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Abstract

In this paper, some properties of semi-simple L*-algebras are considered.

At first, applying Cartan decomposition, the author constructs a family of nilpotent
subalgebras in a semi-simple L*-algebra and proves that whole algebra can be spanned by
these subalgebras, their conjugations and Cartan subalgebras. ,

Then, the author proves that every nonzero root vector of semi-simple L*-algebra of
H-S operators is a finite rank opera,tér and presents the triangular model of the algebra.

Pinally, non-Voltera property of the algebra is shown.

In this paper we will follow the notations in [1, 2], The bagic results we will

use are as follows. , _
Theorem If L is a ssmi-simple L*-algebra with Cartan subalgebra H, L has a

Carian decomposition with respect to H. ({21 p 348)
Suppose 4 is a bounded gelf-adjoint operator on L. For real A and >0, let

7, &) ={o: |(A—Wa|<eol, n=1, 2, )
For a Borel set M of the real numbers, let
V (M, &) =SP{V (, &) MEM}
and
V(M) =DOV(M, g).
Turthermore, if H (M) is the real gpectral measure of A such that

A=Sde,

then the range of B (M) is equal to V(M) for M .oompaot. For any Borel set M the

range of H (M) will be denoted by S(M). Finally, for Borel sets M and N let
M+N={m+n, mEM, n€N} and —M ={—m, mEM}.
The M-+ N and —M are alse Borel sets. '
Proposition 1 Supposs A is a bounided self-adjoint derivation on L and M. N ars
Borel ses of the real lins. Then [S(M), S(I)] CS(M+N) and SM)*=8(—H),
([L] p 885) |
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§ 1. Nilpotent subalgebra and nilpotent root vector

In this section we will construct nilpotent subalgebras gpanned by the root
veotors. :

Let L be a somi-gimple L*-algebra ond b be a selfadjoint element of L. Then
there is a Cartan subalgebra containing h. For every € L, Dww=1[h, o] 32 bounded
gsolfadjoint derivation on I,. Without loss of generality, we can Suppose that the spec-
srum of D, is in the inferval [—1, +1] including the end points. We take Dy as 4
in the proposition 1. | ‘

Proposition 2 If |A|>1, then V(, &) ={0} when & is small enough.

Proof By hypothesis, we can suppose a>1. Therefore, there exists (A—A)~t
which is a bounded operator, | (4—A)"| <K, where K is a constant. If s €V (A, &),

||wu=H_(A——?»)'”(A—-?»)"ml[<(Ks)”\[m“, n=1, 2, -, we fake s<—2—1z so that [af<

%Hw\l , therefore #=0.

Q. E. D.

Theorem 1 If Lisa semi-simple L'—algebra, then there is @ decomposition of L

. L=8[—1, 0)@H®S(, +11,

For every A>0, STA, 1] 4s @ nilpotent subalgebra. '

Pfroof We take D; as A in proposition 1. In views of the previous discussion, we
can get S[—1, 0) and S0, +11. STA, 1] (A>0)is a nilpotent subalgebré,.

If o iy a noNzero vpositive root of L, it is easy 1o see that a positive rooh vector éu
belongs to ¥V (a(h), &), that is, V.V (a(h), e)<=8(0, +1]

Therefore, H®V.EST—1, 0@HE® 8, +1]1CL, in which summation runs
over all nonzero roots. By means of the existence of Cartan decomposition of semi-
gimple L*-algebra, we have L=H@®@V . Consequently, we get the decomposition

L=8[-1, 0)®H®S (0, +11. .
Q. E. D.

§2. Finite rank property of the root vectors

In this section we will consider a concrete semi-simple L*-algebra. Then we can
get the particular properties of root vectors. '

Now let Lu be a semi-simple L'-algebra composed by Hilbert-Schmidt operators.
The Lie Iiroduct ig given in usual way, L[4, B] — AB—BA for A, BE Ly, and inner
product is defined by (4, B) =trace (B*4). We will prove that all root vectors corres-
ponding t0 nonzero roots are finite rank operators. ’
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Lemmal If A isa fiwed nonzero bounded operator on & Hilbert space such that

T[4, 41, 4] =\ A for someé A0, and n 08 the greatest integer such that A"+0. Then

A*A has finite spectra contained in the s6t {K(M2), K=0,1, m,_n(fn,—l‘l)}, (21 p
Proposition 3. If e is @ nONZETO root vector of Ly, ther éa is a finite rank opera

Proof Ife.isa nonzero root veotor, without logs of generality, we can SUpPPOse €a

corresponds 0 @ positive root. By means of Theorem 1, € belongs to some nilpotent
‘gubalgebra STA, 1], where A>0.

Thus there exists n which is the'larges{; integer such that ex+0. Evidently, .
[[ea, GZ.] » ea] == “(ha) Cas

Accordinf to Lemma 1, the spectrum of operator €.e. 18 contained in the seb {a(ha) K/

2, K=0,1, -, n(n+1)}. Since 6. 198 completely continuous operator, if a(ha) /2

-ig' the nonzero characteristio yalue of €xs, the corresponding characteristic gubspace is

finite dimension. Because of the spectral theorem of selfadjoint completely continuous

-OperTator, €af 18 & finite rank operator: Since the null space of ¢'¢, contains in the null

.gpace of €a; thorefore, €, i8 & finite rank operator.

§3. The triangular model of L

. In this section, We Prove, with the help of [4], thatevery nonzero roob veotor
.can. be expressed in jriangular model. Tt is somewhat like uppextriangular’ form.
Chain A set 2 of orthoprojectors ig called a chain, if for any pair Pi, p€EB
either py<Pp2 OF Pa<<P1- o | " i
Eigenchain We ghall say that a ofain 4 is an eigenchain of the operator A, if ‘

each of the subspaces R(p)(pEX ) is invariant with respect to A, in other words, if

pAp=Ap(pER)-

Lemma 2.  Every completely continous linear operator has @ mawf_imal eé)genchwin.
(141 p 1B) . | |

The rank of a chain A system of vectors {xi}i a<srs< 4+o0) is called a repro-
.ducing syster. for 4he chain &, if the olosed linear hull of the set of veotors pxi(§=1, |
2, e, 1, P € B ) coincides with the entire space H,. The smallest of the cardinalities
.of all possible reproducing gystem for the chain & i8 called the rank of the chain, and
is denoted by (%) - :

Triangular Model. For brevity, W denote by L& (1<r< 4o00) the Hilbert
_space L5(Q), where @=1[0, 11. Thus, an element feLy isan r-dimensional vector
function f=1{» )}y with measurable components fo(8) (o<t<1) such that
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712=[] 31 £ 1P di<co.

* For the scalar product of the elements f, gELL, we have

G a=[roroa= B L0RO®

Let p(%) (O<t<i) be the truncation projector-function defined by the condition:
$(0) =0, p(1) =T and

f(t) 0<t<s,
(PN @)= { s<i<l  (0<i<1),

Let A be some (abstract) Voltera operator acting in a Hilbert space Hj. 4

* (concrete) Voltera operator 27, acting on Lf” and having p(t) as an eigen-projector-

funotion, is called a triangular model of 4, if .o/ is unitary equivalent to 4 or to an
inessential extension of 4.

‘Lemma 8. Ewery Hilberi-Schmidé Voltera opemtow & of rank r has as @ trian-
gular model an 'mtegml opemtor &, which acts on the space L§” according to the:
formula

N )= 6, 9f s
where
L, 8) = |a,G, O (0<i<s<1)
is @ Hilbert-Schmidt matriz kernel 4. e. .
Si ﬁ ﬂéllwﬂpb(t, s) |2dsdi<oo,

(14] p 221)

Lemma 4. If Aisa ﬁmte -rank operator, r 4s its rank of opemtor and 'r(gé’ ) is:
the rank of its esgenchain, then there ewists an inequality

r(B)<r

Proof Let A be a finite rank operator on Hy. The domain of A is a r-dimen-
sional space, and @1, @s, -+, @ is its orthonormal basis. Then we can extend this basis
10 the whole space Hy and get the orthonormal basis of Hy and denote it as @, @s, -
@r, €41, €rga, ++ 1f the chain of A is %, we can extend Z’ fo % such thai

E{wy, @, @y, €y, **, 6raay (0=1, 2, <) EZ.

Therefore Z is the chain of A.

Let

3

2=+ ,§ er+7ﬁ/2k . ({Z=1: 2: ) ’l”.) .
Tt is easy 1o see that {x:}] is a reproducing system for 4, consequently
v r(B)<r.
Theorem 2. Let Ly be a semi-simple L*~algecra of H-S operators on Hy, abe &
nonzero Toot, and e be @ corresponding root vestor. Then e, has a triangular model
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p)@=[ G s, |
20, ) =, D5 (O<I<s<D) -

5151 ﬁ | (2, 8) |2 dsdi <o,

0Jt pr=1

IE=3

r<| a(lh)
 Proof In view of proposition 8, for every nonzero oot o, €, is a finite rank ope-

tator. By means of Lemma 4, the Ohain % corresponding to € i8 finite rank.

"Therefore, owing to Lemma 3, ¢, has the form in the theorem. '

By means of Theorem 1 STe(h), 1] is a nilpotent subalgebra. Therefore

1
e,,,[‘?@ﬂ+1 =0.

As ¢, is a finite rank operator, applying Jordan canonical matrix to €, we can Prove
+that if the rank of €, is r, then ’

1

r< [—&-@—)—

[E=2
«Consequently

r(B)<r<| ]+t

1
o(h)
Q. E. D.

§4, Lzisnota Voltera algebra

Definition. The algebra L consisting of bounded operators on & Hilbert space Hy
.3s called Voltera, if every operator in L is @ Voltera operator.

In this section, we will prove that L is not a Voltera algebra.

Theorem. Let L be a separable Voltera algebra containing @ findte rank operator,
hen L has a proper closed ideal. ([8] p 271) .

Theorem 3. If Lz is @ semi-simple L'—algebra, then Ly is not a Voltera
- algebra.

Proof If Lzisa gemi-simple subalgebra of L, I will be called regular (with
-respect o a Cartan gubalgrbra H) if and only if L is separ able and H'=HN Lz isa
Cartan subalgebra of Iy, In [2] p 844, the construction of regular semi-simple subal-
_gebras of gemi-simple I/*-algebra is given.

Now we assume Ly is a Voltera algebra. Therefore there exists a regular subalge-
pra Llg of L, which ig a Voliera algebra. Accoding to the definition, Ty is separable.

Sinee a semi-simple L*-algebra can be decomposed as direct sum of simple closed
‘jdeals, without loss of generality, we may Suppose that Ly is a separable simple Voltexa
-algebra.
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Because of Propdsition 8, Ly has finite operators. Owing to previous theorem, Ly
contains a proper closed ideal. It contradicts the simple property of L. So Ly is not a
Voltera algebra.

Q. E. D.
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