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Abstract

f'Baséd_ on [8] and [4], the authors:study strong conivergence rate of the by —N N
density estimate fn(«) of the population density f(), proposed in[1], f(#)>0 and f
- gatisfles A-condition at & (0<A=2), then for properly chosen &, -
- n. \ME20
lim- sup< 10§ﬁ) |Fal@) —f (@) | =0 as.
- If f satisfies A—condition, then for propeoly chosen &,

. \MCAFEH
lind sup (109;%) ‘sgplf,,(w) —f(@)| =0 a.s,

7=>00

where C is a constént. An order to which the convergence rate of 'l' Fa(@)—Ff(@)| and
‘sup| 7 (@) —f (@) | cannot reach is also proposed. . : e
@

§.1. Introduction

Lot X3, +-, X, be i.id. samples taking values in R and having distribution:
function F and unknown density funotion f. A class of estimators of f proposed by
loftsgarden and Quesenberry™ has the form '

Fa(@) =1/ 2nan(2)], @
where b=k, is a sequence of positive integer chosen in advance and a@,(e) equal ie
the distance from & o the k,th nearest of Xy, =, Xa. Oall f,(x) the nearest neighbot
eétimator of f. Since then, this estimate has heen widely studied. Devroye and
Wagner™ showed the uniform strong consistency of f when f is uniformly continuous
under the conditions k/n—>0 and log n/k—>0. Concerning the uniform strong consis-
tency and strong convergence rates of f,,,,‘ the best result so far as we know was given
by Oben ([3] & [41): '

1) Tt is impossible to establish any convergence rate of sup | Fu(@) —f (@) | without.

‘Meanusoipt received September 25, 1982.
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some further conditions imposed on f besides the uniform coniinuity.
2) Iff sa‘olsﬁes 8—L1psoh1tz cond1t10n O<8<1 and we ehoose

k [ 6/(1+38)] . : ’ - (2)
then :
sup] f (a;) — f (w) | =0 (n“” (“3'” \/ logn) a.s. (3)

3) For any 8€ (0, 11, there exists a dens1ty funetlon f satisfying d-Lipschitz
condltlon such that

Sl:plﬁ(w) “f(@) | =0V W) @ @

does not hold for any possible choige of . : :
Later, Yang Zhenhai®™ proved thatif =1, on choosing & suitably, the right
hand side of (8) can be improved to O((log n/n)M*).
This paper is devoted to further study of “this problem.
We call f satisfies A-condition at », AE (0 2], if there exists a A& (0, 1] such

that ~ : S
If(fv)—f(y)l<C'ly wl’“ ly wl<h ' e ()
for % is small enough, or there exists a A& (1, 2] such that :
7@ —f @) | =Cly—a|*?, ly—ol=h )

for h is sufficiently small, where C=C(&) is a constant dependmg on 2.

We say that f satisfies h—condl’olon, A€ (0, 21, S (O 1] and f satisfies A-
Lipschitz oondition, or A€ (1, 2] and f’ (a;) is bounded and sa’ulsﬁes (A—1) —-L1psch1tz
condition.

'We shall prove the following theorems:

Theorem 1. Suppose that f (®)>0 and f satisfies A-condition at @ for AE (0,2].
I f we choose ’

lc [ A/(1+2).)(10gn>1/(1+2z)]

then
imowp (1) i~ @I=0 s O
where C &s a constant dependfimg onx. If
tm L (7 (50 —f(w))dt ak0, ®
Shen o :
|Fa(@) —F (@) | =0~ T®) a5, M

does ot hold for any possible choice of k=o(n),
Theovem 2. Suppose that f satisfies A-condition for A& (0, 2]. I, f we choose
]G — [n27b/ 1+32) (10g n) (1+}.)/(1+3L)] s . : (10)
then - e
| Jim sup (n/logn)™ ‘””’Sﬂplfn(w) ~f@|=C as, @D

r—¥oo




No. 3 ' Yang, Z. H: ¢t dl. STRONG COEVERGENCE RATE OF DENSITY ESTIMATION ‘327

where C is @ consta,nt not depending on n ands @. o = v
Theorem 8. For any A€ (0, 2], there eaists @ density f sabisfying A-condition

such that o

suplfn <w> ey —-o(n-m*w) as. (12)

does not hold for any possrable choice of k, and there ewists @ density Junction ’w’bth bounded
demmtfwes of any order such that for awy choice of k, 4t s rz,mposswble that

| qup[f (w)—f(w)l—o(n""”) a.s, L (13)

§ 2. Strong Convergence _Rate o_f fn @)

In this section, o is fixed and C, Oy, O, +++ are all constants not dep_en@ing on
n (possubly depending on ). - o e
Lemma. 1 Suppose that the frwrwlom 'vwrwble Y~B (n, p), then for amy >0,

-we haveé

. P( lY/n——p] =8)=2 exp{-—ns”/(2p+s)}
Refer to [6], Theoren 3. _ :
Lemma 2. Suppose f (@) >0 and f sat@sﬁes A,—coawlmon at ®, ME (0, 2], we have
1) if k—>o0 and k= = o(nE¥ W) gs n—>00, then S

N (Fule) —f@)/F (@) LaNod., . @8
2) if (8) holds and hiri QM A2N [ =1, then

IR a1 , Lo
SE ) — F @)/ @~ 0 e @) — N D, (D)
3) ’bf the comlfbtfoons in 2) hold and k= o(n), then ‘ '
Z Anwm,f @ -F@)] =20
8 not true.
The argument is 51m11ar to that of [3] , 80 We omlt the proof

Proof of Theorem 1 OhOOSe b= [nTF 1+2ﬂ (logn) T }, without loss of generahty,
we can. suppose ’
' b= nﬂz/(1+2).) (logn) 1/(1+27.)

= (/)= 0/ g5, €9

Henoe -
P{qn(f (@) —f (@))/f (2) 2205} = P{tn (@) =dn}s - n
where S
d,.(w) "y (27%f (o) (1+202Qn1)> O(k/n) | .8

Since f satisfies K—oondltlon at @, it is not difficult to get

pn—é-ﬁz:f (8) dt = 2duf (@) +0:Cei*™, 5] 1 o 9)
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for n large enough.
From (16), we oan choose sufficiently 1arge O, such that

Dn=" [1— (204971 —Csbs(k/n)* (1+o())] ..5.—1'; (1L—Cagz") =k/n, (20)
k/n—pa=0g; k/n=Ca(k/n)**, (21)
Lot wa(2, ds) be the empirical measure of [w——d,., B-+dy) . ‘ |
We-choose 03=12 and fix it. From (20), (16) and Lemma 1,
P{an(0) Sda} = P{pn(2, dn) —Pa=k/n—pu} .
=P{ua(w, d) —pn |

=0 (k/n)***}
< oxp{ —nO3(k/n)**2%/ [2h/ n+Ca (b /m) 141}
=2exp(— —Cilogn/8)<2n™2, (22)
From (17) and (22) | o |
3} P{gn(Fa0) —f (@) 220f (@)} <oo. (23)

Hence, from Borel—Oantelll ¢ lemma, lim sup ¢x( Fol@) —f (#)) is bounded above a. 8..

700

In the same way, we can also prove lim'sup ¢, ( f,.(m) —f(w)) is bounded bellow a. s..

Hence we have proved the first part of the theorem. The rest follows from 3) of
Lemma 2. ' -

§ 3. Strong Convergence Rate of sup| fo @ —f @ |

The constants O, Cy, Cs, -+, N, Ny, - in this seotion are all independent of
and n. ' .
Lemma 8. Lot Xy, +++, Xy be . 6. d. samples taken fo’omb a one-dimensional po-
pulation, w(A) and pa(4) be it’s probwbq)iq}ty distribution and empirical measure res-
pectively. Suppose TCR, Ml {lo—V, a+V]:20€ET, VSI} and '
sup w(4) Sb51/4 ‘ (24)

“then, for 8>0 and n=max(1/b, 8b/32), we have _
P{Supl ta(A) —w(4) | =} =160 exp{ —-ng® (64b+48)} +8nexp{—nb/10}, (25)

Proof See [2].
Lemma 4. Use the notations of Lemma 3. Suppose that k= o(n) and
- sup w(4) s101c/nAb =1/4, - (26)

g%
Then, for r>0 and 0=s=1/2, there emists C1>>0 such that
- 1+r '
tm sop {(2) Clogry*sup () ~p(A[}SCs @5 €D

n-re0

whenever
kg anr/ 1+2r) (].Ogn) (1-—23)/(1+2r)’ ( B>O is a const.) (28)
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n>b;' and n>>8b,/e; hold for large n, from Lemma 8 we have
PA{sup] 1ua(4) — —w(A4) | Zea}

£16n? exp{— —n0%(k/n)2*? (logn)*/ [64070/n+4s,,]}+8ne""

<16n? exp{ —CiB*** logn/ 850} -+ 8ne* <1602+ 8ne¥, (29)

Hence _ - .
33 P{(n/k)**" (logm)~*sup| a(4) —w(4) |20} <o, (30)

and from Borel-Oantelli’s lemma, (27) is concluded.

Lemma 5. Suppose that the density function f satisfies ?»—L@pschfatz condition,
A€ (0, 1] Then for any N1>0 there exists N depending only upon Ny, such that for
any ve=n, the set By={a: f () 22@,.} s ecompact and there ewist n¥ closed intervals

Bmc{ f (@ =u,5 such that L(Buy) S0, oy(By) <w™ and U B, DB, where wy (B)
=sup (@) —m;' f (@) and L the Lebesgue measure.
@ 13

Proof It is obvious that B, is compact. From the fact that f satisfies A-Lipschitz
condition, for any «€ B, there exists an open interval I, containing # such that
L(I,) =Cm "/* and w;(I,) <vs. By Heine-Borel’s theorem, we can choose a finite
pumber of closed I,’s such that their union A:)B and f(o)=v, on A4, where I,
denotes the closure of I,.

The set 4 is a union of 1, closed intervals without common points, whose lengehs
. are not less than Can~"/* Hence

O V4 L, < L(A) =L{f (@) =n "} =n™ j J (@)do=n”

(f(z)=>n—"1}
Therefore I,=<n". Also, the length of every interval not oxceed n. Since f satisfies
A-Lipschitz condition, it is easy to express those cloged intervals by a union of some
B, satisfying the requirements of Lemma b.
Lemma 6. Let Xa, -, X, bed.i.d. variables with continuous distribution
function F, and denote their empirioal distribution funotion by Fu, then
lim sup[sup v/ n | (@) — —F(a)|/~/2Toglogn] =1, as. (31)

n—oo

Proof See [7].
Proof of Theorem 2 We can choose :
Jp = n2»/ @t3m (10g n) +Fay/ (1-!-3;.), (32)
Bvg= (/)M @D g, =pvgt=pf (n/k)» ¥, (83)
where 0<f<1 and p>1 will be chosen later. We can take Ny so large that v,=n",
then B,={ f (#)=2v,} is covered by the union of n¥ B,’s satisfying the conditions
of Lomma 5 and L(By) =™, @s(By)=n"" for each By. Denote ’
Lot w(w, d) and w,(w, d) be the probability distribution and empirical meagure
of [@—d, o+d] respectively. Taking s=0 and r=A/(1+A) in Lemma 4, we can



~ From (84)—(38), we have
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assert with probability one that, for n lazge enough, the inequality :
(m d) —4 sy’“ (w: d) é“’(m) d) +"Aﬂ : (34)

holds umformly for all , & satisfying _ v
- w(e, 2d)<10k/n, . . (35)
where Y |
An=201(logn/n) (2a)/ (1438 (36)

Now suppose @€ B ={f () <2v,}. Since f satisfies ?\,—oond1t1on, 11; ig eagy 10 ge’o
w(a, &) = j F ($)dt=2df (o) Oy 408 (B /m) WD - O,

Noticing k/n— (log nfn) sy @ty gin=24, for large n, We can ) fake d,, OC,,(Ic/n) y (1”3’"
with sultably chosen Oy such that S _ '

(o, dn) <k/2n£k/n— w @D
(e, 2d.) <10k/n, | T (38)

(e, ) S (@, dn) +AnSh/m,
 au(@) Zda=0a (/) 7,

f () = =__. 0—1 (k/m) —1/(1+a)505 (logn/m) M@+, (39)
and it follows that : .
lim Sup{(n/logn)“’ @3 gup | £, (0) —f (@) |} =06, a. s. - (40)
L zeBg R I

On the other hand, for fixed C7>0,
P{gup |fa(0) =f (=) | Z0gs 1}32 P{swp |fo@—~f@]20a}. G
Denote m;=n;m f (@) and M =sup f (), we have fv,,._____m;_S_M . It is eagy to see, |aa(a)

—a,(y)| = |e—y] for any 2,y. - Therefore

mf @y (w) >s11p @ () —n¥ ' (42)
Obviously '
{suplf (@) ~f (@) | >0’7q;1} SP{Supf (w) =my+Orga'} |
+P{ inf f (2) =m0V —Crgy }AI,.;+J,.¢ - (43)

Now we estimate I,. By (42), we have

L Plint a0 S gk / G+ Og O | SP A a@Sta), (4

where

dy=

¢ A1y L p=Ni "
onmy / (1+Cogs’mi™) +m - | (45)
Take p so large that Or/p<<1/8, then 0}q;1m71—07p‘1mn/m5<1/ 8. Noticing
1/(1+e) <i— 7%/8, for OSm<1/8 we have ' ’ '

dn = (1———0’7q;1{m“1>+n'”" - | | '. )
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Fixzed O; and p, one can choose 0 so small that, for n large enough, the following

inequalities hold uniformly for all ¢ and € By
+dn
1w (@, du) = S "f (@) dt=2daf (@) +0s di;“éZd,,( m;+n“N‘+—%- asdz)
by _ 8 ~1pn—1 k b oila o
k(-3 ogm (140 L) i)
Bl 8 A 1ty (bl Lopyo -
é',,;(l"‘z' Crgr* mi 1+Q8p0”+1q"1m‘ 1)__5_—-%(1"-2- Org*mi >, (48)
w(w, 2d,) =10k/n=1/4, (49)
Bn—p(o, &2 Ot M, @)
L P{sap (a0, ) (@, ) =L ongrtu
 __ of B\ o _/’ ' 2k -1 —1} —%
<16 exp{ n0% (55 ) 5 M- (640b/n+2E Oua*M Y} 8re

1 1, wa P
2 _ o —1g—1Af-2 . % N-2
=16n exp{ 5600 O M logn}—l-Sm LT (51)

The last one is obtaind from Lemma 3. The estimate of J,; is similar to this. There-

f:'ore',. on account of (41) and (43)

S Paufsmp |fu(0) ~f @203 < D )
By Borel-Oantelli’s lemma, we have _
lim sup{g, sup|fa(z) = (®) 1}=<0r as. (53)

Qonsequently, (11) follows from (40) and (53).

Tinally, we give the proof of Theorem 3. For A€ (0, 1] , The proof is givén in

[8]; forAE (L, 2], the proof ¢an be given in a simillar way by using Lemmas 2 and

4. We omit it here. ' B o
To prove (13), construct a density function. _
- O exp{l/(@—1)}, if|o[ <1,
7@ ={ N

0, if|o] 21,

Obviously, it’s derivatives of any order are bounded, and f(0)=0, f"(0)=20 JeLb.

We can suppose R satisfies one of the following four assumptions (if necessary, We oan

(54)

choose a suitable subsequence ingtead of the original one).
A. k=an, 0<a<1 ig a constant;
B. k=o(n) and there is a constant B8>>0 such that k= Bn*";
C. koo and k=0(n*"); .
D. k=ky, a constaﬁf; e . : :
Case A From (54), a,(0)=1and £4(0) =&/ (2n2,(0)) =a/2. In thig case,

|Fa(@) —F (0] F5 0™

is not true.



332 _ . OHIN. ANN. OF MATH. Vol. 5 Ber. B

Case B Denoto A,=2 (log logn/ n)fl° From B, A,=Fk/n for large n. We have
with probability one that | '
1 (dn) 2 [ =G, du] Spinl—dn, dal+AnL pin(ds) +A (55)

for n large enough and for all d,. Taking

. fArEk 13
- {32+ 4)}",
we obtain from %=o0(n) that
p@)=[" f(oyai=L"0 @arow)zL a-t/m+ 4,

By ‘(55) , we have u(d,) =k/n, From the definition of @,(0), @,(0) =d,=0;(k/n)*3.
Therefore we have with probability one that ‘

70 2L 05 b /my = O )2 O, (56)
80 | f (0) —f(0) | == o(n~?/7) ig not true in case B. |
~ Case 0 Wae arbitrarily choose oo € (0, 1), f (20) 0. By 1) of Lemma 2
| VE (o) —f <wo>> - N<o 1. (57)

From k=0(n*"), we see that |7, (a0)
" Case D For w, montioned in case O

PE (fua) ~f @) Sh=Plas@)zdst,  (58)
dn=ko/{2nf (@0) (1+n""y/f (20)). (59)
Denote p4=J:izn S (@)dt, we see th_at npp—>ko from the continuity of f at @o. Lot &y, vy

~2/7) ig not true.

whe:e

§ »n D@ 1.i.d. variables with P(§n1=1) =p,. According o the Possion approximation of
binomial distribution, we obtain

, | ] i |
lim P{n?"( Fa(@) =f (@0)) Sy} =lim P {g} §M§ko} =33 e Mhb/i, (60)
Note that the right hand side of (62) does not depend on.y, so that,
|Fa(@0) —F (wo) | === 0(n>T)

is not true. The proof of Theorem 3 is concluded.
- The authors express deep thanks to Professor Chen Xiru for his guidance,
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