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Abstract

The theory of vector valued Orlicz spaces generated by generalized N —functions was

introduced oy M. S. Skaﬁ(seé [1, 21). But the proofs of two main theorems in [2] are

incorrect. In this paper, the author exhibits an example to show the incorrectness, gives

the correct proofs and improves one of those theorems.

1. In this section, we quote Some definitions from [1, 2] in brief.
Definition 1. Let T be a space of points with non-atomic, o-finite measure and

B n-dimensional Buclidean space. We call @ real valued non-negative function M (2, @)

defined on T' X E" a GN-function of it satisfies
(1) M, ©)=0if and only if ©=0 for all & in T and all @ in E";
2 M@, o) isa continuous convex function of @ for each t and @ measurable func-

tion of t for each «;

(8) For each i in T, |h|m M@, o)/ o] =+

(4) There are constants K >1 and d=0 satisfying STM 2 d)dt<o° such that

M@, o) <KMG, y)
for all ¢ in T and all @, o in B® satisfying I<|w|<|y| where
H(t, d)=sup M, @).
Definition 2. Orlicz class '
Ly={z() €X| modular Ry(w) = STM (¢, w(t))di<oo}s

Orlicz space '
L= {y(t) € X |there is a constant a>>0 such that ao2(t) € Lut},

where |
X ={o(®) = @), 20),
on'T, k=1, 2, -+, n}.
Definition 8. The norm of w(t) in L 8 defined as
o] =max{|z]*, | —ol}s

wn(2)) | @i (8) is a measurable real funotion

whereé
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|o|* =int{k>0| Ry (o/k) <1}.

Definition 4. We say a GN-function M (¢, w) satisfies a A-condition if there
emist @ constant K=2 and & non-negative measurable function q(t) such that the Ffunction
M (3, 2q(%)) is integrable over the domain T and for almost all t in T, we have

MG, 20)< KM, o)
for all @ satisfying |@|>q ().

2. Tn this section, we give an example to point out the mistake, the common part
of the proofs of Theorems 2.2 and 3.8 in [2]:

@« M(¢, ) does not satisfy a A-condition, there exists a sequence of points
{m} in E" tending to infinity and a set T of finite positive measure such that
M (¢, 2ay) >2M (8, o)
for all ¢ in T and all k=1, 2, «--”
Example Set T=[0, 1], E=R(the real line). Define
@R[ — (2%/k)2+1] —1, when t€ [1—1/287, 1—1/2%)
M@, o)=4 and |a|>2"/k, k=1, 2, -,
¢?'—1, otherwise '
and
0" @ _ {27‘/10, when ¢€ [1—1/26% 1—1/2%), k=1, 2, «,
400, when t=1,
Tt ig easily verified that M (¢, #)is a G-N-function and we show that it does not satisfy
a J-condition first. For any constant K>2 and any non-negative measurable fune-

tion q(¢) satisfying L_'M (¢, 2¢(£))dt<oo, we choose <0 such that

@ —1>K (e —1)
whenever || =, an infeger m such that 2™/m>, and an integer Ko=>1 such that

—;lz— go(2) =2™/m for all ¢ in [1-1/2%, 1]. This K o oxists becauge go(f)—>-+o0 as i—>1.

It follows from

o

ﬁ_m, M, qo(3)) di= SV (—1)1/20> D 1/k—1l=+40c0

k=Ko+1 =Ko+l

and

, _
| L—i/zxoM (¢, 29(@))dt<+o0
‘that the seb )
P*={t€ [1—-1/2", 1] |qo() >2¢(0)}
is nonempty. For any ¢ in 7%, defining
w3 4o(H) >4(t)

and observing
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go(#) > @ = %‘ go(8) =>2"/m> o,
we have
M (3, 20;) =e** —1>K(e”—1) = KM, o).

Therefore, the G:N-function M (f, #) does not satisfy a A-condition

Next, we prove that for any non—negatwe constant ¢<1, there exigts a constant
@o>0 such that

M(s, 2a;) <BM (¢, w)

holds for all ¢ in [0, ¢] and all « in R satisfying lwl >, In faot lot N be a positive
integer such that 1/2¥<1—o, then for each k=1, 2, -, N,

9% . :

_ M@, o)=€F [a*— (2¥/k)*+1] —1 1)
for all ¢ in [1—1/2¥"%, 11/ 2%) and || >2"/k. Since the expression (1) is a quadra-
tic function of , there is a constant ,>2"/k such that -

2 2
| e [(20)2— (2%/k)+1] —1<5{¢ ¥ [o"— (2%/k)2+1] -1}
for all x satisfying || >ai. Denote

@o= ma,x {@.}, .
1<k=<

then
M (t 20) <BM(t, @)

for all ¢ in [0, ¢]C U [1—1/2v%, 1-1/2¥) and all »in B samsfymg | 2] >0

Now, for any sot ToC [0,1] with positive measure and any sequence {a;} tending
to infinity, we select constants ¢>0 and 2,=>0 such that 0<1—e<[To| (where |7
expresses the measure of 1), and

M (¢, 20)<BM (i, @)
for all ¢ in [0, ¢] and all x satisfying || > Since 1—e< |To|, theset [0, c1NTo
is nonempty and for all t in [0, ¢] NTo, we have
M@, 2m,) <BM (&, o)

for all a, satisfying Iwkl >,, which means that the affirmation (%) is untrue and 8o

the proofs of Theorem 2.2 and 3.8 in [2] are untrue.

8. Wo have shown in section 2 that the proof of Theorem 2.2 in [2] is incorrect.
However, it is rather difficult to prove this theorem which relies on the following
lemmas

Lemma 1. Supposs that A is @ non-atomic measurable set with o—finite measure,
a>0 a constant and f(¢) o fintts, non- -negative measurable function on A such that

L F@dt>a.
Then for any constant >0, there 6wists & measurable set Ao A such that

w<L fdi<a+e,
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Proof Set
Bn={teA|f<t> <n},
n=1 2 - then

H

tim( 7@ di =, ra>a,

- Therefore, there is an integer no>1 such tha,t

JB,.,, fdt>a.

Since 4 is a non-atomio measurable set with o—finete measure, there is a sequence.

{E,} of disjoint subsets of B,, satisfying | By | <e/no, k=1, 2, +-+, such that
| - Bu— U By |
k=1
Moreover, the inequalify

ng f@di= L,.of di>a

implies that there is an integer Ko such that
2 s f@)dt>a

k=1

and
Ko—1r
B, rods<a,
' k=1J Ex ‘ .
When the last two inequalities are combined with the inequality
' jE f(t)dt<n9|Ekol <mgee/no=e, |
we obtain the expected result |

a<j f(t)dt gk f(t)dt+5E,‘f(t)dt<a+e

Lemma 2. Under the same cond@t@ons as in Lemma 1, there is @ measurable set Be
in A such that

[, Fyds=a,

Progf Let {e;} be a non-increasing positive sequence tending to zero. By Lemina
1, there i a measurable set B;C A such that

<jB Fdi<ate,

and for the same reason, there is a measurable set By in By such that
w<jH F@)dt<a+te,,
------ By induction, we obtain sets By By« such that

< L F(8) <a+ oy
n=1, 2, .-« and complete the proof by setting
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ﬂ B,.
Lemma 3. Supposs that M (t ) is @ G-N-funstion on T % LB*, I o measurable

set in T and {wx (1)} @ sequence in X tending to «(t) ( ﬁmte or infinite). Then for any
qpon-negative constant ¢ satisfying

S M, w(t))dt>c

(where M (, o0) = 1-00), there ewists an infeger ko=1 and a fmeasumble st Io in I such
that

j M (E, @ (£))db=0.
Proof Since M (%, o) is a continuous function of @ for each ¢ in T,
i M (2, @i(9) = MG, o)

o—ro0

for all ¢ in T, it follows by Fatou’s Lemma that
sup| MG, o (8= MG, o(8))dt>0,
“Thug there is an infeger Le=>1 such that
[ ¢, au@dr>o.

TThe desired conclusion follows immediately from Lemma 2.
Let M (¢, ) denote a GN function on T X H", Py>2 a constant and
Ry={ry, Ta, e}
4he seb of all points in B with all coordinates being rationals. Moreover, We write
Gy={tET| M (2, 2r:) > P, M, )}, '

— r;, when¢& G,
r i(t) ={

0, otherwise,
=1, 2, «--. Since both M (3, 2r;) and M (t, ;) are measurable funo’ﬁlons of ¢, the sef
G‘; is measurable, and so, lm(t) | a simple function on T'. Moreover

T3 (8) —slgglm(ﬂ | =lim max|7() |

joroo 1<i <]
is & measurable function on T'. For each j=1, 2, -, set Ira = | rul == 1l
{where {&y, @2, =" =41, 2, -, 4}), and denote

’ ix—1
wgk) (t) - { I-l:ik) when tE G@k‘—' -pL=J1Gi”’ k——=2, aso, j, ‘ (a)
’ 14, (t), otherwise,
(’“’(i)——(lw’“)(t)l 0, -, 0)€X (b)
and
n—1 .
e e,
gk(t) = (’rk(t): 0; ) 0) . (C)

‘We have
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M (2, 2050 (1)) > Pul (¢, 27 (%))
whenever a§" (%) #0, |

o) =l Mix |70 | ~Lm P @
and R »
() =1im g0, ©

We will always employ the notations (a)—(e) throughout this section without:
any further explanation. ' V
Lemma 4. The inequality
MG, 20)<PyM (1, o)
holds for all ¢ in T and all © in Er satisfying |o| >0 ®. . ,
Proof Otherwise, there i some ¢ in T and ap in E* satisfying |@o| >r#(t) such
that :
M(3, 2w0) >PuM (4, %0);
then by the continuity of M@, o), there is a positive constant e< |wo| —r(¢) such
that | . |
M (¢, 20)>PuM @, @)
for all » in B satisfying |@e—a|<o. Select a point 7 in Ry such that |wo—7]| <6
Then we have _ ' ’ : |
M@, 2r)>PuMG, 1)
and ' .
ro(8) < 0] —0< |70] ~|ga—1 | <|a0] = (lao] =) =r=r (D,
This contradicts the definition of r4(#). | |
Lemmab. If Pi<Py<---and

[, 3@, gu)di=oo
k=1, 2, o, then there is @ sequehce {7} of disjoint subssts of T' and @ sequence {; (1)}
of points in X such thai
L M@, w;(3))dt=1/Py,
J .
and
M@, 20;(8)) > Py, M, 2s(8)), 1€T,
j=1,2, ¢, where{Py,} is a subsequence of {Pux}-
Proof We know that the sequence {rs(£)} is non-increase since Pi< Py, Lot
Iy={ €T | re(®) =oo}
and Io= () Iy Olearly, IyDIaDe
k=1

1° If |Ip| >0, we can choose a non-overlapping sequence {1} of sets in Io with
positive measure(see [8], § 41, Exeroise (2)). For each k=1, 2, -, by (d):
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tim | of(1) | =7() =2, 1€ T,
and Lemma 8, there is a point «f () =g,() in X and a set T In T (2+0) such
that v
[, M6, ou(@)di=1/Ps
Tt is obyious from the definition of @,(?) that
- M (4, 20, () > P (¢, o)), $€T
90 Tf | Io| =0 and every | Iy| >0, then there are iniegers 1<ty < gL +++ such that
| Tn,— L, 1 >0, §=1, 2, +-= For each j=1, 2, -+, asin case 1°, we can select a sot
T, in Iy,—Iy,, and a point mt(t) in X such that '

[, 3, ()i ~1/P,,

M,(t) 2(0;@)) >:P7G.4M (t: w.’f(t)): tETJ-
Clearly, {T';} is disjoint.
3° Suppose that neither case 1° nor 2° is satisfied, then there is some [ Ix,| =0.

and

‘For convenience, we say I,=0, therefore ¢=Ii=fz= ... By Definition 1, there are
constants K >1 and d=>0 satisfying - |

jTM(t,d)dKoo
such that
| | M@, o) <EKEME,'Y)
for all ¢ in T and all &, y in E" satisfying d<<|o|<<|y]|. Since
[ M, ga(a)di=oo
by Lemmea 2, there exists a set E, in T such that
f M, g:(t))dt=8K /Py +S M@, dydt,
Thus, by (o) and Lemma 8, there is a set T in Hy and a point gm) (1) in X such that
f M, g2 (@) dt=2K/P1+LM(t, d)di,
Clearly.

j M, 200 (1)) dt=>2K /Py
T (g5 1>

and by (o)
M, D)1/ | MG, 2 () de=>2/Py,

TiClo) 1>
where @y (£) =e2 (). It follows by Lemma 2 that there is a set Ty in Ti(|e|>d)

such that

»‘T'x(lwxl>d)

L M (s, @u(t))di=1/Ps,
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And it is eagsy to see that
M(t, 2m1(t)) >P1M (t, ml(t)), te Ti_
Hence

L MG, gz(t))dt>s MG, gg(t))dt—L’ M, gi(5))dt= o0,

Similarly, we can obtfain a point w5 (1) =@ (£) and a set T in T —T'; such that

[, ¢ o <t>>dt=1/’Pz
and
M(t 25 (8)) > PaM (¢, ws(t)), tE T.

And so on, by induction, we obtain a sequence {w,()} in X and a digjoint sequence

{T,GCT — U1 T;} of sets such that
$=

Lk M (&, wp(t))dt=1/Py
and o :
M3, 20,(2)) >P. MG, o,(8)), €T
k=1, 2, =, _ |

Lemma 6. Assume that M (1, ») does not satisfy a A-condition. Then for any
Py=>2, |

completing the proof.

[, MG, 20u0))dt=co,
Proof Suppose that there exists some P,>2 such that
[, MG, 20.0)dt<oo.
Let
d/2, otherwise ‘
By Definition 1, we have

STM(t, 2q(t))dt<LM_(t«, d)dt+s | dM‘(t, 2| gu(8) ) dt

(21951 >d)

<STM<*’ d>dt+KS M, 20u(8))di< 00,

T(2lgx1>d)
and for any t €T and o € B" satisfying || >¢(#) =g (@) | =r&(¢), Lemma 4 assorts
that | | o
Mz, 20)<PyM(t, o).

This contradiots the assumption that M (2, w) does not satisfy a A-condition.

Now, we can prove Theorem 2.2 appeared in [2].

Theorem 1. Orlicz class Ly is & vector space if and only 3f M (4, @) swt@sﬁes @
Ad-condition.

Proof We only show the necessity, since the sufficiency is obvmus If M(t, @)
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does notb satisfy a A-condition, then for each k=1,2, -, setting Py =2¢, Lemmm 6
shows
[, M@, 20)d=o0

and the condition that Ly is a vector space yields

[ MG, gu)ar=oo.

Tt follows from Lemma 5 that there oxigts a non—over].apping sequence {T';} of subsets
of T and a sequence {a;(f)} of points in X such that ' - '

ST MG, (t))db=1/2"

and . » : .
M(t) 2(135 (t)> >2kJM (f’: wi@)) ’ teTﬂa |
- Lét us define _
{wi(t)f when ¢ €T, j=1; 2,
(t) = :
0, otherwise,
Then . ,
j MG, w(t))dt.—_-ij MG, op(0)dt=S)1/24<1
T §=1JT; j=1
and '

oo

LM (t, 2w(t))dt==_2_1L.M (¢, 2mj(t))dt>§12”fsm M, m,-(t))dt=§11=oo,

=

This means «(¢) € Ly and 2 (t) € L, contradicting the hypothesis that Ly is & vector
space. _ : B
4. The purpose of +his section is o prove and improve Theorems 3.2 and 3.8 in
21. . | : '
Lemma 7. Let M(t, o) bea G.N-function on T % E*. Then
| M (s, o) = inf M (t, @) >0
for all constant 0>0 and all ¢ in T
Proof If there oxists some ¢>0 and tin T such that
M, o) = l%’rlx_fcM(t, w) =0,

there is a sequence of points {wy} in BE" satisfying |y =0, k=1, 2, such thab
lim M (t, mk) =0, .

k=0 )
By the compactness of F*, there is a subsequence {wy} of {wi} and # € E" such that
Ly >w 88 —>0. This implies, from the continuity of M (¢, @), that
M, o) =»1jim M@, @) =0,

contradicting the definition of M (8, ). Hence |&| =¢>0.
Lemma 8. Assume that M (t, ») 5 @ G N-function on T % H", |T| <00, and
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{wy(£)} =X o. Then M (3, oy, (£))=>0 (convergence in measure) as k—>oo if and only if |

o (1) =>0 as k—>°,

Proof Necessity. Otherwise, there are positive constants @, ¢ and o subsequence
{wy,(t)} of {w,(t)} such that _ '

|7, =mes{tE€ T o, (8) | >a}>e,
§=1, 2, <. If follows from Lemma 7 and the convexity of M (¢, @) that
MG, o) SH G, @ 0@ Do @) B @ @)>0, 1€T, ®
for all =1, 2, . Since M (¢, @)>0and Tis a get with non-atomic, finite measure,
there is a constant ¢>0 and a seb 7" in T such that |T"| <e/2, and M (4, a) <c for all
¢ in T —T". Combining (f), we have
mos{t €T | M (¢, s, (8)) >0} Smes{t € T4, | M (¢, @) >c} =T —T"|>e/2

for all j=1, 2, «--s This contradiots that M (¢, #,())=>0 as k—>°.

Sufficiency. For any positive constants @ and e, since M (¢, ¢)—>0 a8 ¢—>0 for all ¢
in T, and T'is a set with non-atomic finite measure, there ig a constant co>>0 and a
st T in T' such that |To| <e/2, and M (¢, co) <a for all $ in T ~T,. By hypothesis,
there is an integer N>>1 such that
| By| =mes{t€T| | @ (&) | > 0oy <e/2
for all k>N. It follows that :

mes{t €T | M (8, o(2)) >a}<mes{t € Hy| M (2, w (1)) >a}
mes{t €T —Ex| M@, co) >a}<e/2+ | To| <e

for all k>N. That is, M (¢, o(t))=>0 as k—>oo.

The following lemma is Theorem 3.2 in [2] without proof.

Temma 9. The convergences n morm and, in modular are equivalent in Ly if
|T| < oo and M(, w) satissfies @ A-condition. |

Proof If Ry(wy)—0 as k~>o0, then M (%, o, (1) )=0 as k>0, and by Lemma 8,
so does M (¢, 2a4(£))- Hence Lemma 8 implies that {ws (#)}, and so {2 (t)}, conver-
ges t0 zero in measure. For each k=1, 2, -, set : ’

sy {50 o IO 10,

0 otherwise,
(¢(#) and the following K are dofined as in Definition 4), then by Lebesgue’s Domi-

2

nated Convergence MTheorem and the hypothesis, we have _
LM(t, 9y () ) < KSTM(t, w,o@))dHLM(t, 2, (£) ) di~>0

ag k—>co, and finish the proof by applying 8.1.1) and (3.1.2) in [2].

Theorem 2. The convergences i norm and in modular are equivalent in Ly if
and only if M(, o) satisfies @ A-condition.

Proof sufficiency. By hypothesis, there i a constant K >2 and a nonnegative

measurable function g(f) gatisfying L'M"(t, 2q(8) )dt < oo such that for almost all ¢
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inT

M, 20)<KM(, @)
for all @ in B" satisfying |@|=>q(t). Since T' is a set with o—finite measure, there is &
non-overlapping sequence {T'} of sets with finite measure in 7' such that

7= )Ty,

k=1
and so

3 [ WG, 20@)ar={, MG, 20@)de<eo, |
Therefore, for arbitrary ¢>0, there exists an integér N such that
L' M(t, 29(8))di<e/8,
Whei‘e T0= O T;g, |
=N
Now, if {o(t)}CXand By (@) —>0 as k—>co, then there is an integer N;>1 such
that Ry (@) <e/3K whenever k>Ni, and by Lemma 9, there is an integer Np=>1
such that ' ' '
L M, 20,(2))di<e/3
for all k> Ns. Tt follows immediately that
By (2wn) =L M, 20,0)di+ L MG, 20,0t -

<e/3_+L M(t, 2¢(0))ds + KL M, o(t))di<e/3+e/3+Ke/3K 6
for all k>max{Ny, Na}. In other words, Ruy(22,)—>0 as k—>o0. We finish the proof of
the sufficiency by applying (8.1.1) and (3.1.2)in [2]. ’

Necessity. If M (¢, @) does not satisfy a 4-condition, by Lemma 5, there exists a
disjoint sequence {T';} of subsets of T and a sequence {a;(¢)} in X such that

L M, a;(5) )dt=1/2"
El
and .
M (2, 20,(£))>24M G, @,(8)), 1€T,
for all j=1, 2, -+, Where {k;} are integers satisfying 1<ky<ks< . Defining
‘ z;(t), when t €T,
w,j &) = { w; (1) i
0, whent€T-T, "
j=1, 2, --+, we have ‘
Ru(o) = MG, 6, ®)de=, MG, @)t =1/2->0
’ 3
ag j—>o0, and

Ru(@) = [, MG, 23 [, M o1(0)di=1.
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This implies by [2], Theorem 3.1 that the convergences in norm and in modular are
not equivalent. : S .

DNeither Theorem 2.2 nor 3.8 in [2] holds without this condition as T’ being
nonatomic in [1]. For example, let T e a space of points with a point fo in it and
with the measure m defined as follows: for any ACT, mA=1 if to€A, and mA=0

‘otherwise. Obviously, T is a o—finite ieagurable spaée with an atom &. Now, define

M, o) =¢*'—|o|—1
for alltin T and o in B We can show :the incorreciness of the Theorems 2.2 and
3.8 in [2] without any difficulties. For instance, we verify the first one.

Tt is easy to verify that M (¢, ») is a GN-function not sa’uisfying a A-condition. We
only need to show that the Orlicz class Ly i8 a vector space which contradicting the
Theorem 2.2 in [2]. For arbitrary o(t) in X, we have

Bu() = jT MG, m(t>>dt=jt MG, wo(t))di=Mto, 0(to)) *mé
L =M @<
MThat is to say, Lu=X being a véctor space.
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