Chin. Ann. of Math.
5B (3) 1984

ON THE PROBLEM OF NECESSARY CONDITIONS
ENSURING UNIFORM CONVERGENCE OF
KERNEL DENSITY ESTIMATES

Caene Pixe¢ Ok B

(Institute of Systems Science, Academia Sinica)

Abstract

 Let Xy, +*+, Xn be a sequence of p-dimensional iid. random vectors with a common
distribution F(x). Denote the kernel estimaté of the probability density of F(f it exists)
by '

Fuy = Sy (L),
. =1 P _
Suppose that there exists a measurable function g(x) and h,>0, h,—>0 such that
limsup| fa(@)~g(@)| =0 a5
Does F(x)have a uniformly continuous density function f(z) and f(z)=g(x)? This paper
deals with the problem and givesa sufficient and necessary condition for general

p-dimensional case.

Let X, -, X be a sequence of p-dimensional iid. random vectors with a
‘common distribution F (). Denote the kernel estimate of the probability density of
F (if it exists) by

Fu@) =ty S E(E2), @
t=1 h” .
Suppose that there exists a measurable function g(z) and hy>0, h,—> 0 shch that
lim sup | fa(@) —9(2) | =0 8. 8. @)

Does F () have a uniformly continvous density function f (@) and f(w)=9(@)?
Sohusterts the first to consider this problem in case p=1, he proved that under a
sot of complicated conditions, the answer is positive. Chen'® obtained the same
conclusion under simplified conditions that K (2)is a probability density with
bounded variation on (—oo, oo)and nhi—>oo. He pointed out that these conditions
may not be necegsary and gave some examples. In particular, he conjectured that the
agsumption of pounded variation can be ejected. In the present paper Chen’s
conjecture is proved and a sufficient and necessary condition for general p-dimensional

caso is given. Specifically, we have the following two theorems:
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Theorem 1. Suppose that (i) K (@) is @ bounded and integrable function on.

13 JRPK(w)dw=1; (i) P>0, hy—>0, nhi—>oco. Then whencver (2) holds, F(x)

hasanuniformly continuous density function f(w)and f (@) =g (w),

Theorem 2. Let K (#) be a non-negative and integrable function on RP. Then the:

necessary and sufficient condition for the following assertion being true:
“Whenever there is a function g(#), and %,>0, kh,—0, such that (2)
holds, then F (w)must possess a density which is exactly g(#) and g¢(#)is
uniformly continuous on R’ is that K (a)is bounden, Le» K (2)dw=1 and

nhi—> co,

In order to prove these theorems, we give some lemmas. Our proof of Theorem

1is different from that of Schuster and Ohen, mainly in that we avoid o prove

supl Fal@) Ef,.(w) | >0,  a.s. directly. For simplicity, we sometimes write % for

b, F () for £,(#)and put L=sup|K (») |, G=sup|g(w) |and M———Lp | K (@) | de, |

Lemma 1.Let K ()be an integrable fonction. Then for any bounded open interval

(@, b)on R, we have

Du(a, ) 2  fu@)do-| o Eh@de—0,  as. 3)
Proop From (1) it follows that
j f,.(w)dm et EI]J r K @)daan™ 31 7, @)

Since K () is 1n1;egrable, we have
17l <[ 1K (@) |da= M <oo

Notice that ¥;,,(¢=1, 2, -+, n)are iid. by direct calculation, we obtain
: EDi(a, b)<8M*/n? (6)

Hence 5} Di(a, b)<oco, Finally, by Markov’s inequality and Borel-cantelli lemma,
n=1

we conclude that the lemma is true.

Lemma 2. Iy K(x)satisfies the conditions of Theorem 1, and (2) holds, then F(w)

has a density function f(w)and f(x) =g (o).,

Proof Because K (w)is bounded and for any fixed n, Xy, -+, X, F4(»)is bounded

function of ®, we see tnat g()is bounded. By (2)we have

J(m) Fu(e)do —> J(a,b)g(w) de  a. s, . !

for any finite interval (@, b),
Now from Lemma 1 and formula(7), it follows that

| J (@sD) Ef" (@)do Hj (@1b) g (a;) da ' ®)
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On the other hand, according to Fubini’s theorem, we obtain
j Ef,,(w)dm=h"’s | dm$ K("’ y )dF @)
(@b @v JE?

~ jm aF (y)S - b_;ﬂ_)K () de ©
Fromjm SK (2)dz=1, it is evident that

1 for y€ (a, b)
f v gy @10 for y €& [a, b] - (10
55 55 Q) for y€ [a, b1 — (@, B)

where|Q(y) | <j | K (z) |dz<o0,

Now choose a<b such that @, b are continuity points of, F. From 9), (10). and
F({a}) =F ({b}) =0. We have '

lim XM B (@)de -—>La’b) iF (s), L

From (8) and (11) ,
[ @], 70 @

Since (12)holds for any continuity points @, b of F, a routine argnment shows that
it holds for any a<b. Hence g ig the density of ¥ '
Lemma 3. Suppose that W(x) and Q(m) are bounded and integrable on B?, then

B(a) .__—jm W (—2) Q) dz

4s uniformly continuous. ‘
Proof Denote|as| = max |@;], where &= (a:l, ., )", Since Q(a)is integrable,

we can find a sufficiently 1arge A such thatb
[ 1@ |de<e/taup W@,

According to Luzin’s theorem, for any fixed #, there exists a oontmuous function
W(y)on the interval {y: ly|<|e|+1+4}, snoh that | (y) | <sup |W(y)| and
y

Ly, W) =W (@), |yl<lo|+1+4) < (up [W ()] sup 1Q(@) |)~s/4. So we seo
that for |dw| <1
|R(o) — R+ d) |[<2sup W@ | 100 1de

+ Slzl<A (W (a—2) —W (o-+do—2) Q(2) d2 \

<e/2+ le|<A W (2~2) - (a"i"A""_""))Q(@d‘Z !
+ lelsa (W(w-—z) ~W(e "Z))Q(z)dz\
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+ Umq (W (o+ do~2) W (o-+ do—2)) Q) dz ‘
St le|<4 (W (@—2) =W (o+ dw—2)) Q(2) dz| l, (14)

Letting | | —>0 and then s—>0, we obtain
}in% R(w+ Adw) =R (w) (15)

for all € R?,
On the Other hand

B@ |<sup|W @[ 106 |do+supl @@, W (@—0)]ds

121 121

<s/a-+swp |G| |, W () |de - (16)

o~14,5+14)

Letting || —> oo and then s—>0, also using (16) we obtain lim R(x)=0, where
|@w|~00

1=(1, -+, 1)*, This completes the proof of Lemma 8,
Lemma 4. If g(@)is o probability density function and g(@)is uniformly
continuous in B?, then g(w) 45 bounded and lim g(w) =0
|

@~
The proof is obvions and therefore omitted
Proof of theorem 1, ,
From Lemma 2 we know that ¢(«)is a density function of F(»), we have only to
prove that ¢ (x)is uniformly continuous. For any sequence {@,}, we have

Var f, (e, =n‘1Var{h‘1’K (i”l':ib—)—z—i—)

<n B {2 “Zalb

<nthrsup | K ()] j K@) |gn—t)de<GMIn?, (D) |

Bocause the final term in (17) is indepenednt of{w,}, and n*4;?—>0, we can find a
subsequence {n;} (independent of{w,}), snch that

,;h%lfnn(wng —Ef“k(wﬂk) | =0 a. 8.
Then from (2), it is seen that
|Foe(@n) —g(@a) |0 a. 5. (as b>0),

Therefore .
Ef u, (@n,) — 9 (@)= 0
or i
sup| Bf (@) —9 (@) |—0,
Becauge

(@) =1 K(2E )o@

from Lemma 8 we know that Ef,. (x)is uniformly continuous in @ for any n. Thus’
g(#) is uniformly continuous. This end the proof of of Theorem 1_
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Proof of Theorem 2 Since the sufficiency is an immediate consequence of
‘Pheorem 1, we have only to deal with the necessity part,

(i) K (a)is bounded. For otherwise, from (2), it would follow that g(a) is
unbounded, which is in contradiction with Lemma 4,

(i) Lap For if K (#)ds=1, Sm K (#)de=0+1, then from the proof of Lemma
2. it wonld follow that
j(a,b) Ef” (w) do = J.(a.b)g(w) do

for any finite interval. On the other hand, since ¢(w) is a uniformly continuous density
function of F (%), we have Efn(@)—>cg(w), Hence

La, Ef, (m)dm—»cs g(w)dw

This would be a contradiction unless we have e=1,
| (iii) lim nhi=oo. Choose @o such that g(ao) >0. Smce K (v) is integrable and

fn~>oo

g(#)is uniformly continuous, we have for each y>0

P( nih K ( %o hX e >>y)< (ny) "*ERPK ( To™ ) - 0 ag n—>o0. (18)

WO—X;L

This shows that the median s of the random variable n~ K ( 7 )is of the

order O(n™*),
If nh2—> oo, then there is a subsequence {7} such that lun nkhé,’,‘~c<oo

According to the sufficient and neocessary condition of the weak Law of large
numbers (see Chapter b of [8]) noticing that (2) is satisfied. We have
Wa=n|_ [Q)/ ¢ +@w)1dy
=nh? [h2PQ2 (w0 — h2) / (n°h*? 4+ h?*Qp (o —F2) ) 19 (wo—hz)dz—>0 (19)

Falao) — ([ Q@9 @))=0, (20)
. (Y <nv
where
Qn (’U) = h—PK<3L};.fZ.) —Nphy, T>0,
Notice that
hngﬂx (wo - h”’kz) =K (Z) - nklu’ﬂkh gk —-K (Z) P)
g9 ((Do - h“kz) —>0 (m‘)) P}
nph,—>0, Wn,=0 (mz1).

K?(z) is integrable and ¢ (z) is bounded. Applying the Lebesgue s bounded convergence
theorem, we obtain that for ¢>0
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W=t [ () —2ugun 2 JE (&) gl i
-+ (nl%hig + Qﬁk (wO - hﬂkz> ) ] g (w() - hﬂkz) dz
> eg@)| | LK)/ (@ +E*@)1de (#0),

This is in contradiction with (19),
If ¢=0, we have

At t|  Qu@)g@)dy
1@nk(¥) | < Ty

K (2) g (w0 —hnz)d2

=j
| E(2)—-nxienhy ,‘lsnkh,,k'v

+n;,p/,,,,,h£,‘j g(wo —hn,2)d2

| E ) —nkﬂ,.kh’ | >nxhE,

K (2) de+ Tttt j () 2K (g oo —h2)de

j | K ¢2) -nm,.,‘hzk |<nghf, v K (2)> n,,h,‘{,‘q,-

<@ U Rt 2] > 088 K >, @1)
: K () <tighf (7 +Hy) :

From(20), (21) we obtain fy,(we)=>0, This contradicts (2) from which we have
Fa (@) ga) (#0) a. 5. |
This completes the proof of Theorem 2,
Note we can prove that the conclusion of Theorem 2 still holds under the
conditions that 3 ¢>0, such that K (&) = —c for all € R? and K (&)is infegrable on
R?
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