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ON THE EXISTENCE OF PERIODIC SOLUTIONS
OF NONLINEAR OSCILLATION EQUATIONS
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* Abistract
This paper deals with the existence of periodic solutions of the nonlinear oscﬂlétioa
equation ' ,
- i f@e@) HhEn @ =0- O
The author offers a method which can reduce (8) into the system :
4=hi(y) —6W)F@), 9= =9 | ®

Some sufficient conditions for the existence of the limit cycles of (9) are obtainéd.

These results generalize the results in [1,2,3 4% 5, 6]

T4 is well-know that we ea,i_l redﬁoe Liénard equation

5+f(@)a+g@) =0 €

into system - R |

s=y—F @), 4= —9@ | @

with transformation T ~

sey—F @), F@) = @,

and it is much easier for us to discuss the hehaviours of the solutions of '(2)'than:'those

of (1). But, till nOW, we have mever seen any*m’ethod which can reduce the more

complicated nonlinear oscillation equation _ .
i+f@e@+P@n@=0 )

into some system like (2). In this paper, we offer such a method. Furthermors, by

the convenient. form of the new gystem and Liapunov functions, Wwe obfain some:

sufficient conditions for the existence of periodic golutions of (8). .

We always assume that f (@), o(@), Y (z) and 7(w) are continuous on(—o0, +4-00)
with respect o their own arguments, and the conditions for the existence and uni-
queness of initial-value problem are satisfied.

A+t first, we reduce (8) into it8 equivalent system R

o P AL AC) 0@, : ()
Assuming W (y) >0 for all y € (—° ¢ 4-00) and writing

Manuscript received March 23, 1982.



and use the transformation -
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rw”sl%zu“ I wﬁ?j»

it follows —oo<Su_<0<u, S+,
We rewrite the seoond equadnon of (4) as

' ____._A_ N0

u"‘i

u=¢ () = j s ®)

T4 is clear that &(y) increases striotly on (—o0, ) and satisfies y€ (y) >0 for
all y#0. Let & (4-00) =y, § (—o0) =u_. In addition, ¢ (y) has an mverse function
o | y=gw)
which is strietly increasing on (u_, uy) and satifies ug (u) >0 for u#0 with g(u,)=
o0, g1) = —. Thus, (4)'beeomes

a=g(u), «k=—f<m>3<(9<<“§>)—n<m> @

(U <u<tiy —00<BL+®),
Exohanging » by —« in (8), we obtain

__ o)
5= —g (), = —f (—) Ty (= ) @)

(u_<u<u+ — o< @< +00),
In (7), exchanging @ byy a.nd by @, it becomes

5= —n(—y) —F (—9) ﬁ%‘/ E gg =g, L ®

(u_< o<y, _—'.'OQ<(U< +00)

Dencﬂsing
— (g()
h(y) =—n(=1), ¢@) ——f( y) F@)- ﬁ(gg(m))
we obtain ab last the system
| s=h(y) —e@)F @), y= —y(w), )
here (o, ¥) €D u-<B<Uy, —coLy<L oo, (9) is very gimilar to (2). Since all of
the above transformations are topologioal, the trajectories of (4) in (@, y)-plane are
mapped into the trajeotories of (9)+in D, and therefore they have the game topologioal
structure. 1 ‘ o '
" We have the following results.
Theorem 1. If
1) P (y)>0 for all y€ (—°, +00);
2) yo(y)<0 (or=0) for all g, but (p(y) %0 for suﬁiczently small y;
3) f(w)>0 for all #€ (—o0, +9°);
4) an(w) >0 for all ©+0,
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then (4) has no closed trajectory (hence (8) has no periodic solutions).
The proof i similar t0 Theorem 1 of [1],
Theorem 2. If
1) yh(y) >0 for y#0, h(-+o0) =+, h(—o00) = —o04
2) wg(a) >0 for o+0; G (£ 00) = +00;
8) e(y)>0 foq" all |y| <+oo, and

e(¥)
uLlill h(y) 0'

4) there ewisis 5>0 such that oF (x) <0 but F (o) =0 for |o| <8
B) there ewists N>0 and,.constants K > K’ such that

F(w)> 10 e}zg%/ K) for =N and ly| <005

Fa )< h(y) (f"((yy) £ for w\——-Namd ly] <400,
then (9) has at least one \Z’bm'bt cycle (hence (3) has at least an tsolated periodic solution)..

Proof The method of proof is o construct Poincaré-Bendixson annular region.

Oonsider
V6, D =H@+E0, T6- - ray.
It is obvlous that V(a; y) is deﬁmte posmve ina sufﬁmenﬂy small ne1ghbourhood off
(0, 0), and we have ‘
1?(9) =—g@)F (@) e(y) <O,
Thusg, for sufficiently amall ¢, the trajectories of (9) starting from the points on
closed ourve Lo V (@, y) =o go out of the interior region of I'o as ¢ increases. So we
can take I'o as the interior boundary.
Next, let’s construct the exterior boundary. Denote
Vilw, v) =H@y—K) +6G (@),
Vo, 4) =H@y—K)+G @),
By assumption 5), it follows that |
Vi —=9(@) [h(y) —h(y—K) —e(y) F()1<0 for a=N, |y| <+o°,
Vo= 9(@) [h(y) —hy—K) —o(y) F (#)1<<0 for o< — N, [y|<+o2,
By assumption 3), we can prove that there exists a N;>0 such that
a=h(y) —e@)F (2)>0,

and

. —@ KK
de h(@/)—e(y)F (w) 2N 7
for |@| <N, y=Ny and
| - a=h(y) —6(9)F(¢) <0,

and
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dy . —9@) < K=K
do  h(y)—e@)F @ = an
for |o| <N, y<—Ny, o .
Denote l=max[H(N:1—K"), H (—=N;—-K)]. For definition, we may as well
assume = H(—Ny—E)=H®N;—K'). At first,

L, B consider curve I'y(Fig. 1)
' Ve, o) =l+G@d).
p / T T Let o= =N, we have
‘ H(yo—K) =H(—N:—K), H(@/B—K)
N ) . >H(N1 K, ‘
s g ¥ "X hence
” Yo=—Ny, ys=N1+ (K —K'),
N P ¢ Then, we consider curve I's
< T - . S ) =1+G(—N),
Let #=—N, we have . ,
H(y—K')=H(—Ni— K)>H(N1 —-K").

(Fig. 1) . This easy to prove |02D| 10,01, |04B| = [0.4],

Hence, the tragecfames of (9) starting from ’ﬁhe pomts on olosed curve I

/"""\ :
" ABC DA enter the interior region of T 'I‘herefore we obtain an annular region

bounded by I'o and I'. Theorem 2 ig proved.
Theorm 2 generalizes the main theorem of [2] and .[3].
- Qorvollary 1. If 3 :
1) Y (y) >0 for ally(—o0, 4-o0), and

tCroo =, " s = e £(=o0)= rwlpd(/?y/)~—oo

2) an(a) >0 for a0, n(400) = 400, n(——OO)=-—oo
8) f(@)>0 for all € (—o0, +00), and , |
im L)

z-»im n(a;)

4) p(0)=0, ¢’ (0)<0;
5) there ewist & M>0 and constants K >K !, such that

@(y)>°7(w+K) —n(@) fory>M ]w|<+0°

e @
p(y) < nlo+K") —n(@) < oo,
PO Iy Jor g el <

then (4) has at least one limit cycle. : _ .
Corollary 2. If the assumptions 1) —4) of Corollary 1 are satisfied, and we have
5) for any constant K, there ewists an L(K) such that '
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n(e+E) —1(®) | <, for all &

7@
oW _ oo Tim 2 = —co
6 Jm Gy =T e

then (4) has at least one limit cycle. |
Next, we are gbing 40 do more investigation in the existence of the limit oycles of '
(9). This is of course Very helpful for us to find the conditions for the existence of
periodic solutions of 3). ' ' :
We assume ag («) >0 for a0 and G (L o0) =+°. Following Filippov [4], let

smn(@) = 9@ds, (-D™a0, =1, 2, (10)

and denote their inverse functions as
o= (2), i=1, 2, 220,
Substituting them into (9), we geb two new systems

1 02 &) () —e@) Fa@), §= —0: ) | (11)
1 (@) (h(5) —e @) F2(0)), 7= =5:), @@

6 =9 @@), F2) =F (@), i=1, 2

+where

Also, we denote

H;(y) =%%§"

Theorem 3. If

1) wg(w)>0 for #+0, G (Fo00) = +%

2) e(y) >0 for all 43 o

8) yh(y)>0 jor all y+0, h(+00) =+, h(=—o00) = —0,

H,(y) is strictly increasing tn (—°, t-00), Hy(+H00) ="+, Hy(—o0) =

— 00} .

4) there ewists @ >0 such that oF (x)<<0 for | o] <O, but (@) 0 for sufficiently
small |@|; | . |

5) there ewisis @ A>0 and a constant K, such that

for =>4, —ocoLy<L +0;
6) there ewists @ >0 and o sequence 2—>1° for k—>—+o0 such that F1(zg) =m+o
(or Fa(2) <n—o),
where

_ M) —h(y=K) . s 2@ =BG
m= sup ==y " B e I

dhen (9) has at least one lémit cycle.
Proof We still construct Poincaré-Bendixson annular region.
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The construction of the interior boundary

)/l ig similar to that of Theorem 2, so we omit it
By Ak and only discuss the exterior boundary as.
DK_ Sk _E_— Yo (2) follows.
P ) B ~ By assumption 8), solying ¢ from equa-
P ) ‘tions
' W) Hy(y)—Fi) =0 (=1, 2),
0 ~—_- 4 Zk Z .
A ‘ v we obtain
y=H (Fi(2)) =wi(@), i=1, 2, 2=>4,
le< whioh salisfy
() <Hit(n) <Hi'(m) <ws (), #=4.
Let ¥'*, ¥~ denote the positive half y-axis

and negative half y-axis, r.p), I,
(Fig-2) I'; (P) (4=1, 2) denote the trdjeotory, positive
half-trajectory and negative half-trajectory of (11)', (12) passing through point P
respectively. | » :
Denoting Pr=Pu (2, w1 (%)), we have 2>0 along I't (P,;) which is above y=
w,(z) and 2<<0 along I'f (Py) which is below y=11 ().
By 8), it follows '

ooe(y) _
| Jim s =0 |
and I'y (Py) must cross p=Aand ¥+ at 4j, and By, I'7 (Py) must cross s=Adand ¥~

at Al and Bj. Thus we have Y5 >0, Y, <0,

Uongsider function

w(w, y) =H(y—K) +z, 220, ly| <00,
we have

sy = 91.(2) [ (y) —=h(y—K) —e(y) F1(2)1<0 forz=>4,
Therefore, %(Ax) >u(Py). Since khm u(Py) = 400, it follows
e

Tim u(4y) = +oo. Hence we bave lim g,= —+°°,
k-3t Yomroo

Since y= —¢1(2) <0 along I'y(Py), it follows lim gz, = +°°, By 5), we have
. ) ]
wy (z) =Hi' (m+0) >H7t(m) +s,
where >0. Denoting Hi*(m) =m, We have
'wi(zk) >q—ﬁ+8: (k=1: .2) """ >.

Next, we consider I'§ (@), Qu=x (zk,av_o,—l—%), Tt is easy to know that I'f (Qu)

mugh interseot z=4 and Y ¥ at Gy and D,. Besides, yo, and yp, increase strictly as k—>+oo.
If lim g, < +-o0, We can prove that lim yp,<+oo, hence we have ¥g,>>Yp, for
K->t oo

ol i

sufficiently large &,
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R //____—//
1f lim g, = +°° WO have lim yp,= Thig time, We als0 have
: [

R e
Yox™

() (0 0P (&) = [ hgpar -

0

* W)y

fite—K
>S " h(y)dy=1>0 ( —constant) .

B

But :
5 a0 =)~ O+ [ R R ey R O

-, ool ~h @) +hWs =K g,

Fo()e(ys) 0 Y2) T 22—

0 h(ys) —e(ya) Fy(2)
VA P
where 41, Y denote the expressions §="Yi (z) (4=1, 2) of ABs and 0, Dy respectively.
Let k—>—+<°, ya ()0 (=1, 2) uniformly on [0, 4].
By assumptions 8), 5), the absolute values of the above integrals may be arbi-
frarily small. Thus, for gufficiently largs %, we have

u(By) —u(Dx) >—%—'> 0,

hence

[ nwdy> S"”"'K h()dy

0 0

and ,
' yBk> Ypx.

Next, 1ot U8 consider I'z (Qy) - There are fwo ocages: ,
{°. If there exists 2 ¥ such that I';(Qp does not interseoct gy =wa(2) (Fig. 3),

 _then all I'z (Qp) Will never intersect y=w2(z) for every F>k. Then, We consider

I's (By) (=6 Sinee lim u(z, y) = +oo and

i =g Th(g) ~B(y— ) —e@FaDI=0 for ©>4,
I's (Bl) can nob oxtend to infinity in the Tight half (3, y)-plane, ‘but comes back

(Fig. 3)

e T
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crossing ¥ * at some point Ey, where yg,>yp,. Hence, for sufficiently large &, we
have yg <4z, Returning to (z, y)-plane, we obtain a closed curve ByPiBiEB,(Fig.
4) which can be regarded ag the desired exterior boundary.

90, Tfall I';(Qy) intersect y=ws(z), then they must also intersect 2= d and
Y - at points C}, Dj. By a similar argument for I'f(Q:), we can prove that, for
gufficiently large &, we have yg>vyn, (Fig. 5).

. — T —— ‘
Returning back to (a, y)-plane, we get a closed curve B,P,B.D,D,B; which can be
y | . |
B“\'\‘ Ag ' ' y
DK \N P BK : |
Rl D '
. @K - PK
L /\ 0
- . ‘7 X

Di

31

i
1]
:

| (Fig. 5) | . (Fig. 6)

regarded as the desired exterior boundary (Fig. 6). _
Summing up the above arguments, we can coostruct the desired annular region:

and Theorem 3 is proved. This Theorem generalizes the main theorem of [8], and it

is parallel to the famous result of [4] and the more recent result of [5, 6] Moreover,

Theorem 3 provides new possibilities for nonlinear oscillation to have periodic
golutions.
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