THE TRIANGULAR MODEL OF SEMI-SIMPLE L*-ALGEBRA OF H-S OPERATORS

Wu LIANGSEN (吴良森)

(East China Normal Uneversity)

Abstract

In this paper, some properties of semi-simple L^* -algebras are considered.

At first, applying Cartan decomposition, the author constructs a family of nilpotent subalgebras in a semi-simple L^* -algebra and proves that whole algebra can be spanned by these subalgebras, their conjugations and Cartan subalgebras.

Then, the author proves that every nonzero root vector of semi-simple L^* -algebra of H-S operators is a finite rank operator and presents the triangular model of the algebra. Finally, non-Voltera property of the algebra is shown.

In this paper we will follow the notations in [1, 2], The basic results we will use are as follows.

Theorem If L is a semi-simple L*-algebra with Cartan subalgebra H, L has a Cartan decomposition with respect to H. ([2] p 348)

Suppose A is a bounded self-adjoint operator on L. For real λ and $\epsilon > 0$, let

$$V(\lambda, s) = \{x: ||(A-\lambda)^n x|| \le \varepsilon^n ||x||, n=1, 2, \dots\}.$$

For a Borel set M of the real numbers, let

$$V(M, \varepsilon) = SP\{V(\lambda, \varepsilon): \lambda \in M\}$$

and

$$V(M) = \bigcap_{\varepsilon>0} V(M, \varepsilon).$$

Furthermore, if $E(\lambda)$ is the real spectral measure of A such that

$$A = \int \lambda \, \mathrm{d}E,$$

then the range of E(M) is equal to V(M) for M compact. For any Borel set M the range of E(M) will be denoted by S(M). Finally, for Borel sets M and N let

$$M+N=\{m+n: m\in M, n\in N\} \text{ and } -M=\{-m: m\in M\}.$$

The M+N and -M are alse Borel sets.

Proposition 1 Suppose A is a bounded self-adjoint derivation on L and M. N are Borel sets of the real line. Then $[S(M), S(N)] \subset S(M+N)$ and $S(M)^* = S(-M)$. ([1] p 335)

§ 1. Nilpotent subalgebra and nilpotent root vector

In this section we will construct nilpotent subalgebras spanned by the root vectors.

Vectors.

Let L be a semi-simple L^* -algebra and h be a selfadjoint element of L. Then there is a Cartan subalgebra containing h. For every $x \in L$, $D_h x = [h, x]$ is a bounded selfadjoint derivation on L. Without loss of generality, we can suppose that the spectrum of D_h is in the interval [-1, +1] including the end points. We take D_h as A in the proposition 1.

Proposition 2 If $|\lambda| > 1$, then $V(\lambda, \varepsilon) = \{0\}$ when ε is small enough.

Proof By hypothesis, we can suppose $\lambda > 1$. Therefore, there exists $(A - \lambda)^{-1}$ which is a bounded operator, $\|(A - \lambda)^{-1}\| \leq K$, where K is a constant. If $x \in V(\lambda, \varepsilon)$, which is a bounded operator, $\|(A - \lambda)^{-1}\| \leq K$, where K is a constant. If $x \in V(\lambda, \varepsilon)$, $\|x\| = \|(A - \lambda)^{-n}(A - \lambda)^n x\| \leq (K\varepsilon)^n \|x\|$, $n = 1, 2, \dots$, we take $s < \frac{1}{2K}$ so that $\|x\| \leq \frac{1}{2} \|x\|$, therefore x = 0.

Q. E. D.

Theorem 1 If L is a semi-simple L*-algebra, then there is a decomposition of L $L=S[-1, 0)\oplus H\oplus S(0, +1]$.

For every $\lambda > 0$, $S[\lambda, 1]$ is a nilpotent subalgebra.

Proof We take D_h as A in proposition 1. In views of the previous discussion, we can get S[-1, 0) and S(0, +1]. $S[\lambda, 1]$ $(\lambda>0)$ is a nilpotent subalgebra.

If α is a nonzero positive root of L, it is easy to see that a positive root vector e_{α} belongs to $V(\alpha(h), \varepsilon)$, that is, $V_{\alpha} \subset V(\alpha(h), \varepsilon) \subset S(0, +1]$

Therefore, $H \oplus V_{\alpha} \subseteq S[-1, 0) \oplus H \oplus S(0, +1] \subseteq L$, in which summation runs over all nonzero roots. By means of the existence of Cartan decomposition of semi-simple L^* -algebra, we have $L = H \oplus V_{\alpha}$. Consequently, we get the decomposition

 $L=S[-1, 0)\oplus H\oplus S(0, +1].$

Q. E. D.

§ 2. Finite rank property of the root vectors

In this section we will consider a concrete semi-simple L^* -algebra. Then we can get the particular properties of root vectors.

Now let L_H be a semi-simple L^* -algebra composed by Hilbert-Schmidt operators. The Lie product is given in usual way, [A, B] = AB - BA for $A, B \in L_H$, and inner product is defined by $(A, B) = \operatorname{trace}(B^*A)$. We will prove that all root vectors corresponding to nonzero roots—are finite rank operators.

No. 3 Lemma 1 If A is a fixed nonzero bounded operator on a Hilbert space such that $[[A, A^*], A] = \lambda A$ for some $\lambda \neq 0$, and n is the greatest integer such that $A^n \neq 0$. Then A^*A has finite spectra contained in the set $\{K(\lambda/2): K=0, 1, \dots, n(n+1)\}$. ([2] p 342)

If e_{α} is a nonzero root vector of L_H , then e_{α} is a finite rank opera-Proposition 3.

Proof If e_{α} is a nonzero root vector, without loss of generality, we can suppose e_{α} tor. corresponds to a positive root. By means of Theorem 1, e_{α} belongs to some nilpotent subalgebra $S[\lambda, 1]$, where $\lambda > 0$.

Thus there exists n which is the largest integer such that $e_{\alpha}^{n}\neq 0$. Evidently,

$$[[e_{\alpha}, e_{\alpha}^*], e_{\alpha}] = \alpha(h_{\alpha})e_{\alpha}.$$

According to Lemma 1, the spectrum of operator $e_{\alpha}^*e_{\alpha}$ is contained in the set $\{\alpha(h_{\alpha})K/$ 2. $K=0, 1, \dots, n(n+1)$. Since $e_{\alpha}^*e_{\alpha}$ is a completely continuous operator, if $\alpha(h_{\alpha})k/2$ is the nonzero characteristic value of $e^*_{\alpha}e_{\alpha}$, the corresponding characteristic subspace is finite dimension. Because of the spectral theorem of selfadjoint completely continuous operator, $e_{\alpha}^*e_{\alpha}$ is a finite rank operator. Since the null space of $e_{\alpha}^*e_{\alpha}$ contains in the null space of e_{α} , thorefore, e_{α} is a finite rank operator.

§ 3. The triangular model of L

In this section, we prove, with the help of [4], that every nonzero root vector can be expressed in triangular model. It is somewhat like uppertriangular form.

Chain A set \mathscr{B} of orthoprojectors is called a chain, if for any pair p_1 , $p_2 \in \mathscr{B}$

Eigenchain We shall say that a cfain & is an eigenchain of the operator A, if either $p_1 < p_2$ or $p_2 < p_1$. each of the subspaces R(p) ($p \in \mathcal{B}$) is invariant with respect to A, in other words, if

Every completely continous linear operator has a maximal eigenchain. $pAp = Ap(p \in \mathscr{B}).$ Lemma 2.

The rank of a chain A system of vectors $\{\chi_i\}_1^r$ $(1 \le r \le +\infty)$ is called a repro-([4] p 15) ducing system for the chain \mathscr{B} , if the closed linear hull of the set of vectors $p_{\chi_j}(j=1,$ 2, ..., r, $p \in \mathcal{B}$) coincides with the entire space H_1 . The smallest of the cardinalities of all possible reproducing system for the chain ${\mathscr B}$ is called the rank of the chain, and is denoted by $r(\mathscr{B})$.

Triangular Model. For brevity, we denote by $L_2^{(r)}(1 \le r \le +\infty)$ the Hilbert space $L^r_2(Q)$, where $Q=[0,\ 1]$. Thus, an element $f\in L^{(r)}_2$ is an r-dimensional vector function $f = \{f_v(t)\}_1^r$ with measurable components $f_v(t)$ (0 \leq t \leq 1) such that

$$|f|^2 = \int_0^1 \sum_{\nu=1}^r |f_{\nu}(t)|^2 dt < \infty.$$

For the scalar product of the elements f, $g \in L_2^{(r)}$, we have

$$(f, g) = \int_0^1 g^*(t) f(t) dt = \int_0^1 \sum_{\nu=1}^r f_{\nu}(t) \overline{g_{\nu}(t)} dt.$$

Let $\tilde{p}(t)$ (0 $\leq t \leq 1$) be the truncation projector-function defined by the condition $\hat{p}(0) = 0$, $\hat{p}(1) = 1$ and

$$(\hat{p}(s)f)(t) = \begin{cases} f(t), & 0 \le t < s, \\ 0, & s < t \le 1 \end{cases} (0 < t < 1).$$

Let A be some (abstract) Voltera operator acting in a Hilbert space H_1 . A (concrete) Voltera operator \mathscr{A} , acting on $L_2^{(r)}$ and having $\hat{p}(t)$ as an eigen-projector-function, is called a triangular model of A, if \mathscr{A} is unitary equivalent to A or to an inessential extension of A.

Lemma 3. Every Hilbert-Schmidt Voltera operator \mathscr{A} of rank r has as a triangular model an integral operator \mathscr{A} , which acts on the space $L_2^{(r)}$ according to the formula

$$(\mathscr{A}f)(t) = \int_{t}^{1} \mathscr{A}(t, s) f(s) ds,$$

where

$$\mathscr{A}(t, s) = \|a_{\mu\nu}(t, s)\|_1^r \quad (0 \le t \le s \le 1)$$

is a Hilbert-Schmidt matrix kernel i. e.

$$\int_{0}^{1} \int_{t}^{1} \sum_{\mu,\nu=1}^{r} |a_{\mu\nu}(t, s)|^{2} ds dt < \infty.$$

([4] p 221)

Lemma 4. If A is a finite-rank operator, r is its rank of operator and $r(\mathcal{B})$ is the rank of its eigenchain, then there exists an inequality

$$r(\mathscr{B}) \leqslant r$$

Proof Let A be a finite rank operator on H_1 . The domain of A is a r-dimensional space, and x_1, x_2, \dots, x_r is its orthonormal basis. Then we can extend this basis to the whole space H_1 and get the orthonormal basis of H_1 and denote it as $x_1, x_2, \dots, x_r, e_{r+1}, e_{r+2}, \dots$ If the chain of A is \mathcal{B}' , we can extend \mathcal{B}' to \mathcal{B} such that

$$E\{x_1, x_2, \dots x_r, e_{r+1}, \dots, e_{r+i}\}\ (i=1, 2, \dots) \in \mathcal{B}.$$

Therefore \mathscr{B} is the chain of A.

Let

$$\chi_i = x_i + \sum_{k=1}^{\infty} e_{r+k}/2^k$$
 (i=1, 2, ..., r.).

It is easy to see that $\{\chi_i\}_1^r$ is a reproducing system for A, consequently

$$r(\mathscr{B}) \leqslant r$$
.

Theorem 2. Let L_H be a semi-simple L^* -algebra of H-S operators on H_1 , α be a nonzero root, and e_α be a corresponding root vector. Then e_α has a triangular model

$$(\mathscr{A}f)(t) = \int_{t}^{1} \mathscr{A}(t, s) f(s) ds,$$

$$\mathscr{A}(t, s) = \|a_{\mu\nu}(t, s)\|_{1}^{r}, (0 \le t \le s \le 1)$$

$$\int_{0}^{1} \int_{t}^{1} \sum_{\mu\nu=1}^{r} |a_{\mu\nu}(t, s)|^{2} ds dt < \infty,$$

$$r \le \left[\frac{1}{\alpha(h)}\right] + 1.$$

Proof In view of proposition 3, for every nonzero root α , e_{α} is a finite rank operator. By means of Lemma 4, the Chain \mathscr{B} corresponding to e_{α} is finite rank. Therefore, owing to Lemma 3, e_{α} has the form in the theorem.

By means of Theorem 1 $S[\alpha(h), 1]$ is a nilpotent subalgebra. Therefore

$$e_{\alpha}^{\left[\frac{1}{\alpha(h)}\right]+1}=0.$$

As e_{α} is a finite rank operator, applying Jordan canonical matrix to e_{α} , we can prove that if the rank of e_{α} is r, then

$$r \leq \left[\frac{1}{\alpha(h)}\right] + 1.$$

Consequently

$$r(\mathcal{B}) \leqslant r \leqslant \left[\frac{1}{\alpha(h)}\right] + 1.$$

Q. E. D.

$\S~4$. $L_{\!\scriptscriptstyle H}$ is not a Voltera algebra

Definition. The algebra L consisting of bounded operators on a Hilbert space H_1 is called Voltera, if every operator in L is a Voltera operator.

In this section, we will prove that L is not a Voltera algebra.

Theorem. Let L be a separable Voltera algebra containing a finite rank operator. Then L has a proper closed ideal. ([3] p 271)

Theorem 3. If L_H is a semi-simple L^* -algebra, then L_H is not a Voltera algebra.

Proof If L_H is a semi-simple subalgebra of L_H , L_H' will be called regular (with respect to a Cartan subalgebra H) if and only if L_H' is separ able and $H' = H \cap L_H'$ is a Cartan subalgebra of L_H' . In [2] p 344, the construction of regular semi-simple subalgebras of semi-simple L^* -algebra is given.

Now we assume L_H is a Voltera algebra. Therefore there exists a regular subalgebra L_H' of L, which is a Voltera algebra. According to the definition, L_H' is separable.

Since a semi-simple L^* -algebra can be decomposed as direct sum of simple closed ideals, without loss of generality, we may suppose that L_H is a separable simple Voltera algebra.

Because of Proposition 3, L_H has finite operators. Owing to previous theorem, L_H contains a proper closed ideal. It contradicts the simple property of L_H . So L_H is not a Voltera algebra.

Q. E. D.

Reference

- [1] Schue, J. R. Hilbert Spaces Methods in the Theory of Lie Algebras, Trans. Amer. Math. Soc., 95 (1960), 69-80.
- [2] Schue, J. R., Cartan Decomposition for L*-Algebras, Trans. Amer. Math. Soc., 98 (1961) 334-349.
- [3] WOJTYNSKI, W., Banach- Lie Algebras of Compact Operators, Studia. Math., (1977) 263—273.
- Gohberg, I. C. and Krein, M. G., Theory and Applications of Voltera Operators in Hilbert Space, Traslation of Mathematical Monographs, Amer. Math. Soc., (1970).
- [5] Takesaki, M., Theory of Operator Algebra I, Springer-Verlag New York Heidelberg, Berlin, 1979.