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Abstract

By using the eprnential dichotomy and the averaging method, a perturbation theory
is established for the almost periodic solutions of an almost differential system.
Suppose that the almost periodic differential system
& — f(z, D+e'9(, 4 ©) W

has an almost periodic solution w=xz,(5, M) for ¢=0, where M= (my, «+=, mz) i8 the
parameter vector. The author discusses the conditions under which (1) has an almost
periodic solution x=2x(%, ¢)such that

lim (3, &)=m0(, M)

-0

holds uniformly. The results obtained are quite complete.

§ 1. Introduction

Until now there is no perturbation theory for the almost periodic solutions of an
almost periodie differential system. In this note we shall give the perturbation theory
by the exponential dichotomy and the averaging mothod. The results obtained are
quite complete. | ’ '

Let us consider the uniformly almost periodic differential system

I f(a, ) +eg(0, b ), @

where s €@, —00<t<oc;, G ig a domain in n—dimensional Buclidian space, the vector
functions f («, ) and g(=, 1, g)are continuous in all variables @, ¢ and s, almost
periodic in uniformly for # and s, and in class O® for @ on G- At the same time we
assume that(l) has the almost periodic solution o (t, M)fors=0, where M (my, ma, ++,

my)is the parameter vector. Purthermore, we assume that the variational gystem of

Lo (t, M) is ' i
B yn, 40 ~(2RGI00) @

which has only k& zero characteristic exponents in the extensive sense ™, and
dwo(t, M)  0mo(t, My . 9w, M)

omy omsg ! am;,,
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are the independent almost periodic solutions of (2); i, e. there is a fundamental

matrix

x(@)=(Pal ) . G g, . w00, B0, -, £20)

of (2) with upper characteristic exponents™ X(a{P (%)) < —a<0, and lower chara-
cteristic exponents A(e® (£)) >a>0, j=1, 2, <+, nys=1, 2, «+ ng

Now take the transformation y=ws—axe(¢, M) for(1). Then we can transform (1)
into the following form | |

W AQg+Foly, 1 +e60(y, 1, ), 3)
where Fo(y, £) =0(|y|*), as|y| tends o zero. Put y=sz, we can reduce (8) into
L APyt oGG, 1, o), @)

where G'(2, ¢, 0) 0. In this note we shall detail the existence of the almost periodic
solution of(4), ‘

§ 2. The structure of the variational equation of . (¢, M)

In this paragraph, we give some properties of almost periodic solutions of the
almost periodic linear system as follows: '

Property 1. If «(¢) is the nontrivial almost periodic solution of (2), then there
13 0 posttive constant oy such that |w(t) | >a0>0, ’

Proof If #(t,)—>0, then we may suppose that A(t—l—t,,) and w(t—l—t,,) converge

uniformly to B(¢)and y(¢)respectively, and y(¢)is the almost periodic solution of the

almost periodic linear system

Yy _pop
= B(t)y,

y(0) =Em ®(¢,) =0, so y(¢)=0, On the other hand «(¢) =lim y({—t,)=0, which

contradicts the assumption that «(¢) is not the trivial solution of (2). This proves
Property 1 completely.

Property 2. Suppose that « () satisfies the condition in Property 1. Then there

is an elemientwqﬂy matriz p(t)which transforms " (£)into

Y (@)= (g1 (®), -, ¥ (1)) =(@:(t), ++, 2 (®))p(®) =" (#)p () €

with y1(8) >8>0, where p(t)is the almost periodic matric with bounded inverse.

Proof Suppose that|s(t) |=0>0, ap=4ns, By the almost periodicity of x(#)
there is a positive number L(g), any interval of length L(s) on the real axis

containing a point #, such that
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le(t+1to) —a(t) | <s, for all ¢,
Here we only prove that there is an almost periodic matrix p($) in (4k) such that
y1 (1) =28 for 0<¢<<L(s), If this conclusion does not hold, then there is a sequence
of matrices p,(t), (m=1, 2, +-) which are almost periodic with bounded inverses and
transform «*(¢)into

@@, e, @) = (@ (@), 5 40P ), G
™ (£) >2s in the maximum interval[0, Ln], Lm—> Lo, L(g) = Lo, Lin<Lo,
Let us take infeger mo sufficiently large, and transform y™*(t) by adding the

function En]z |y§mo (£) |2 to y§" (£), i. e., there is an almost periodic matrix p.(f) with
i=

- bounded inverse whieh transforms #* () into y™’ () with
@) =440 () + 3 19570 @) | >2s, 0<i<Lm, Lm, >La.
=2 .

This gives a contradiction to(#:)m, S0 We can assume that ys (¢) >2¢ in(3) when
0<<¢<L(s)., For any ¢ there is a ¢, such that ;

lys(t+10) —v1(2) | <& and 0<<t-+te<L(e),
i. e., y1(¢) =>¢ for all ¢. "

Crollary. If #1(), -, wx(8)are the independent almiost periodic solutions of (2),
there are almosi periodic and elémentary matrices Q(f) and p(t) which transform
@1 (t), +++, 2u(3) into |

¥i() =@ X p@®,
where Q(2)és nxnmatrizc and p () i kX F matriv, v, ) = (@1(t), *, 2x(2)), the upper
Ex & mairie of Y5 (8) has bounded inverse. ‘

Proof It may be proved by induction on the rank k of @;(2), +--, o (¢), We omit
the details here.

By these properties we obtain immedia,fely

Lemma 1. Suppose that @:(t), «, w(t) are the independent almost periodic
solutions of (2). Then there are almost periodic vector fumctions g1(3), **, ga-u(t) such.
that

@ @@ La®, la®l=1, 4 j=1, 2, =, n—k j#

2 ¢ La@), j=1, =, n—k, s=1, 2, -, ks

(8) The wector functions g1(2), *+*, dn-t () are in dass O,

Proof (omitted.)

Lemma 2. There is an almost periodic linear transformation

(:)=p<t>w | )

which reduces the system (2) into the diagonal blocks:
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fu —oi(Du,  ©)1

B —a@®y, ©)s

where the first linear system has the almost periodic fundamental matrie, the second one

(6)

admits the ewponential dichotomy.
Proof Take the almost periodic matrix

po'(t)=( Owo (8, M) TS amoa(rt,;;,kM) ) %(t), . Qn—k(t)>,

3’”’1}1

where the meaning of ¢;(¢) and () = -3—9_30—%;—1)—]1—[)— have been stated in Lemma 1. By
‘ . ave

Schmidt’s method there is a unitary matrix
| Qo(%) =Po(®) Ro (),
where B, (t)is the upper triangular and almost periodio matrix. -
Make the regular transformation y=Qs" ()@ for(2), Then we have

& (@ OADO -G O dQ"(t)) ~((, 1)-reo iy

( Cq1 (t) C1a (t) )
= Y.

0 Ca (t) : (7)

Put
U<t> —1 0 oi M) a{!}o(t M)
< @) @ ()(_ﬁ_ﬁ___, ., W)
Then we have

* % s et 3 U@ =
(2 )-mo-woro-(7Q 1)
0 that ¥ (t) =0, and '

T o, ()U ),

‘which proves that the first linear system in (6) has the almost periodic fundamental
matrix.
If we transform (7) by the linear transformation
u* wH, O
P

where 7 i8 a sufficiently small positive number, then we have

du

=01 (B u'+o(m’
;“ ®
dt =Cq (t) ’l)

Therefore we may congider system (7) or(8) as the small perturbation system of(6).
Tn order to prove that the second linear system in (6) admits the exponential
dichotomy, we shall introduce some knowledge™ about the spectral points of the
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linear differential system as follow
Suppose that the linear system

%__—: (ca(t) —AE)w, A is the real number,

does admit the exponential dichotomy. Then we call A the spectral point of (6)a. The
sot of spectral points of(6) s forms a finite numbers of cloged intervals. 'By Theorem 3
in [2], it is eagy to prove that the exponential dichotomy is preserved under the
small perturbation, so that the set of spectral points ig stable under the small
perturbation. _ ’

If the second linear system of (6) does not admit the exponential dichotomy,
then the original point of real axis is the spectral point of (6)2,\ Here we may suppose
that(6) s has the gpectral interval [ao, Bo] containing the original point O. The system
(7) or (8) may be considered as the small perturbation system of (6), so that one of
the following three cases must take place: '

(I)‘ 0p<0<Bs. The number of zero characteristic exponent in the extensive
senge of (8) >F; ' | |

(ID)  w<0<By, (to=0<B,). Thereisa solution (u*(¢), v*(£)) of (8) with upper
(lower) characteristic exponent o

A=A (1), v*(1) (A=A (), v*(¥)))in the interval —a<i(d) <e,

(III)  ao=LRo=0. I)or II)takes place. '

Any one of these facts contradicts the assumption of (2). Therefore we conclude
that the second linear system in (6) admits the exponential dichotomy.

At last we transform (7) with the linear transformation

)/ B, 8@
(,,,)=< oz
_d.(“)= (ci(t) HORLAGNG) +S(t)cz(t)+cm(t))<u>
di \ 0 ca (%)
In the following paragraph we shall prove that there is an almost periodic matrix
8(¢) fatisfying the equation
HORIONORENOLIORHON 9)

Pub w=U"1(¢)S, where U~2(t)is the almost periodic fundamental matrix of the
first linear system in(6). Then there is a system

80 that

» °

%“% —wos(8) +60(2), co(t) = —U~(H)ewn(t). (10)
'We have proved that the second linear System in (6), i. o. the linear system
D0 —awoa(t) | (11)

admits the exponential dichotomy, so that it sabisfies the Favard’s property™,
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Therefore there is an almost periodic k% (n—k) matrix wo(s) satisfying equation (11),.
and the almost periodic matrix §(t) =U (¥)wo(#) is the solution of equation (9). The
proof of Lemma 2 ig complete.

Corollary. There is an almost periodic regular Vinear tramsformaiion which:
reduces (4) into the following form:

%7;9-=01(t)u+817’§(u, v, t, &), ‘
‘ | 12
Hl;—~=02(t)w+sﬁ’§(u, v, 1, 8),

In the following paragraph we shall only disouss the existence of the almost periodic:
solution of (12), ‘

§ 3. perturbation problem

By the above statement there is a funda_,mental matrix v (¢) of the second linear
system in(6), such that

V(@) =Vi@) +Va(t), V) =2Za(s) +2:(),
V@V =V 1) Zi(s) +V (D) Za2(s),
[V 1(#) Z1(s) | <Bexp(—a(t—s)), =3,
|Va(®) Za(s) |[<Bexp(a(t—s)), s>t
Where o, 8 are the positive constants.
If (u(t, 8), v(t, &)) is the almost periodic solution of (12) with
li)t?u(t, 8) =u(t, 0), lg_x)gv(t 8) =0, 4(0, 0) = (13)

uniformly, then we oan express(u(t, &), v(#, 8))in the following form:

ut, 8)=TOU0) (ao+B(e)) 5] TOUDFIwCs, 8), (s, o), 5, &)ds,

o6, &)= (s Vi@ 21 —e [ Vo Za@)Fiuls, 9), 06, 8), 3, 6)ds.

Theorem 1. If (12) has an almost periodic solution (u(t, 8), v(t, 8)) with
property (18), then

P (a)= hm_j U@ U-(s) Fi(u(s, 0), 0, s, 0)ds=0,

Proof (u(t, &), v(¢, 8)) converges uniformly to(u (%, 0), v(, 0)), as s— 0
For any #>>0 there is an &(n) >0 such that

|FiuG, &), 9@, o), 1, ) —~Fiu, 0), 0, 4, 0] <3, (19)

when 0<<s<<e(n). Sinco the matrix U(t) is regular and almost periodie, there is a
constant ko such that [T @) T (s) | <Ko, |
By (14) we have
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%‘ﬁ [TST@ || Filuls, 6, (s, &), s, &) —Fi(u(s, 0), 0,s, 0) "ds<]c07)

and .
17
Ll g1 P, 0, 06, 9, 5, 8)ds=0,
{hen we conclude that P (a) =0,
Theorem 2. If the vector w, satisfies the equation P (w)=0, and the characteristio

P({vo, 8) =lim

00t of (%(—@—)-) has no real part equal to zero, then (12) has @ unique almost periodio
i
solution(u(t, 8), v(s, 8)) such that ling u(t, 8)=u(t,,0), linoafb(t, 8) =0 tuniformly.

The proof of this theorem will be given in § B,

§ 4. Averaging method

In order to prove Theorem 2, we give three Lemmas as follows:
Lemma 8. Suppose that f(w, t) is an almost periodic function of ¢ ung formly
Jor @ with the following properties:

(i) _ai%%—'&, j=1, 2, +--, n are the uniformly continuous vector fumctions of
i
(=, 8);
T 1t ds=0
@ lmf G, 9dso,
‘Then
i _1._ t.af(w’ s) = o seo
i L 22 0,1, 3,
und formly for o on the given domain.

Proof Tor the gimplicity we only prove it for the case that & is the real variable.
Take the real number sequence {k;|k;#0, lim #;=0}, put

F(w+h,, t}?j—f(w, D oG, D) t6,(w, 1),

?I-(a%—t—)- is uniformly continuous for (z, t) on the given domain, so & (w, ¢) tends
uniformly %0 zero. For any %>>0 there isa positive number ¢ (%) such that| s;(w, 2) | <%,

when j>¢ (),
Take T large enough, for j fixed, such that

1 f(m_'—hh 3) ‘—fcﬂ}, S) ' n
Tjo % ds | < o when =T,

Hence we have
t f< 2 s> l —_ ‘.__ ’ . l .
\..,_:;'so ,,____‘E dS < 2” -4~ 1t ‘ogj(w, s)ds <8, When t>T,

which. proves Lemma 3 completely,
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Lemma &, Suppose that f(w, t) is the uniformly continuous vector Junction of ¢
with ’
N
tim [ 7o, 5)ds=0

t—ro0

uniformly for x. Put
@, 1, )= F@, Jexp(sli=)ds, >0,
Then we have '

(1) YL@t 8) oy, 1, &) ~f (o, s

(ii) 1in(r)1 gJ (m, 1, &) =0 uniformly for(w, t) on the given domain.

Proof Part(i) can be obtained by caleulation, -
By the almost periodicity of f (w, ), the limit

1 -
llm—t—jto F (@, $)ds=0

2]

holds uniformly for . Putb
P(a, t, )= f (@, r)dr,
" For any n>>0 there is a £(n) >0 such that
|F(@, 1, 9|<2ls—tln, when|s—t|>£).

Notice that

J (e, t, &) =r f(w, s)exp(st—s))ds

= sjjﬁ' (, 3, s)exp(e(t—s))ds

%M +t+r =I;+1Is,

t 116 R34

Let us fix the number £(n), then we have

| ela| <—%— 7 J: g%s exp(—ss)ds=-%- ”,

Now choose &y so small thab | 8L4] <-1§ n, when 0<g<si(y), which implies that

|sJ (@, £, 8) | <n, when 0<s<<s(m).

Lemma 5. Suppose that f(w, ¢, &) satisfies the conditions in Lemma 8. Then
there is a veoctor function w(w, t, &) having the following properiies:

1) The continuous vector function (s, t, 8) is almost pertodic and of Ot for ¢,
of O~ for ; '

2) The following limits hold undformly:
lim so(a, 1, 6)=0, lm s—gg—= L §=1,2,

-0
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8) Put S(a, ¢, s)— +f(<v t, &), then we have

lim S(e, ¢, &) =0, hm?is_(%w_t:_?).-_-o’ j=1, 2, <, n
j

&0

Proof Take the real function
k(s) 9XP<—:f€;ﬂ§‘), ol <&,
0 lel =8,

jE K (w, s)do=1,

K (s, &)= {

where |a]|?=a?+-a3+, -, +a3, H,isn-dimensional Euclidian space, do=dwide, -+ day,
the volume element of H,,
Let us define the vector functions

J (@, t, &) =J:°f(w, s, s)exp(e(t—s))ds,

o, 4, ) =[, K@ I+, 4, ddy={ K=z, 7@, 1 )y,
It is evident that | | ,
J(x, t, 8) f——j:f(a;, t---s, 8)exp(—ass)ds
is the almost periodic function of ¢ uniformly for # and s, The continuity of
-—at— J (z, t, &)implies the continuity of co(a; ¢, &), By the definition of (w, %, 8),
we see that w (e, £, g)is of C= for o, ThlS proves the part1).
By Lemmas 8and 4 the following limits hold uniformly:

lim s (3, %, 8) =0, time 27858 o, jui, 3, oy m

From the definition of w(w, i, 8) we get the proof of part 2).
Since

S(a, &, &)= —l—f(w ¢, 8)
=SE”K(@,, &) (’éz‘ J(@+Y, ¢, &) +f(a, 1, &))dy

[ E@, (@ 4, ) —f@ty, b, 0)iy+en b o),
lim 8(a, ¢, ) =0,

=0

Similarly we have

hm-——S(w t, 8)=0, j=1,2, «, n,

-0 O%;

Lemma 5 is proved completely.
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§5. The proof of Theorem 2 |

Let us transform (12) by the transformation
u=U(t)h, v=0,
which reduces (12) into the following form:

%=8U”1(t)1"’i(u, v, 1, 8),
’ (15)
Td—q;-=02(t)v+8F;(u’ v, t: 8).

Proving that(12) has the almost periodic solution (u(t, &), v(t, 8))—=>(,0), 0),
as s —> 0 is equivalent to proving that (15) hag the almost periodic solution (A(%, 8), .
v(t, 8))—>(ao, 0), as s—>0. Write

U@t Fi(u, v, 1, 8) =U*@) Fi(u(t, 0), 0, 3, 0) +¥(h, v, t, 8),

The first partial derivative of ¥'(h, v, £, &) with respect to A and v are bounded,
and W (h, 0, ¢, 0) =0, so the Lipschitz constant of ’!I"(h, v, , &) with respect to A is
small, when » and & are small enough. Furthermore we can assume that the Lipschitz
constant of W (h, v, ¢, &) with respect to v is sufficiently small. Otherwise, we may

apply the transformation b —>5%, V — % V'to system (15), where ¢ is a small positive
number.
Suppose that
P(h) = lim %_ jZU—i(s)F;(u(s, h, 0), 0, s, 0)ds, us, b, 0) =U(ST©)h, |
Put

- f(h, ) =U()Fi(u(s, b, 0), 0, s, 0)—P(h).
By Lemma, 5, corresponding to the function F(h, s), we can construct the vector
funotion w(k, s, ). Let us transform (15)by the transformation
h=h*—sw(h*, t, &), V=2,

Then we have

I — o (p () +Lu (W, 0, %, 8)),
1]
i (16)
'TZ',I;— ;02 (t> U 8L2 (h*J v, t: 8) °
Noting P (%) =0 and putting N =h"—a, v=wv, we reduce (16) into
%:];T—=3(AON+LT(N, v, 1, 8)),
a 1

%%= 2((‘/)'U+SL§(N, v, t} 8):

where the constant matrix Ao=<—a£af—§—@92->, the Lipschitz constant of Li(N, v, ¢, )
_ v :
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are bounded. Then. there

with respect to N and v are small enough, and oL and _86_1)_

oN V
is a unique bounded solution of (17) which can be expressed by the following form:

NG, )= sJ: Y1 (s(—s)) L ds-sj;” Yo (s(t—s)) Lta ds,

0, &) =8| Vi Za(@ Lixds—s| Va(@®)Za(s) Linds,

where we may assume that
Ag=diag (4;, 4y),
Yi(s(t—s)) =exp(sdi(t—s)), Ya(e(t—s)) =exp(sds(t—s)),

the real parts of the characteristic roots of Ajare negative, the real parts of the
characteristic roots of 4, are positive.

The almost periodicity of (N (¢, 8), v(%, s)) has been proved by Theorem 1 in
[2]. Therefore, (12) has the almost periodic solution with the property in (18). So
the proof of Theorem 2 is complete.
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