is a complete
subspace. For any o € B, lot y=Ax. It i3 easy to see that

Zy=LN L ={{s, Ao} |0€ B} ={{4"y, y}|y€F}. (2.3)
Take Z =Z1. Evidently, Z is not only a maximal semi-positive subspace of II® but
also a maximal gemi-negative one (vefer to [1], Lemma 1.1). Z is naturally a eloged
subspace of II®, Since II® i a' complete subspace, of course, Z is a closed subspace of
I, ’
Put I'=11Q1I?"=(H_OE)®(H . OF). Denote : v
={{n, 4a}|o€ (H-©OE) N2(4)}. (2.4)
' Now we porve I/CII’. Since Z | L, »|y for any «& (H_OE)N2(4), yEE,
we have
0=({z, Aa}, {y, Ay}) = (4w, Ay), (2.5)
Tt follows from (2.5) that A((H_©QE)N2(4)) | F, i. e. L'cIl’,
By [1], Corollary 2.7, L/ is a closed linear subspace of II’, and
L=1'®Z, : (2.6)

Using Theorem 1.1 for I/ II’, we obtain I'=IY@I®, L'=N®P, IPDON
and II®>P. The proof is complete.

" Theorem 2.2. Let L be a closed linear subspace of I1. If L=N,®Z L@PL is a
standard decomposition of L, then it can be extended if and only if Ny, Py are complete
subspaces of II ,

Proof Necessity. Suppose that the standard decomposition II = N®{Z + Z*}®P
ig an extension of the decomposition L=N@Z ;@ Pyr. From Zp=LN L', Ny=NNL,
P,=PNL, it follows that Z;, Nz, Py are all closed subspaces, so that N |, Py are
closed subspaces of complete subspaces (as II-space) N, P. Since N, P are Hilbert
spaces corresponding to — (s, +), (¢, +) respectively, the closed subspaces of N and
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P, N and Py, are also Hilbert spaces with inner products — (e, 0), (o, 2), 1
N1, Py are complete subspaces of II,

Sufficiency. Since Ny is a complete subspace, so is N3 (see [1], Corollary 2.8),
and IT=N;®N% (see [1], Theorem 2.6). Moreover, since Py, is a complete subspace
and P,C Ny, Pz, is a complete subspace of II-space Ni. Therefore

Ni=P,®I', Z,cIl',

Let II'=H" @H ' be a regular decomposition (using [L], Theorem 2.6 and
Corollary 2.8 for IT-space N3, it follows that II’ is a II-space, thus the regular
decomposition exists). Let Pl be projections from I’ onto Hl. Take II®= (PLZ)®
(P.Zy). Since Zy=LNL*" is a closed subspace, and o is a closed subspace of II-space
I, P.Z;, are closed subspaces. Write Z =2y, Z*=J'Z where J' =P, — P_. We have

IO=AZ+ 2%, 42 2.7

I'=09Q(I'OI®), I'ON®=(H.OP.Z,)®(H1QP\Z1).

Put N=N.®(H.OP.Z), P=P,®H.OP.Zy). It follows that the above

standard decomposition IT =N@{Z +Z*}@P is an extension of L=Ni@®Z;®Pr. The
proof is complete. ~

Theorem 2.8. ILet L be a closed linear subspace of II. Then there ewists
standard decomposition Li=NyDZ 1@ P, which can be estended to @ standard decom-
position of the whole space, Il = N®{Z+Z"}®DP, if and only if there ewists @ regular
decompositton I =H_@®H ., under which L=L;®L.®L§, 1€p(4"4) or 1 is one of
isolated spectral points of A"A,

Proof Sufficiency. Suppose that under the regular decomposition II=H ®H,,
L=L;®L.®L¢. Bvidently Zy=LNL'={{s, Ax}|A"Av=8, 0€C 9(4)}. (f 1€
o(4"4), then Zy={0}). Put Z=Z;, Z*=JZ; where J=P,—P_. Take Ni={{s,
A€ By}, Pr={{n, Av}|a€(H_©E_)NZ(4)}, where E; is the spectral
subspace of A*A corresponding to [0, 1). Evidently, if we take ‘

N=N®H-O94)), P=P.®H,O%(4)), Z=1y, (2.8)
then II = N@®{Z+Z*}@P is a standard decomposition which is an extension of L=
N:DZDFr,

Necessity. Suppose that II’={Z+2"} = H.@H is a regular decomposition. Pug
H_=N@®H., H,=PO®H, I=H_@H, is obviously a regular decomposition.
Since Ny and Py, are complete subspaces of N and P respectively, under the decom-~
position IT = H_@H,, it is easy to see that if L is represented by L=L;®L.®Lg,
then when Z={0} we have L,={0}, thus H_=N, H,=P, when Z;+{0}, 1 is an
isolated spectral point of A*4, A is a unitary operator from 9(A) onto Z(A)because
of the particularity of the regular decomposition II =H_@H,. The proof is
complete.

T4 should be noted that the examples can be given easily to illustrate that in the
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decomposition of closed subspace L, L=N'®Z,@P’, N’ and P’ needn’t be closed.
But for the regular decomposition of L (i. e. N/, P’ are closed subspaces), we have
the following results.

Theorem 2.4. Suppose that L is a closed subspace of II, and there ewists a stan-
dard decomposition L=NiPDZ PPy where Ny, Pi, are complete subspace. Then for
any decomposition of L, L=N'@ZDP’, if N'@P’ is (or both N’ and P’ are) closed
subspace, N’ and P’ are complete subspaces. _

Proof First, we prove the result in case that N'@P’ is closed. By Theorem
2.2, for the decomposition L= N @Z @D Py there exists an extension II = N®{Z-+Z"}
®P(Z=Z, PPy, NDONy), which is a standard decomposition of the whole space.
Lot I®=N®P, I®={Z+7*, L'=N'@P’. It is apparent that for any «' €I/
there exists unique € IV, 2 € Z such that

: 2 =ot3, 'I (2.9)
If =0, we have =0 (otherwise o’ =2, which contradicts the assumption L' Z =
{0}). Since I/ and L are linear subspaces, it is easy to see that there exists a linear
operator B: [I'™V—Z such that .
o =+ Bw (i. e. 2=Bw), : (2.10)
Evidently 2(B) = N;@P,c IV, Using the assumption that L’ is closed we see that
B is a closed operator from Hilbert space (I, [+, -]1®) into Hilbert space (I®,
[o,*1®), where [-, +]® (=1, 2) are respectively products induced by some regular
decompositions of II). Therefore B is bounded. '

Now let’s prove that I/ has a regular decomposition (i. e. I is a II-space).

Denote _ '
N"={o+Bo|o€ Ny}, P"={y+By|lyE P}, (2.11)

Apparently, N and P" are negative and positive subspaces respectively, L'=N"®
P, ‘
For any sequence {@,+ Ba,; N (n=1, 2, --.), since

— ((@a—@m) +B@n—on), @n—n) +B@y—&n)) =~ @s—n, Tn—2um), (2.12)
wo gee that {w,~+ Bw,} is a Oauchy sequence corresponding to — (+, «) if and only if
{w,} is a Cauchy sequence in N corresponding to — (¢, °). In view of the fact that
N is a complete subspace, there exists # € N such that .‘
lim — (24—, o —2) =0, (2.18)

Since B is a bounded linear operator, it follows from (2.18) that according to — (-,
¢), {@n+ Bw,} converges to «+Ba € N", i. o. N'' ig a Hilbert space with inner product
— (-, *). Similarly, one can show that P' is a Hilbert space with inner product (-,
). . ' _
Since I/=N'@P’ is a closed subspace, as well ag a IT-space., it is a complete
subspace. Since I/=N'@P’, both N’ and P’ are complete subspaces of L' by [1],
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Theorem 2.6, therefore they are complete subspaces of II by [1], Lemma 2.1,

Next, we discuss the case that both N’ and P’ are closed suspaces. Replacing I/
discussed above by N’, P’ respectively, we obtain that for any W €N’', p'€F,
there exist unique n, pE€ IV, and linear operators By, By: II™—Z7 such that

_ . w/=n+Bmn, p'=p+Bp, _ ) (2.14)
Denote N"={n|n'=n+Bm, w EN'}, P"={p|p'=p+Bap, o € P’}. Obviously, N,
P'cII®, 9(By)=N", D(Bs)=P". From N’ | P’ and Z_I_N@P we got :
: . . ' N'" P, ‘ (2.16)
For any & € IV N L, there must be n' €N’, p '€ P', ¥ €Z such that o=n'+p'+2'. It
follows from (2.14) that

g=n+p+ Bin4Bayp+2',

Since ™ nII‘”—{O}, we have #=n-+p, B+ Byp+# =0. From g=n+p we have
' N:@P,=N"@P", (2.16)
By [1], Theorem 2.6, N'' and P" are complete subspaces of II®, thus they are
complete subspaces of II, _

Now N'' is a complete subspace, it is, of course, a closed subspace. Besides, since
N is a closed subspace, the closed operator B is bounded. In the same way, we can
show that B, is a bounded linear operator.-

Sinee N'', P" are complete subspace, B, Bs are bounded, and N/, P’ are closed,
it follows that N’ , P’ are complete subspaces. The proof is complete.

Corollary 2.5. Let L be a closed linear subspace. If there ewists a standard
decomposition of L,‘ which can be exstended to & siandard decomposition of the whole
space, then all the standard decompositions of I can be ewtended to standard decomposi-
tions of the whale space.

This corollary is obvious.

Theorem 2.8. Let L be a closed linear subspace of 1. If there ewists o regular
decomposition II =H_@H ,, under which Li=Ly @®L.®L¢, such that LEp(A*4) or 1
is an isolated spectral point of A*A, then under any regular decomposition Il = H_@DHY,,
for the representation of L: L= I @ Ly @Ls, we have 1€p(A™A") or 1 is an isolated
spectral point of A A’ correspondingly.

Proof If under the regular decomposition II=H_ ®H,, 1€p(4*4), then we
have L= (Ly@®Nz) ® (L*®Py5), where

Ni={{s, Aw}|o€ By, E; is the spectral subspace of A*4 corresponding to [0, 1)},
Pp={{w, Aw}|0€END(4), B, is the spectral subspace of A"A corresponding to
(1, %)}, @)

L is evidently a complete subspace of II. Thus II=L@L'. Therefore under any
regular decomposition I=H @®H,, if L=L; @ LyDL;, we must have 1€p(4"4))
(see [1], Lemmas 1.8, 1.2). Thus the only case we should discuss is that when 1 is
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an isolated spectral point.
' Let
Zy={{w, Av}|o=A4"Ae, € D(4)}, : : (2.18)
Since 1 is an isolated spectral point of A*A, L=N:®Z;®Py is a standard. decom-
iposition, and both Ny and Py are complete subspaces of II. By Theorem 2.4 and
Oorollary 2.5, it follows that any standard decomposition of L can be extended to
standard decomposition of the whole space. :
Suppose that I =H' @H', is regular decomposition, L=Ly®LysP®Ls". Since
Zy=LN L'+ {0}, we have 1Ec,(474") and , ‘
Zy={{w, Ao}|o=4"A's, 2 D(4")}, : (2.19)
The remainder is to prove that 1 is an isolated speotral point of A™*4’. Put
={{w, A's} |0 € H), B} is the spectral subspace of 44’
corresponding to [0, 1—01},
={{w, A'a}|0o€CEND(4’), H; is the spectral subspace
of A™A’ corresponding to [140, co)},
Since A’ is a closed operator, N’ and P’ are closed subspaces, N’ | P’ (see Theorem
1.1), it follows that '
L= (Ly @®N)®Z:® (L ®F'),
which is a standard decomposition of L. Therefore Ly @N', Li*@P are complete
subspaces of II, which implies that N', P’ are complete subspaces of II, thus there
oxists 4 constant e, 1>a>0, such that | 4’| 5| <a<l. Similarly, one can prove that
for any o€ EAND(A"), a+0, |A's|>(1+p)|a| holds, where B is some positive
number, i. e, 1 is an isolated spectral point of 4™ A’. The proof is complete.
Summing up the above results, we obtain the following theorem.
Theorem 2.7. Let L be a closed subspace of II. Then the following propositions
-are equivalent to each.other. '
(i) There is & standard decomposition L=Ni®Zi®P;, where Ny, PI, are
complete subspaces.
(i) In any standard decomposition L=N'®Z®FP', N ', P are complete subspaces
(iii) There ewists @ standard decomposition L=NiDZ t@®P;, which can be
entended to a standard decomposition of the whole space II,
(iv) All the standard decompositions of L, L=N'®@Z.DF’, can be ewtended do
standard decompositions of the whole space II, :
(v) There ewisis a regular decomposition II=H_@H,, L=L; @LA®L0 , Such
that 1€ p(A*A) or 1 is an isolated spectral point of A°A,
(vi) For any regular decomposition
' I=H ®H,, L=Li ®LOL,
61 holds that 1€ p(A™* 4" or 1 is an isolated speciral point of A™A',
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§3. »The decompositions of subspaces

Now we disouss general subspaces, which needn’t be closed.
Lemma 3.1. Suppose that L is a negative (or positive) subspace of I, which is &

Hilbert space with —(+, +) (or (¢, +)). For any decomposition of L, L=N®Z(Z=L
‘NIY), . if N is a closed subspace, then N isa complete subspace. Moreover there musé

ewist @ decomaposition such that N is a closed subspace.

Proof We only congider the case that L ig a megative subspace. L is then a
closed somi-negative subspace. By Theorem 2.1, there exists a decomposition L=N®
Z where N, Z are closed subspaces, Z = LNL*, and N, Z are contained in complete
subspaces T, II® respectively, besides, I =TO@I. First, we prove tha,t N isa
complete subspace for this particular decomposition.

Sinoe N is a closed subspace, it will suffice to prove that N is a Hilbert space

~ with inner product — (+, *). Suppose that I9=HY®HP, (=1, 2), are regular

decompositions, which induce products [-, «]®, Take the regular decomposﬂmn of
I, 1= (H*@H®)®HPOH?), which induce product [+, «]. Obviously, [, -]
=[+, 1@+ [+, +1®. Later on we shall use these norms to calculate.
Suppose that {w,} C N, and it is a Cauchy sequence eorrespondmg to — (%, *).
Smee N C'.L there exist {y,} L such that :

wfww<ln 1,2, N CEN

therefore {y»} is a Cauchy sequence correspondmg to — (¢, *). By assumptlon there
exists y € L such that

i (goey, Guet) =0, (.2)

Since y, € LcL=N@®Z, there exist unique decomposmons 4fn=1}, + 2, Where o,
N, 2, €Z, n=1, 2, ---~. We.notice that NcII®, ZclI®, Using (8.1), it follows
that

nm<-mm—m&i,niz (3.9)

Denote y=12+2, wGN ¢€Z. By (8.2), (8.8), we have
lim — (@, — @, @n—) =0, ‘ (3.4)

n->c0

Therefore N is a Hilbert space with inner produot —(+, +), thus N is a complete
subspace. :
By Theorem 2.4, it follows that for any standard decomposition of L L N®Z,
N is a complete subspace. The proof is complete. Co
Theorem 8.2. Let L be a linear subspace of II. If (L, (+; *)) is.a H-space; then

- in any standard decomposition of I, I=N;@®Z;®Py, both Ny and Pg are -complete
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subspaces.

Proof By Theorem 2.4, it will suffice to show the theorem for a particular
decomposition of I.. Take a standard decomposition L=N;@Z;@Py such that there
exist complete subspaces I® (¢=1, 2), I=IV@I®, Zycll @ gnd Ny@P;clI®
Evidently, such a particular decomposition exists. . . v

By the hypothesus I;is a IT-space with inner product (, *), thus there exish
regular decompositions. Suppose that L=L @®L, is a regular decomposition. Using
Lemma 3.1 o L_, it follows that there exist decompositions
. - =N®Z_, Z_=L_NL, _ (3.5)
where N.is a complete subspace of II.

 Since L, | L., L, is a subspace of complete subspace N+ (refer to [1], Theorem
2.8), of course, Z_cNt. In II-space N', using Lemma 3.1 for I*, there exists
decomposition » " '
., (N+2)L,=Z,®P, Z2,=L,NLi=L, NI NN,

where P ig a complete subspace of N'*, so is also a complete subspace of II. Thus there
-exigts decomposition -

I=I99 II(‘“)(—D H‘*”” (3 6
- OI®=N, I®=P, II(2>—II@(N®P), Z ca®, . ,

~ Since Z_|L,, Z_ |TL,. HenceZ_|Z,, Z_]P. Therefore Z_ clI®, and 7 _+
Z, is still a neutral subspace contained in IT @ Denote Z=Z_-+7Z,. Apparently -

L +L,cN®ZOP, 8.7
Since @Z@P is a closed hnear subspace of I, we have |
| LcN®ZOP, . | (3.8)

On the other hand, because N®Z_=I_, P®Z,=L,, hence N, P, Z_+7Z, are
all linear subspaces of L. Thus Zc L. So we have
.‘ ' L=N@®Z®P,
where N, P are complete subspaces. By Theorem 2.4, Theorem 3.2 follows. The
proof is complete.

§ 4. Dual families

Definition 4.1. Let {2, MEA}, {zh, ?\.EA} be two families of 'vectoq's of II.
Suppose that for any h, w€ 4,

(24, ) =Onus o (4.1)
where 8, s Kroneckr functions (i. e. 8, =0 if A+, Suu=L1af A=pw). Then {z, AE
A} {2, NE A} are called dual families. If for dll 7\,611 %=z, then we call {2, AE
A} a sebf-dual family. _4

From (4.1) it follows that {2, A€ A} and {2, AE A} are respeotlvely linear
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| independent vector families.

In Hilbert space, any family of orthonormal basis {e, aE A} is self-dual.
However, for indefinite inner product space, the degenerate subspaces appear. In
general, the concept of “orthonormal basis” relative 0 the inner product makesno
genge. On these occasions, We froquently uge the dual families. In partioular, for the
standard decomposition II —N@®{Z+23@P, we offen ireat Z and Z* by dual
families. Indeed, it i8 a convenient tool in operator theory. Here we give the
following theorem which is similar to a result for Hilbert space.

Theorem 4.1, Let Il be o separable indefinite inner product space. Lf {2, NEAT}
4s a self-dual fam'ily of I, then the cardinal of A is not more than Ko,

Proof Let II —H_@®H, be a regular decompotition. L=span {%, ANEAY.
Bvidently, L is a goparable closed subspace of II. Take a countable set {a.} which is
denge in L. Since L ig spanned by {z, ME A}, for each g, there oxist at most countable
indexes {M}(j=1, 2, ..+) such that ’

: wiES—P‘aﬁ{zx‘j, j=1, 2, v} =Ly, i=1, 2, 0 4.2)

Suppose that A isn’t countable. Take AEA—1{N, 4, j=1,2, «}. Since % €L,
4here exists a subsequence of {m:} which converges 10 %. Bub 2, € Ly, 8o that there
oxists a subsequence of the countable seb {Af, 4, j=1, 2, ..}, denoted by {My, j=1,
2, ++}, such that a certain sequence {p;} consisting of linear: combinations of {2},

g
;((p,- = :2;}1 aits, j=1, 2, ), converges 10 %, i. e.

lt—pil—>0 (3. | (4.3)
Since (¢, +) is a continuous funotional with two variables, we bave

1= (%, %) = (22, }E? ®5) =}_1)‘{.§1 (2, 9;) =0,

which is a contradiction. Thus the cardinal of A is not more than o,
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