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Abstract

The present paper is devoted to the BVPs of Lopatinski’s type for differential
.operators of higher order and mixed type. A sign function, on Which the formulation of
BVPs and reguiarity of their solutions rely heavily, is associated with characteristic
degenerate surface. The behavior of finite index for such kind of BVPs is found.

§ 1 Introduction

In study of the partial differential equation, P(ax, D)u=f, Q, one of the most

fundamental questions ig what conditions prescribed on 20 can ensure the correspond-
-ing boundary value problems t0 be well posed. Asis well known, quite complete
rosults have been obtained only for the classical cases, which rofor o elliptic, para-
“bolic and hyperbolic equations, but for other cases results obtained are nob systematic
yot. Without doubt, the problem is yery olosely related to the fype of the ope_ra,tof P.

When P is of principal type, & number of BVPs have been mvestigated by Wenston
(1D Recently, the study of the case with multiple characteristics has attracted a
certain amounts of interests. Baouendi and Goulaouic ([21), Chi (rsh successively

. disoussed several kinds of characteristic Cauchy problems for Fuchs type operators. Gu

(141) studied two kinds of boundary value problems for a class of higher order mixed
.equations, which are the generalization of Busemann equation 40 the case of higher
.order and whose degenerate gurfaces are characteristics for themselves. As a continu-
ation of Gu’s work, the present paper is devoted o the general BVPs for such kinds

- .of differential operators.

Congider 2 differential operator of order m

A : 1 :
P(m: D) =PM(£B: D)+Pm—-1(m; D)+“') D= \/'_—__i(aﬁu °*% axn 3

defined in a bounded domain OcR*. Here P haé real coefficients. Agsume that all
coofficients of P are gmooth enough and that the conditions H’s are fulfilled.
(Hy) There oxists a function Y (w) €C7 (_ﬁ) with _d_lp |5+0 such that 8Q=8-1US1,

— —
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say 8= (o] (2) =1}, +€ [—1, 1.

(Hs) pn(@, dif) %0 outside 8o and 0}, (@, vdf+n) #0 a8 p,(w, vd+n) =0,
vE R, B" D nfdp, (w, n) ESox {0}

(H3) ph(e, df)]s,=0 (j=1, -, n), dfd(pu(w, d}))]s,#0 and the matrix
(phi (o, dir) |5,) has (n—1) positive eigenvalues.

Condition (H,) implies that P(w, D) is of principal type when (&, &) € {(a,
pdd(@)) |8 E 8o, p€ R\ {0}}. The first assumption of (Hg) means that S, is a multiple
characteristio surface, and the latter assumptions of (Hj) show that there is a pair of
real characteristics reducing to complex characteristics when point # crosses So.

In close analogy with [11], the sign function on S, can be defined. Set

Cpn-1(w, D) = principal part of ~ 2_ 1(P—-P").
Qlearly, O,—1(®, D) is just the subprincipal symbol of ~/—1 P, i. e.,
1 &P,

Om—i (w: g) \/ 1 ( Z)m—i(a’, §) 2\/ —1 awj 6§j (w: 5) >) (1 i )‘
which is coordinate-invariant on multiple characteristics. A sign. function on S,

sgn (S, P) =RoCus(a, &)+ 25 dipodipn(a, d)/ 1012 (1.1)

can be associated. To determine (1.1) uniquely, we always require
dped(palo, &) [5>0.
(this hypothesis is not serious. If necessary, substitute —P for P or —yi(z) for
Y (@)). It is worth to point out that (1.1) is invariant on So under coordinate trans-

formation, because the second term of (1.1) is invariant too. In fact, d(pm (e, dip)) =
Ady, since p, (@, dyf) is zero-order tensor and pn(w, dir) |s,=0. Hence A=dir+d(pn (2,
dy))/|dr|? has the expected behavior. |
The boundary value problems we shall discuss are of Lopatingki’s type. By means
of Condition (H,) we have o . i
Pu(@, Tdf+n) =pn(a, a) 1T =) I (v=22) IT (v—2¥)

=0 (@, d) P (7) Pn(T)Pu(), on Se(a=£1).
Here A% (A% or A¥) are the roots with imaginary parts>>0 (<0 or =0 respectively). It
should be emphagized that m(1) =m,(—1)+1, mu(l) =mu(—1) —2 where m,(a)
=1my,, mu (@) =my on ;. Two kinds of boundary value problems will be studied. Let
{B;.} be normal systems of boundary differential operators on S, of orders 7,, with
Jo CF,, being subsets of '
0,1, -, m—1} (a=1, —1).
T, (as sgn (8o, P)>0):
the principal parts of By, (x, wdy+n), mod p}(z), on 8_y,
the principal parts of By, (@, vd-+n), mod py(z)pn(z), on 8y
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are linearly independent, respectively. 1.2)

T_ (as sgn(So, P)<0):

the prineipal parts of By, (e, wdf+n), mod pf(#)ph(7), on 8y,

the principal parts of By, (e, vd+n), mod p;(z), on 8;
~ are linearly independent, respectively. 1.8)
Note that Z, in T, does not equel t0 Z, in T_. In the other hand, if there does not
occur the multiple characteristic surface So, i. e.,
(Hs)!  pule, &) |5+0 and P, ph(a, 7d¢+77) |50 as pn(a, v dfy+1) =0

vERY, nER",

which meang that P is of principal type, then the sign of (1.1) need not be taken
into account and both (1.2) and (1.8) can be formulated.

Qonsider the following boundary value problem

P(w, D)u= f, in Q; By (&, D)u=gs,, on Ss, Jo € Fo. (1.4)

Choose suitable differential operators on 8,, {Cn} with J,€F ¢={0, 1, -+, m—1}\
&, in such a way that {By,, Cy} forms a Dirichlet system. If {Cy,, Bl.} is the cor-
responding dual Dirichlet syst>m, then

j(fv Pu—P*ou)do= 2 {O%v, Byupa+ E (B 0, Cldsg, 1.5)

The adjoint problem of (1. 4) denoted by T*((T.)%or(T-)*), may be written as:
follows

P*(w, D)vo=F, in Q; Byw=g},, on 8, Jo€EF ¢, (1.6)

Tn section 2, we shall prove that Problem 77 satisfies (1.2) if and only if Problem

T* does (1.8). In gection 4, the well-posedness of problem T’ for differential operators:
of real principal type will be obtained with the aid of studying on propagation and
reflection on boundary S,(a=1, —1) of singularities, which is based on several fun-
damental lemmas in section 8. Perhaps, such a method is more powerful than the
usual way carried out in base space. Section 5 will be devoted to the BVPs of
Lopatingki’s type for differential operators with characteristio degenerate surfaces.
The behavior of finite index will be found and the regularity of solutions relies heavily

on the sign function. The major techniques are micro-local analysis near the multiple
characteristic surface So.

The author would like to express his thanks o Professor Gu for hig guidance.

§2. B.v.p.of Lopatinsk'i’s‘ type

By Lop condition we mean (1.2) or (1.3). Since Lop condition is invariant
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under non-sigular transformation of coordinates, we can pass to study the ocase of
homogeneous differential operators with constant coefficients after boundary flattoned
and coefficients frozen. For the details of techniques, see [5, P133]. In this section,
we shall restrict ourselves to study the case that P is defined in B% and {P, B;} are
. homogeneous operators with constant coefficients. The methods in [B] with slight
modification may be applied to the case, including real roots. Set

Hr={uCD'(RY) |etD'uc H (RY), k<xm}
and

Lo=(\H7Ts,

>0
CIEP(nm, 7)) isa homogeneous polynomial of degree m and P(0, 1) =1, then, like the
factorization of py (@, wdyr+n) mentioned above, we have

| P(n, 7) =P* (@) P~ (%) P°(3).
| The polynomials B;(, T) corfesponding 0 bounda,iry differential operators can he
- written ag follows -

Me+Mp i
Bi(n, ©)= X bye(n) ¥ mod P*(#)P°(z).

Condition (1.8) on S_y, saying condition Lo, is equivalent to
j=1, -+, mp-+m, and det (b (n)) #0, Vn€S* .
‘Qonsidexr the boundary value probleins for ordinary differential equation
P(n, D)u=0, ¢>0; B;(n, D)u=g;, i=0. 2.1)

Lemma 2.1. Lop condition Lo is equivalent to each of the following ones

(1) for any given n €8, the solution o (2.1) is unique in Lo;

(2) for any given n€8"* and {g;} €Cmtme there is a solution to (2.1) in Zo.

Lemma 2.2. {P, B;} satisfies Lop condition Lo if and only if the problem

P(n, Dyu=F, t>0; B;j(n, D) =9g;, i=0, (2.2)

where f € Lo and {g;} €C™*™ has a solution in Zo.

From the same argument as in [, proposition 4.2] immediately follows Lemmasg
2.1 and 2.2. Here we omit the details.

Analogously

By(n, 7) = 2\bj(m) 7 mod P*(2).

Oondition (1.2) on S, saying conditon L., holds if and only if
| j=1, «, me and det (bfi(m)) #0, Yne€S"™.
Lemma 2.3. Lop conditionL, és equivalent to each of the following ones
(1) the solution to (2 .2) is unique in s,
(2) for any given f € A and {g;} €C™, (2.2) is solvable in A7, here 8€ (0, &o]

with 8o =,-—%~ min{I N5 (n) [n€8" 2},
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Theorem 2.1. {P, B;} satisfies Lop condition Lyo if and only &f {P*, By}, its
adjoint problem, satisfies Lop condition L. :

Proof Let {P*, By} satisfy Lop condition I, and let u€.%, satisfy Pu=0,
Bjts|4=0=0. Then for any ¢ €C¢ (RL) we can find a solution o, 10 Problem P*v=gu,
>0, Bjw=0, =0, since {P*, Bl} satisfies Lop condition L, and gu€ #T(Ve>0).
By means of Green formula (1.2) we can derive

oo 2 -
joqm dt=0

which givés w=0. The proof of the converse part is the same as before. Details need:
not be repeated. .

Remark Consider the case that there ocours the multiple characteristic surface:
8. Note that py,=pn and for pP*

0,1 (w, £) = prinocipal part of = ; 1 (P*—(P*")") = —COps(m, )

Thus

g (So, P*) =RoOhs(a, &)+ diped(paCe, d)) /151"

: = —sgn(So, P) + (m—1)d-d(pn(e, di))/|de|3,
which implies that the adjoint problem of T,, (T,)* satisfies (1.8), namely, (T',)* =
7_ when sgn (So, P)>(m—1)dyd( pm(@, dP))/|dP|* and the adjoint problem of
T_, (T_)*, always satisfies (1.2), namely, (T-)*=T,.

§ 3. Several lemmas

Tn this section we present several fundamental lemmas for needs in section 4, b.
Let '
Fim= {the space of all polynomials of degree<<m}.
Lemma 8.1. If Q(z) € E™ (=1, 2) have no common root and both of coefficients
in leading term ave equal to 1, then for any given R(z) € Emtm=1 there ewist only two
polynomials Py(%) € Em2(i=1, 2), satisfying

@1(7) Pa(%) +Qa(3) P1(7) = R(7)- (3.1}
Proof Obviously, it is sufficient to verify that the map '
Em-ix BmtD (Py, Po)—>@(Py, Pg) =QuPs+ Qo Py € Emtm? (8.2)

is injective. Assume QP+ Q.P;=0. The fact that @ have no common root and P;E€
B i(i=1, 2) yields P;=0, which implies Lemma 3.1.
Corollary 8.1. Let

. Q1 ('z') =M.} g;' d;’v’""-l, Q2 (,u.) = g™ + 17_21 b;’z’m"‘
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m1+77h—1

R(@)= 2 o™ Tmi,
=0

Then the coefficients of soluition (Py, Ps) to (8.1) are smooth functions of {a}, {03 and
{oi}- , |
" Proof Suppose that ot
' P= ;di'v"‘“i" (1=1, 2).
Tndeed, the map @ (8.2) may be regarded ag that of
o x OmD ({di}, {dihal € Gt

Its injection yields d(p o be.non—singular for given {@} € o™, {b}€0™. Qo the theorem
of implicit functions presents the expected assertion. =

Set ’

P, t, Doy D) =$ () ADp, in Rr =R RY (3.8)

where A°(t)=1I and Ai(g) (j+0) are some smooth_one parameter—? families of opera-
tors in. OPS? with asymptotic expansions

- o (Af) ~abt+alytee
and. Supps o (47) — K- for some compaot set K CR*™, independent of ¢. In the sequal,
nless stated otherwise, capital letters 4, B, O, - stand for such pseudodifferential
operators and small letters {a_o}, {b_.}, {o-»} gtand for »—th ferms of corresponding
expansions. Denote naturally the principal part of P by

pale, 4 £ = 2yab(o, & 11T
Temma 3.2. If, as polynomials of T, (@, 8, &, 7) =pm (@, 1, &, 7). P (2, T,
£, 7) in @ conic neighbourhood of (@0, to, §0)s L (2o, to, £0), and P ()5 Prs (T)
satisfy the conditions in Lemma 3.1, then there ewist two differential operators Pos
P i, Likee (3.8) with principal parts equal to Pm (@, T, £, v) and D@, & &5 7)such

that
P=Piﬁx<w: t; Dx: Dt)-PM—mx(w:' t} Dﬁ; Dt)} near (w(): tO': gO).

Proof Suppose

Prm 3 BADP, Puon= 2 OADI
i= =0 ,
From the fundamental caloulus of pSeudodiﬁ'erential operators, it follows that
Sujgimipmem b 6 (3.5)
o | : o
S bl liw = pam (@, b &7, 3.6)

and trangport equations « R
mi N ‘ N m—=my .
(Bpalelnn ) pucm(as b & DA &, (S oalg i)

=1
L o pmot e b 6 3.7

n
= —
=1
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2 b, €1 ) g B 2 oL, g nmt) = 39
The terms omitted in (3.8) depend only on b yeny Clysm BZL and P. Evidently,
bi(@, ¢ £)> bz, t, &) obtained from (3.5) (3.6) are in g0 and smooth for ¢ in
I (o, to, £o). By means of Lemma 3.1 and (3.7) we ocan also obtain bly, €8
which have the same gmoothness as bh, cf. In fact, Corollary 3.1 shows their smooth-
ness, and the uniqueness of solution to (8.1) gives their homogenei‘uy. Similarly,
other bl,, ¢, can be found recursively. Lemma ig proved.

Wo shall next derive & theorem of existence and regularity for Cauchy problem
of some kind of elliptic operators. The technique we now use ig due to Treves in (8, p

140] and Taylor in [10, p192]. Suppose the principal pars of (8.8),

Pu(®, T, &, ) only has roots with positive imaginary parts. (8.9)
Oongider the problem _ :
<Pu=f, in 0=nr1% (0, T), Diu=4s =0, j=0, -+, m—1L, (8.10)
We try to construct a parametrix S() for (3 .10), which is of the form
i t .
8(t) (goy “+*» Gmts | ) =§Bl (® gz—1+g OB’"(t, t) f (81 dis (8.11)

where B'@) =1, - m) and B"(, #) will next be determined by agymptotio
expansions. Applying P to (3.11) we have

0=—‘PS(‘[J) (gol seey Gm—1s f) —f=:21El(t)gz_1+ng_m(t, tl)f<t1)dt7

'where‘
5 (w, t, £) =" (PB)é™,

Fr(o, 8, 1, £) =6 (PB"(1))e”.
From the lomma of the fundamental asymptotic oxpansion, b'~2 P (w, t, &, Dy)
% bl (@, 1, &) o} it follows jmmediately that
B RCA RS D,)bh=0, with Dby |smo=00"" (3.12)
and transport equations _ “ .‘
pnl@, £, & D)= — @, & D,)bh— Elpgp (@, %, & D) bh,@ (3.18)
Pu(@, 8, € DV==""" (3.14)
Dity|ro=0, v=1, = B=0, 3 % m—1. |
The terms omitted in (8.14) depend only on b, (<v), P and are homogeneous
functions of degree m-vy in (&, D). We have v
Lemma 3.3. Let (8.9) be fulfiled. Then shere ewisis @ posiive constamt C1>0,
independent of 1, k, ot N, &% B such that when |£1>1, (@, t) €Q
(1) |DsDED; b (@, 0 ) |<Opmua(lt \§\)’“‘L"ﬂ"')”‘“@—""“ﬁ
2) \D’:/D"é\lﬂu(n, t, £) \<Ou,z,a,n(1+\n\)’N (1+1€ DA
Moreover, eshimates (1) and (2) are still true of v, (o, t, ) B replaced by b, (a, t,
4y, £) i the left—hand side of (1), (2) and ¢ by (E—ta) in the right-hand side.
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Proof It only needs to discuss the case of I=m. (8.12) may be rewritten as

follows
Pae, 0, & DOV =—1 322 ] (w, 1, ©) 11D, Divg|_ =8 (3.12)

where o9 (z, t, &)= 6@0 (v, M, €)dA. If I, is some simple curve in upper ha.lf‘
£ p

v
plane, surrounding all roots of o2, t, £, v) =0, then
m 1 $7t |
=g |, (@ /pa(e, 0, & )i (3.15)

ig the solution to homogeneous equation of (3.12"). Ohanging variables 7= |¢|7y, one
can find a simple curve I" in upper half plane, independent of », §, #, such that

—(m—1)
mo €770 'zm j P( grisie 2 a(@, 0, £) 7! )dfv (3.15")
Evidently, estimates (1) and (2) are valid for b2, when
0'1=-—?3- min _{imaginary parts of roots for p,(7) =0} = =7 0'*

: 4 \51=1,e,0eB
Ag i8 well known, the solution of (8.12")

5 () =55) [ [Br—tot 328 | ) 161D br o) Ja.

By induection one can obtain estimates for 1terated sequence of this mtegral equatlon,"

which yields that (1) and (2) hold for bf, provided 0'1=-;— O*, Set

(s, 1) =5 =t — || [B G—tta 258 | a) 161/ D b5t ) [t
Without difficulties, we can get '

| DEDEBE (2, 1, b1, €) | SCpa(L+[§])~mHHem oI - (8.16)
and for any N €2

| DEDEBE (n, 1, 15, &) | <Cuarn(L+ |m])7H (L4 |€])mibHtogmaini6-, - (3.17)

Similarly, b, (z, t, £) and b™,(, ¢, t1, £) aleo satisfy (1) and (2) when 0'1=%0*'

because the right side of (8.14) are homogeneous in § and D;. Lemma 3.3 is proved.

So far we have constructed the operators B'(t) € OPS™** and B™(%, 1) € OPS§—m*

smooth for ¢ and (¢, #;) with symbols as agymptotic to sums

g b, (, t, £) and iob‘.y(w, i, 4, £). (3.18)
Lemms 3.4.  Let (3.9) be fulfilled. Then for given (go, *, gm_1) E(R™), fE

&' (R%),

satisfies ,
(1) Pu—fcO=(B*x[0, T)); Diu—g€O0”(R™).
(2) S(@) is alinear bounded operator of H _a(B1%(0,7)) ><0<kl;,[n_1H " (B*Y).

wle, 1)=8) (g5, =, Gty N =SB Ogist [ B, FEDdt  (3.19)
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into Hy(R"2% (0, TY) with m<s€a.

® S@) is regularizing for £>0.
Proof (1) (8) s the trivial consequence of [emma 3.3 (1). Soit only remaing
4o verify the agsertion (2). Let w be defined as (8.19) and let
Gs €,y (B, FEHunEX 0, T

_ From the continuity of psoudodiﬂ'erential operators and (3.19) it follows only thab

D@ €H, 1 (R

for t€ [0, T] when <s—1. Therefore we must more olosely study
' Dou(w, ) k=0,1, - m—1)

i =3 S ;
Traca, =3+, D=4 b DGO
i=1J 1§1=1 1§1<1

+XZSI£I>1 +S‘1§|<1 @n(n_-_g, t} ty, E)f(gy ti)dfdt1

=Ii({f]; t)+12(7}) t)+13(77: t)+I4=(”I, t)o (3'20)
Compute

mlﬁﬁ(’n, £) |2+ || dndt.

Certainly, the integrations with Tespect to Is, L4 are bounded. Using Lemma 3.8
(2) and Cauchy inequality, we have, for k=0, 1, «+, m—1,

[ [Ira, D1P@+ ol dnds

<0 éﬁ'ﬁl oy ATIE | *A+1€ |yt a(€) [P0 O

=1

<0 3ol g
Similarly, with k=0, 1, -, m—1,

[F (1, 12y dndi <O L

Applioaﬁon of original cquation in (8.10) gives the ostimates for Diu(w, ©), k=m,
aee, 8, Which completes the proof. '
Let differential operator
| | R=Dr+ X @D

ol <m, oy <m~1
e defined in an open subset Q of R:. Set .
H={uwE H(Q) | Ru € HiZn(Q), m<<s€Z}.
By the theorem on partial hypoellipticity given by Hormander 7, p. 1071 we have,
for k=0, 1, «+, s—1, '

=20 eme i @an =0, if uE .
atk =0 -k -3

Indeed, this famous $heorem implies
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Lemma 8.5. 1, s a continuous map of A into H', 1 (82 t=0) if S is equi~
2

pped with topology of usual countable norms.

The following lemma ig an important result about regularity up to boundary of
solutions for elliptic operators, which iy due to Tréves and its proof may be refered to-

(8, p. 140]. |
Lomma 36, If (3.9) s fulfilled and w€H™(RL), Pulowsxmomn€C"
Dt | ooy iy €C=, =0, -+, m—1, then %] og@oyxr0,my €O

§ 4. B. v. p. for differential operators
of real principal type

In this section we are concerned with the well-posedness of boundary value
problems for differential operators of real principal tfype. When there is no mulfiple:
characteristic surface in 2, we prove that Problem T ig of the behavior of finite index
and Ker(T)cC=(2). The plan is, firstly, to discuss the regularity of solutions to.
problem T, which, indeed, is of behavior with loss of 1-derivative for f, and secondly,
$0 obtain a priori estimates for Problem T’ by the theorem of closed graph, which, im-
mediately, gives the exigtence.

Ifu€ H(Q), Pu=f€ H(Q), then it follows that ryw (b=0, -
sense from the fact that AQ is non-characteristic-and the theorem on partial hypoellip-

m—1) make

2

ticity. In the sequal, we often uge this assertion without statement.
Theorem 4.1. If (1.4) satisfies (H1) (He)' and (1.2) or (1.8) and u€ H(Q),
{P, B;ju€ Hyn (Q) X Hy—s-r,,(8s) with m<s€Z, then
w€H, 1(Q), rw€ Hey (0Q), 0Sk<m—1. (4.1)
Furthermore, the inequality

m~1
JullZa+ 3 Irie]d-a<Ou(| Pu] &t 3 Bru g, 1] (4.2)

is valid, where Oy is independent of . ,
Proof First of all, it only needs to study the case of (1.8), since the verification
for (1.2) is the same as that for (1.8). Secondly, we can prove that (4.2) is the
consequence of (4.1). Set
= {uCHQ)|Pu€ Hy (@), Bju€ Her,-1(8s), Jo€F}
equipped with the norm | Pu| E_m—l—%ll Byu|%,, 1+ |w|® and set

%2={UEHs—1(‘Q> lrk'wEHs—i—k(a‘Q); ]G=O; T 'm‘_l}"‘

equipped with the norm

|3+ ”g |t 2-1—
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Qbviously, 2 is a Hilbert space. In fact, S#* is also a Hilbert space. Suppose thab

{u,} is a Oauchy sequence in t. From the definition of s* it is easily seen that
there exist uo € H(Q), fEHsm (@), 95.€Hsa-r,, (0R2) such that lim s, =o, lim Py, =

£, lim B, =gy, in respective spaces. The continuity in 9'(Q) of P gives Puy=f€&

H,_(Q) and Lemma 3.5 yields that B tn—>Bj o in H _} 1(0Q). Thus, B; o=9s,
Ja "7

€ H,_ 4, (02) whioh means o € H°*. The inclugion map é: |
' AADu>u € A3
does make sense with the aid of (4.1) and is evidently closed. Therefore, 4 is contin-
wous, namely, (4.2) is valid.
‘We now proceed to prove (4.1). It is sufficient to prove (4.1) locally. Start with
discussion near S_;. After boundary flatten and solution localized, we are faced to

the following situation
Pu=f, in R} (4.8)
with
BJ_,"w==gJ_u on t=~‘0, J_iey-_;[, (44)

where u€ &' (BL) NH(RY), f ce'(R),9:, €8 (B and there exists a neighbourhood
in B of (a0, to) = (0, 0), A =0(0) x [0, T)), such that | '
Flo€Hom, Grl o € Hotro: (4.5)
Of course, {P, By} in (4.8) (4.4) still satisfies (Hy) (Hs)' and (1.8). By means of
Lemma 3.2, one can find operators P-, P°, P* like (3.8) with principal parts
v (@, 4, & 0 =0a(@), Bu®, 1, & O =Pu(®), pi (@, t, £ ©) =pi(®),

Tesp., satisfying .
Py=P-P°Ptuy=f, mod O=(A"), (4.6)

if necessary, shrinking.#". Applying Lemma 3.4 and Lemma 3.6 $o operator P~ and
solving a backward Cauchy problem, we can got

P-OP+'M‘ 0(0) x0T € Hy_nzmo _ (4 -7)
for some new 0(0) and T', which means '
DiP°P*ulomxo € Hs—m+m5—7f, -1 ackame—1° (4.8)

2
(4.4) and (4.8) form a system of equations of pseudodifferential operators for (4",

Am2Da, -+, Dy~'u) = (o, **, Up—1) . Write
- m=—1
Ame—1-F e PO Py = EéB"l (@, 0, D)w
1=0 -
and

m~1
j_lm—-:l.—f‘.r_I‘BJ_1 = 20 BJ"IZ (ﬁ}, Da,)u;.
i=
The system of eguations of pseudodifferential operators mentioned above may be
rewritten as follows
m~1
%B"‘ullo@)e Hs——m+1 IG=0, ey, ma—l,

4.9)
m—1
l=§}0 By ooy € Hsmms J_1EF .
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Note that Hypothesis (1.8) implies that (4.9) is elliptic. 8o
A1 Dby =0y € Hy_n (07 (0)) (1==0, -+, m—1) for any 0'(0)cc0(0),
namely
- rat] oroy € Ho1-1- (4.10)
Combining (4.7) with (4.10), solving a forward Oauchy problem for the striotly
hyperbolic operator P°, we geot ‘

+
P ul 0/(0)X[0, T) €H s—mg—1

- for some new 0'(0) and 7. Application of Lemma 3.4 and Lemma 3.6 to P* just

gives
] oroyxcory € Hote

Let us return to original coordinates. One can find a neighbourhood in Qof 8.4,
N (8_y), such that u€ Hey(A(8)), rw€ Hosn (S_1). Using the Hoérmander’s
theorem on propagation of singularities, we can reach that ,

wE H,_4 at any point « € 2\ S (4.11)

It only remains to prove the regularity up to Sy. By the similar argument carried
out near S_; with slight modification, the assertion (4.1) near §; may be done. We.
leave it o readers.

Corollary 4.1. If assumpiions in Theorem 4.1 are fulfilled, then Ker (Tyc
C=(Q) is of finite dimension and Problem T' has finite indew.

Corollary 4.1 is the consequence of (4.2) and Peetr’s Theorem. On the other
hand, by the compactness of @ and using a standard proceedure of functional analysis,
we can get

Theorem 4.2. If assumptions in Theorem 4.1 are fulfilled and

{f: gJa} EHs—m (‘Q) X l;[a Hs—i—r.ra (Sa)
with m<s€Z, then (1.4)is of solvability if and only if
(o, f )n"‘%<0.'fa’”: 95>0="0, Vv €Ker(T").

For details of such techniques, see [6].

' §5. B.v.p.for differential operators with "
characteristic degenerate surfaces

Tn this section we are concerned with the well-posedness of boundary value
problems for differential operators with characteristio degenerate surfaces. The emer-
genée of multiple characteristio surface causes some difficulties different from those in
Problem T. The vrucial point to attack Problems 7', and T'_ lies in study of the
behavior near So. Let us first introduce a lemma about reduction of operators, which

i necessary for microlocal analysis.



No. 3 Hong, J. X. BVPS WITH OHARACTERISTIO DEGENERATE SURFACES 289

After surface S, flatten, operator P we consider is of the form

P tDm+ Easz‘Dm" + 2 ahlaD.’cu Dz;,Dm—z'l" 2 waDaDm_.lal

li'—

____l__ m—1 XV o )% -
+ ‘\/—— th + kol <m, k<ﬂ—2 a Dth. (5.1)
Because (Hy) (Hs) (Hs) are invariant under the transformation used above, we have
ax(@, 0)=0 (I=1, -, n—1), (5.2)
sgn(So, P) = (dibd(pn(e, d¢>>/1d¢lﬁ>e(neb-%—). (5.3)

Lemma 5.1. Let (B.1) satisfy (5.2). Then one can find @ pseudodifferentiol
operator of order 2, Pa(w, ¢, Ds, Dy) such that

P=Dp7*P,
1mod OPS~, near no
no= (o, to, &0, 70)=(0, 0, 0, 1), (5.4
Pq-oof 'We shall obtain P, as asymptotic to a sum
0 (Pg) ~pat+pyt+e
Tvidently, by a standard proceedure of symbols caleulus, we have
pa=tr3te(w, ¢, £, 7) (5.6)
‘with
€= szfﬁ"*‘ 2_ oo, Enéut 2 @0, 5.7
and
1
=77 PO T P B S
\/ (b— m+2) 7+ E b =1 €T . (5.8)

The others may be obtained in a similar way.
Let (o, &o) €T™(Q). We say that u€ Hy(mo, &o) if and only if there exist (@) €
Oz (Q) with p(a@) #0 and a conic nelghbourhood of &, I'(€o), such that

@+ W(E) ELA(I'(§0))-
It is easily seen that wE H (o) Su € Hy (w0, £), V€ c s,
Lemma 5.2. If (5.1) satisfies (5.2) and wC H (w0, to), Pu€ Hy(no) with k€Z

or k=0, then (1) u€H, -1 (8) when Reb-——%—>m-—1, (2) w€ Hypm-1 (o), when
Reb ——-% 1+ k<0 and there is @ conic neighbourhood of ne, I'(no), such that w€ Hyym-1)

(o, ¢, &, v) with £+0 and (, ¢, &, 'r;)EZ‘(fno)

Proof Lemma 5.1 shows that Py=A_n-sP mod OPS™ mnear (no). From now
on, by Ay we mean some elliptio pseudodifferential operator of order k at the point in
T*(Q) under conmderafulon Besides, the principal symbol of Py, (5.6), satisfies

e(w, ¢, 0, v)=0, ¢;(e, 0, 0, 7) =0. (5.9
In the meantime, from a slight computation it will be seen that there is a conic neigh-
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bourhood of ny, I"(n9), such that
P, ig non-radial on pz* (0) NI (no)\ (B={t=0, £=0}). (5.10)
According to Lemmas 2.8 and 2 .4 in [12], one can fiind a Fourier integral operator &
associated with a sympletic transformation x:
T*(Ri) DI (no)—>I" (no) <T*(RBy)
and two elliptic pseudodifferential operators Ao, A_y in I (no) such that

A_lFPgF T4o=(Da+q(')), near no (5.11)
with |
gy = \/ I (b —m+1) o™ |y,=0,=0- | (5.12)
Let w and f be involved in this lemma. Thus with F1Aw=u
_1F.A ..(m_g)f (D”'I‘q (yl)>’v, near Ng. (5 13)

Obviously, v cH(RY), A1FA_mof € Hppm—10). Therefore, by means of the
hypotheses in this lemma, and Lemmas 8.8 and 3.4 in [12], we have

v € Hypm1(no) if Ren/—1 (%) >—, i. e., Reb —--2—> (m—1)
and
v'EHkm_l(no) if Rea/—1¢(¥/") ——%—-}- (m—1) +k<01i. e, Re b-——%—%—k<0,
which proves the results expecte& for u, since
u=F"1Ayv.
Now we proceed to study Problems T, and T'_..
Theorem 5.1. Let (1.4) satisfy (Hi) (Hs) (Hs) and (1.2) or (1.8). Assume

that ‘_
uEH(Q); {P; -BJ.,}u"= {f, gJ,,} E-Hs—m('g) X‘],.;[ Hs—l—rﬁ(’ga)

with m<sC&. Then .
wCH, 1(Q), riuwc He1 (39)

when |
sgn (8o, P)> (m—1)dr-d(pn (e, di))/|di]®
or o
sgn (So, P)+(s—m)dtll°d(pm(w, ap))/ldp|2<0, (5.14)
and
Juf2.+ 2 a2t <Os (]| P -mt 2 BJ.;wlls_l_r,ﬁ ] (5.15)
is valid.

‘Proof The proofs for 7', and T'_ are the same, so we only deal with Problem
T_. As ig done in verification of Theorem 4 .1 we can reach the conclusion
T kul NS Hy ;5 wE Hi 4,

near and up to S—1.
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By Hormander’s theorem on propagation of singularites we can obfain that
w€ H,_4 ab any point o €2\ S1. (5.16)
Lot s (#) <0 at point @ and &€ R\ {0}. If pu (o, £) #0 which-means P ig elliptic:

at this point, then the fact that Pu€ H,_n(Q) implies

uwEH(w, £).
If
' P, £) =0,
then the projection on fo the base @ of the bicharacteristic through (@, &) always
meets S_; ab last. Hormander’s theorem shows '
u€ H s~1 (w, 5)9 (5 '16,)‘
which yields (5.16). '

Let 0<r (w) <1 at point . Oonditions (Hs) and (Ha) guarantee that the projec-
tion onto bage @ of the bicharacteristic through any point (o, £) with pm(e, £) =0,
£+0, is certainly jransversal t0 So. Then along the familiar line used above, (6.16)
can obtained, Let #€So and & dr(a). Oondition (H,) implies that the projection.
onto base 2 of the bicharacteristio through (@, £) is srangversal to So too. So (B .16’)
is true. It only remains fo deal with the cage of #€ 8o, &/ difr(w). When S, is flatten,.
P ig of the form (5.1) and (w, §) i8 mapped as no= (@, To, £o, 10)=(0, 0, 0, +1)
and : _

wCH(RY), Pu=f € Hsm(no), .17y
wEH,1(w, t, & )
with (e, ) near (0, 0) and £+0. Applying Lernma 5.2 to (5.17), we have

w€ H, (o) if Reb—--%—+ (s—m) <0, i e.,

0>sgn(So, P)+ (s—m)dpd(pm(a, &)/ |di ]2
So the result like (5.16") follows at once. The proof of regularity up 0 81, as before,
is 1oft to readers. From (5.14) ond the same argument as in Theorem 4.1, (5.18)
follows immediately. This proves Theorem b.1.
Theorem 5.1 shows the difference in regularity between Problems T, and T_. It
is worth noting that the regularity of solutions to Problem {T'- can not be improved.
infinitely, even if

{f, 9o} €0 (@) xTLO"(S0)-

Corollary 5.1. If the assumptions in Theorem 5.1 are fulfilled, then T's is of
finite indew and Ker(T,)cO” (2) when
sgn (So, P) — (m—1)dbd(pn(e, )/ |dg]*>0,
whereas Ker(T_) CHua(Q) when
sgn (S, P)<0.
From the Remark of Theorem 2.1, it is casily seen (7_)*=T,. So (5.15) holds
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for the adjoint problem of (1.4), i. e., (1.6). Application of a standard proceedure of

funectional analysis gives

Theorem 5.2. If the assumptions in, Theorem 5.1 are ful filled and
{f: gJa} e Hs—-m(‘Q) X :.li—'[ Hs—i—-r,a('ga)

with m<<s€4, then (1.4) is solvability +f and only of

1]
12]
3]
[4]
5]
A6]
L[71
I8l

fe1
{107
{11]
£12]

(v, flo— JZ(OG.,'U, gr.00=0, Yo € Ker(T").

Remark 1. In [4], there is an example to show Ker(7,) # {0}.
Remark 2. For the case of m=2, see [11].
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