## CORRECTION TO "ON THE PROBLEM OF BEST CONVERGENCE RATES OF DENSITY ESTIMATES"

CHEN XIRU (陈希孺)

(University of Science and Technology of China)

The assertion of Th. 1 in [1] should be replaced by  $\limsup_{n\to\infty} a_n n^{k/(2k+m)} = \infty. \tag{A}$ 

Since the proof of Th. 1 in [1] is somewhat in error, we give here a sketch of proof of (A). Choose  $f \in C_{k\alpha}$  with  $f(x) \geqslant a > 0$  for  $||x|| \leqslant s > 0$ , and define  $h_{\delta}(x) = f(x) + e_{k\delta}(x)$ , where  $e_{k\delta}(x)$ , as well as d and  $C_{k\alpha}^{(n)}(d)$  to appear in the following, are the same as in [1]. Choose  $\delta > 0$  so that  $h_{\delta} \in C_{k\alpha}$  for  $\delta \in (0, \delta)$ . For each  $\delta$  in  $(0, \delta)$ , there exists an integer n such that  $h_{\delta} \in C_{k\alpha}^{(n)}(d)$ . Hence an integer N can be found such that for some sequence  $\{\delta_i\} \subset (0, \delta)$  we have  $g_i \triangleq h_{\delta_i} \in C_{k\alpha}^{(N)}(d)$ ,  $i=1, 2, \cdots$ . Without lossing generality, we can assume that  $\delta_i \downarrow 0$  (otherwise take another f), and hence we also can assume that  $\delta_i \geqslant 2\delta_{i+1}$ ,  $i=1, 2, \cdots$ . Define an integer  $n_i$  such that  $\delta_i^{2k+m} \in \left[\frac{b}{n_i+1}, \frac{b}{n_i}\right)$ ,  $i=1, 2\cdots$ . Since  $\delta_i \geqslant 2\delta_{i+1}$ , we have  $n_1 < n_2 < \cdots$ . Replace  $C(\delta_n)$ ,  $a_n$ ,  $h_{f,\delta_n}$ ,  $\gamma_n(0)$  and f in (14)—(19) of [1] by 1,  $a_{n_i}$ ,  $g_i$ ,  $\gamma_{n_i}(0)$  and f respectively. In this way we get

 $\limsup_{n\to\infty} 2a_n n^{k/(2k+m)} \geqslant \liminf_{i\to\infty} 2a_{n_i} n_i^{k/(2k+m)} \geqslant b^{k/(2k+m)}.$ 

Since b can be chosen arbitrarily, we finally get (A).

Based on (A), the proof of Th. 2 in [1] is still valid, with an obvious modification.

We mention that it is wrong to define the function  $e_{k\delta}(x)$  as in (2.18) of Farrell [2], for it does not satisfy (2.19) of [2]. An correct choice may be

$$e_{k\delta}(x) = g_{k\delta}(\|x\|^2 - 2^{k-1}\delta),$$

where  $g_{k\delta}$  is defined in [2]. No change is needed in the proof under this new choice of  $e_{k\delta}(x)$ .

## References

- [1] Ohen Xiru, Chin. Ann. of Math., 5B (2) (1984), 185—192.
- [2] Farrell, R. H., Ann. Math. Statist., 43 (1972), 170-180.