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Abstract

Let g be a complex number, 0<|g| <oo, I' denotes the planar curve Z=gq° —co<
F<oo, '

The author wants to find sphnes on I'" which mterpola,te on the set {q”}’,:ﬂ, where kl, ky
may be finite integers, or Ty — 00, kg=-+oo,

For the cases g real, ky= — oo, kg=-o0; or |q|=1, many authors have dealt with -
this problem (see [1—71). But if ¢ is an arbitray complei: number and the number of
interpolating points is finite or infinite, which classes of splines could be possible?

In the first part of this paper, the author introduces several classes of splines which
interpolate on a finite point sef. The second part deals with interpolation by splines on
infinite sets of data points. ' '

§1. Interpolation By Splines On A Finite Planar Set {g°};

1.1. Pseudo-periodic Splines

‘Let Iy, , denote the are z2=¢°, v<<e<pon I',

The symbol L, ,={S4(z)} denotes the olass of functions {;S'A (2)} satisfying the
following three conditions

8,(2) Ew, on each aro I';, j=0,N-1

Su@) €0 (Tox] . @
SP (@) =g b8P i=0, n—1

where I’;=1‘,-,5+1=q@5“ €I, and II, is the class of polynomials of degree » over the

dS
7

'We call 8, (2) the pseudo-periodic spline.

field of complex numbers, 8P =

In ocase |¢| =1 and ¢¥ =1, the pseudo- perlodlc splines on I" are periodio sphnes
on the unit cirele [3-7],

Problom A. The interpolation problem P, may be descnbed as follows:

A sequence of numbers; real or complex
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y=() »=0,1, =, N=1 (N>n+1),

2
yr=4"""1o <. )

are presoribed. We are to find a function 8, i (z) €4, such tha
84(¢") =y, for v=0, 1, ., N, (3)

If 84(2) € La,n, wo may extend Sy (z) to I‘N, on as follows
84(2) =¢"*V8u(g"2) 2E€Lw,aw, ch)
Then

8a(@"*) =ynsw »=0,1, =, N (8)

where gy, denotes the number ¢"* Yy, Evidently S4(2) €02 (Lo, aw).
For any complex number ¢, ¢+0, |g| %1, we may define the order of two points
2, and 2, on I" as fallows | '
21K if —oo<L @y <wa< -0,
Wheré n=q%, =1, 2, ‘ ‘
% = {(21—'%2)1?) if 21>>2,,
5)% =

1%
(e ¥ 0, otherwise,
(21—22)%,  if 2>,
21—%9)" =
(e1=2) { 0, otherwise,
where % i any positive integer.
By Peano’s formula we have
8.0 =S L -+ gy, HPOC-DE . ©

The integral is along the arc I, 2N—1 qu er,
Applying the method of integration by parts to (6) we obtain, for z on Lo, oy
2N
840 = Pos(®) +o SILAP R,
P 732 (Z) Em"n—zx ) _ (7)
(=g G=t _ (e=g)i= (=g
n) . —
HP @) bisa b ?
where bj=¢'—¢'™, M;=847"(¢),
84(z) may also be written as
8,(2) =Poa(®)+Y (), 2E€TL0,2m,
Pn—i (z> Ewn—ix |

. ®
1 (M M, —M, "M—M, .
Y(z>=n‘{ 1 (z 1)n+ ;( ‘sz:;i ¢ M- ‘1>(z i)'i}.
From (7)
84(@") = Paa(@) +—-§H<"><q”>M,
Hp (¢7) == o, ©
o= (=M1 — (@ =gD%

by




No.. 3 Cheng, H. L. SPUINES ON FINITE AND INFINITE PLANAR SETB

377

We form the divided difference[y,,
we obtain

1 v4n-=1 @
[?/p, °*y ?/v,n—i:l:;‘- E M?'[Hj (qy): **%

From (1) and (4)
M Nyk ™ M ks
From (9)

H (") =q" P H{” (¢").
The determinant definttion of divided difference gives
qv-l-n—i] = [H(g*), -
4,9, -

H§n) [gv, °*ty
(n)
j-—v

Therefore

O<k<N

H;n) <qv+n—1)] .

o Hp @]

. ¢,

n—1 e
W, ***, Ypsnil =_73_‘§ W M, v=0, N-—1,

W@ =HPIL, g, =g
The gystem of equations given above may be written as

)

0

M, [ [yo, =5 Yodl
(W)n : =n! :
_ My_a (yw—1, ***, yN+n—2]
where (W), is an N x N circulant matrix
we we e WPy 0 .
We=| 0 WP - WP 0 -
W W e W 0 o e

 This eagdy t0 prove that
Wy(c’fﬁ&l)‘— .q “‘7 W 4 Q(J

Let W% =W =0, From (7), we then have

ng) = W%Z) = 'W(2) - 1 W83)

W§3) ==

The eigenvalues of the matrix (W),, are

&g =
&= lZOW’m Aj, Aj=e¥

If no A is a zero of the polynomial

)

»J

N—-1

°

WPt W P24 o+ WP,

then (W), is non-singular.

W(3) =

0
0

W

Wk+1 for IQl %1

q+1 )

we, Yysny] Of oxder n—1, From (8), (5), (9)

(10)

(1)

(12)

(13)

(14)

(15)

(16)

A"

If (W), is non-singular, (M,)§~* and then, from (11) and (8), Y (2) are
determined, since S4(¢*)=y,. Using the induction method, we obtain P,_;()

uniquely, thus the interpolation spline function 84(z) is determined.

We now introduce the following polynomial of degree n in 2,

n—1
7, (z) =2 20 W;(”)Zl°
1=

(18)
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From (17) we have
1 "
Faa® =5 {@-nF.0) +(1-—%>F,,(qz)},
By induction we obtain
2 n=1 'n,—l n—1 m=1
F.(2) === 'y e )
@ Hos (") H w0 T
-2 T (@D, (19)
where v
ned—l— 1) s (20)
n [n YR
@) = (=9 a1
0 z(j)q_zq. (a)
We see that G (%) =0 if and only 1f F, (zo) /20=0
We set
(— | gthe :
Ani(@, A) = ,Cn jE (— 1)’ -szjf, —oo Lyl 0, (22)
g=e, 1 is any real number.
The function A4, (2, A) satisfies the following gystem of equations
yP (1) =ry9(0), j=0, n—1 ,} (23)
y® (1) =ry™(0) +1,

j —
where y® () -——%—Z—,—-, §=0,n,

Evidently, we have

6, () =LY 40, qz~1)————-—-————< Dol 4,40, L),

Thus, we obtain
Theorem 1. PfoblemPA can be solved uniquely in & a,n 8f
An,0(0, gA7) #0,
d=07" 7, for alb §=0, +, N—1,
where A, o(@, &) s given by (22) for 1=0,
Since : _
A0, X) =9"4,,:(0, g°M),

letting l=v»= ———2—, then

An,o(O, ?“) =q-?_2z An,—!gl' (0) g—%)')o

I 4, _, (0, &) =0, then 4,_, (0, &) =0,
Let - |
4@ =4, , 0, O I V-0,

(24)

(25)

(26)
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g=6¢, ®,(f) isa polynomia,lbf degree n—1 in &,
If #,(&) =0, then
hu€ ) =FolgEE) = Falg FE) =0, @
We now deal with the problem P, for the cases 1<n<\4-
(1) n=1, 0<|g| <o,
There is always a solution in % 4,1,
(i) n=2, 0<[g|<ee,
Fy(z) =0z(2+1), O is a constant.

‘We then have |
Fg('—'l):(), ’ . ! .
28

}—Fg(z)aeo gsh—1, } : (28)

If N is odd, then e xa ‘4 —1, for 0<Ic<N 1, From (28)We have

Fz(e )#0 0<k<<N -1,

(W) is non-singular.
If N ig even, then (W), is singular.
(i) n=38, 0< Iql <o,

(a) Ifg=e ¥ N(>2) being a positive integer,
We then reduoe the problem P4 to the corresponding mterpolatmn problem on
“the unit circle B~ and conclude that P, can be solved uniquely in F4,s.

(b) If [q]#1,
Let &» (=1, 2) denote the roots of the equation #3(£) =0,
(P =—-Vit+NVi- f(g)"‘*V1—\/V1 (29)

‘where Vyi=1+%7", t=q7,
) 2w . 4w . ’
If V2=1, then q=e?‘ (or q=e'§"), but this is contrary to the hypothesis
g]+1.. |
Fs(2) has two distinet roots ¢ 3 £P and ¢ 7§g3),
If q—7§‘13’== #  then from (29) we obtain
1. _1 : 1 1)
q'few_*_q ?e-w=_2(q2+q“§ ’

24"
2+’
tbut this leads to |¢| =
Therefore, F5(z) has no roots on the unit circle, thus (W)s is non-singular.
(iv) n=4, '

2w

(@) g=e¢?¥ .
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(W)s is non-singular if N is odd, and singular if N is even (see[5, 6]),
() gl +1.
The zeros of F4(z) are ¢~%¢® (é=1, 2, 8), namely

—q, q”1<——2—352 i\/<2+% Vz)z"‘l), where Va=q-+¢7%, -

I g-i(—z— 352 +J (2+-§- Vs )2 —1)=¢°, then

g=1[—2+ i/6(14cos8)]/[8+cosf+isinb],
but this leads to |¢]| =1,

‘We conolude that
lg~€®] #1, i=1, 2,8,

We have the following result:
Theorem 2. If g is @ complew number, 0< |q| <oo, then problem P4 has a unique:

solution in & x,, when n="1land n=3(g=e%r'i) .
| For n=2, P, has a unique solution in S 4, s iff N is odd, for all q, 0<|gq]<oo,
. For the case n=4, P, has & unique solution in Fa 4 iff one of the following
conditions is satq}sﬁed |
D g=e = , N odd,
2) [q] #1, N odol or even.

1.2. Cubic splmes of the classes Fs,s, So,3

The symbol ¥5,s={Sz(2)} (L s={8c(2)}) denotes the class of funoctions
satisfying the following three conditions
Sz(2) (So(z)) €, on each arc I';, §=0, N—1,
85(2) (So(2)) €0 (Lo, ).
Ss(1) =gb, S5(g") =9,
BP D) =i, 8P (") =y
where ¢}, ¢y, ¥ and yyare presoribed numbers, and
O sy (S50
'We propose the interpolation problem Pg(Py) as follows.
A sequence of numbers (real or complex) |
y=(v,) »=0, N(¥=>n+1),
Yo, Yn (Yo, Yy
is presoribed. We are to find a function 85(Z) € %3,s (So(%) € F4,s) such that
SB(Q”) =Y, V=6-:—N: - |
Sz =g,  S:(eY) =wn, (80
(So(g”) =4», v=0, N, 85(1) =yi, So(¢") =yx). |
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Lot 4;=8"(¢%) =—?'Z%—(Zq—’2—, b;=¢'—g", 8(2) denotes the spline belonging 0 5,3

or 0,86
‘We have

() = Auy SLZ @(zq”) (wﬂHV@bw

+ Y

l

¢ —2)2[2(2 —g")+bil (z ¢)? [2(9 —2) 4011

(81)

The continuity condition is here “imposed on 8@ (z)( =8"() at z=¢

(1=1, N—1), This leads to the requirement
szz_1+2Al+§lA3+1=O;, l-—'=1, N—l,

b
-where w;=———3t— &=1—w
= Tt b’ & le
For P3, we add the following conditions
Ao—yo, Ay= yN.
Tor Py the additional conditions are

—‘4A0 2.A1 + 6(']/1 yo)

"

Yo=—7, b b2

" 2Ax5_1 4Ay _ 6(?/N“—y1v—1) .
L S A

(83) and (34) may be written into
245+E€oA1=0,
G)N-A-N7-1+2-AN=ON. }
TFor Pz, Pgwe assign the values of & and wy as follows
Pp: éo=wr=0,
Py: fo=wy=1,
Then. the defining equations are - _
2 & O 0
o 2 & 0 0 Ao Oo
0 s 0 A o,

0 .o 2 €yo O : :
\0 ops 2 Ewa| Awl Oy
0 0 Wy 2

We may also write (38) as

DN+1A=O.

Lot Dy.1,1 be the determinant of the matrix Dy.1 with £o=Ev=0,

Then we have
-DN+1,' 1= 43AN—1)

where

(32)

(33)

(34)

(30

(36)
37

(38)

(38)’
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2 & 0 0 0 0
Wa 2 §2 0 0 ‘ 0
Aya= : : (89)
0 Wy-2 2 fzv—z
0 0 @DyN_4 2
Since N
__dg=1) _ _q '
W =—% L= , AN -1,
. @1 g+T .< < ‘ “)
fr= 1=t 1<I<N -1
q+1 2 e
we have
. AN_.]_ == 2AN..2 +’B‘AN_3, (41)’»
where v=—q/(1+¢)?,
Let 4_;=0, 4o=1, 4,=2, then
dy=4-4z, Ay=8+4r, 4;=164127+12,
A5 =382+ 3274162,
* From (41) by mduchon we obtain
e AHOT=(A—OY VAT 42y
2¢ - 1+4-¢
If AN_1—0 then |1+&|2=]1—£|%, with £=o-+iy. We obtain E=dy, andi

_ 1
=30+
Therefore we have

[~ (1+2y%) &4 /48], but this leads to |g| =

Dyy1,1%0 if |g] =1,

For the problem Pg, the relevant determinant is Dy, a,

0 .

2 1 0
[0} 2 §1 0
0 wy 2 ¢
DN+1,2= ? . ?
0 @Dy—1
0 e 0

It i easy 1o prove that

Dy, 2—4AN_1—2AN_2+ e q

‘We then have

-1

o :

0
0

2 &xa

1 2

(43)

Ay 3=44y_1— AN—i = 3AN——1 * 0 if |g] 1,

Theorem 3. If0<|g|<<oo, |q|#1, then the interpolation problems Py and Pg
can be solved uniquely in Fp,s and Fo,s, respectively.
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§2. Interpolation by Splines on Infinite Planar Point Sets

The symbol Fu(I)={8(2)} denotes the olass of funotions satisfying the
following conditions
8(2) Ewn, 2E€T;, =0, £1, £2, -,
8() €0"X(D), }
where I'iz=g?, —oo<z+oo, 0<|g|<o0,
The interpolation problem for the infinite planar set may be described as fo]lows.

(44)

If a sequence of numbers (complex or real)
y=(y,), v=0, %1,
are p:rescrlbed then we attempt to find §(z) €S (T) such that
8(¢") =4, v=0, £1, - . (4B)
Since for the case |¢| =1, the interpolation problem has beed disoussed in many
papers, we congider only the case: |¢| %1, Using the notation desoribed in part I,
every 8(2) €S () .ma,y be represented in the form |
8(2) = Po(2) +a1(2— @) +aa(e—g)5
Fao(r—1) "+ a_g(g—g )%+ (486)
where P,(z) Em,, {a,} are constants.
Let us determine (44) so as to sat1sfy the relation (45),
Seleot P, (2) arbitrary such that the relations
P,(1) =go, Pu(g) =91 (47)
are satisfied. P,(z) being selected, we see that the coofficients @, @, +-- (and ay,
G_y, *+) are successively and uniquely determined by conditions (46), We have

Lemma 1. The problem (4B) with the requirement that S@) €FLw(I") where |

n>=>2 has infinitely many solutions Sforming a linear manifold in Ln(I") of dimension
n—1,

We define three sub-classes of S, (T) as follows.

(i) SLi.={8@}.

It 8(z) €Y%, then

8(2) =84(2) ESL 4,a for 2Ly, (48)1

S) € (L),
(i) FL7={8@}, v=0.
If S(z) € &5, then

S() €A (D, . | (48)5

| 8()=0(|ne|7), lgl#1,
@) LI |
1f 8(z) € ¥5(1"), then
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8 €L u(D), (48)a
8(z) =0([2]"),
for some £>0, |g| #1,
Using Theorem 2 and Lemma 1, we have
Theorem &. Let values y=(y,), =0, £1, ««(¥£N), yy=¢""Pyo be given.
If the conditions of Theorem 2 are valid, then there is one and only one Junction S(Z)
in F3,, 1<n<4, such that
8(¢") =g, v=0, 1, =,
The problem P may be described as follows.
Given data y=(g,), 9.=0(|»|"), »=0, &1, -, we wish to find the funotion
8(z) € &5 such that
8(g") =gy, v=0, %1, -, ' (49)
This interpolation problem is called problem P,
We now discuss the zeros of #,(¢) (see(26)). We shall follow the theory of
oardinal F-gplines ™ to solve the problem Py for n<<4,
From section 1 we have

40,000, N =E &M/ [T @ 7F -2g79), (50)
where , ,
| K,=(-1)"(¢*—q "g */nil",  g=¢, |
~ (=D ~% Y
@A) =— 25— Ta(g 20).,
(gz2—972)" ~
1, n=1,
~ A+, | n=2,
Tn (7‘4) = 3 1 1 o (52)
(g TN +2(g%+q B (g M +1, n=3,
(g *A+1) [(g70)* + (4+38g+3¢7) (™M) +11, n=4,
Therefore " o
' w1 (A) no zero, (63)
@a()) one zero A= —g, (54)
@s(A) two zeros:
2 —
M=—gq% V1+~TVi-1], (55)

3 S
Ao=—q*% [V1— NVE-1],
@s()) three ZOTOS:
M= —92:

da= —g° [2+—§:— Vs +~/(2+-‘;iV2)2 -1],

(56)

n= —¢t[2+ 3 Vom /(24 27 1]
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where V4= 7+q E , Va=gq+q%,
Temma 2. Let My, g be the zeros of As,0(0, M), Let Ds,1, Da,a denote the regions,
0<|g¢| <ry and fr2< | g] < oo respectively, where

n—-—(3 ~5)<0.882,

(67
{¢2=-2—(3+ N'5)>2.618, -
Then - :
) “\"‘ <1: /i'=1: 2: QEDE’»,L (58)
I}‘”S‘>1: ’i’=11 2) q€D3.2) (59}
el <|Ml, g€ D5, 1UDy,a, (60)-
Proof Suppose A;=¢', then
-1 8 3
2(gT+g )=~ (gZe™+q *e"), (61)
Let g=ré®, From (61) we obtain v
2cos————(fr+q~'1—1) cos( >
2 :
8 (62) 1
£= — —-1__ ¢
| 2 si 2 (fr+fr 1)sm<2 6) ,
Then we obtain
a_ . ;
cos(8p —29) = L——g— (68): '
Lot I=r+r72, f(I) =—5—, f @ isa monotone increasing function of I, Since %:T> o |
(r>1) and —37<0(r<1),‘_we have
FE>1 for 0<r<ry and ry<r<oo, (64):
Wo see that (64) contradicts (68), Therefore, || %1 for ¢ € Dg,1U Ds,a, -
Wemay also prove | Ag| # 1 for ¢ € Dg,1U Ds,», Since
' lima=0, ¢=1,2 -
g-0
and
lim =00, 6=1, 2,
g-o0
therefore, (58) and (59) are irue.
Tt i9 easy to prove that | . o
. |As] # |As| for g€ Ds,aU Dy, (65):
Now we choose ¢=0.LE D5 3, Then Ay== —0.21B, Ay=—0.006, We conclude’
|Aa| <|Ms| for g€ Ds,1, , (66) 1,
If we choOose g=10€ D3, 5, Then A= —215.85, Agse —4.64, We thus have
- |Aa] <|M] forg € Ds,s, : (66) -
and (60) is proved. ' Q. E. D.

Lemma 3. Let A, As, A be the roots of As0(0, A), Let Du,1, Da,» denote the



Vol. 5 8er. B

386 OHIN. ANN. OF MATH.
regions 0< | g| <ry, ra<<|q| <oo respectively, where
r1=-;—-(5~—\/2_1)(e0.21), q~2=%(5+~/§1)(é4.80)0
Then
' IA;I<1 ’b=1, 2, 3f0’)" q€D4,1, (67)
l)\:;l>1 'I:=‘1, 2, 3f0’7‘ QED4,2, (68)
A |M|<I7"3l<|7\v2| Jor Q€D4,1UD4,2. (69)
Proof
e A 2 3 J 3 ?
M=—¢" M q [2+-2— Vat <2+-§- Vz) 1];
— a2 8 1 _ 3 2 _ -1
Ag=—gq [24‘7 Va ~/(2+§- V2) 1], Va=q+q™,
If we set Ag=¢'"® (or A;=¢"), then
44-8(q+q%) = — (q~%"+g*w™*),
Let g=7ré®, We have
i 1 ‘
N8 (r¥+1r %)cos —‘§—= F(r+r™)sin ( [z -—%),
S ' (70)
1 1
2 - I _Q.-—._: —p—1 —_Q..
VEXCEET *)sin =& (r—r )cos(tp 2).
From ('70) we obtain |
0
2 — 2 —— ==
1*—-38l [4005 (q) 2)+600sq)] 0,
where l=1r-+r"1, The roots of this equation are
~2i 2 heos (-2
ly, la= 5 + ) +4 cos (gp 2>+6003q), (1)
Let g belong to Dy,; UDy,a, Then
I=|gl+[q|™*>5, (72)

But (71) tells us that max ([ly], [la|)<<B, this contradiets (72), Therefore we

conclude » :
[Nl #1 =1, 2, 8 for ¢€Dy,1UDya,

1im7»;=0, lim)\,;=oo

g-oe g-eo
and since A; is a confinuous function of ¢, we have
|M] <1 for g €Dy, 4,
[A] >1 for ¢ €Dy,
¢=1, 2, 8, Thus, (67), (68) are true.
Suppose that |A] =|As|, Then.

Since

A GO s T T

This leads to
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~2-3 VQ—J(2+-2— V2)2 —1=¢¥,
(73)

| —2~—§i V9+J(2+—';l Vﬁ)2 ~1=6",
Thus we have
—4—8(g+g ") =2c08§, (74)
Lot g=1r¢®, From (74) we have
(r—r*)sin§=0,
If ¢y —¢~1=0, then r=1, This contradiots ¢ € Dy,1 UDy,2, If sin §=0, then from
(74) '

cos = -—’2—%— (r+r1) <-—2——%5—. (79)
{178) cannot be valid, since [cosé|<1,
Thus ;
|Ae| # |As]. - | (76)1
If |As] =|Aal, we still obtain (73), so we conclude that _ ,
| A # |Aaland ||+ |As]. (76)a

Tt is easy to prove that _

| M| < |2a] <|Aa| for € Ds,1U Dy,

(69)is proved. Q. E. D.
Lemma 4. The system of equations

¢WO(g) =AW (1), 0<i<n—1, g#0, lg| #1, } (")
W (1) =0, |
~ i "~
has a non-trivial solution it o, iff wa(A) =0, where W= d dgf . wa () ds defined by
{(B1).
Proof If is easy to find that the determinant of (77) is
ly= (=)l [T (@ =) Ao 0, W= (g7 —g T )b, (78)
o | Q. E. D.
Let P;(z) be a polynomial of degree n in 2, such thab
.P;(O) =PJ<1) =0: sz)(o) =8i5; ';’=1) ')’b—l,
| j=1: 2; ) n'—l.
Let © denote the (n—1) X (n—1) matrix
o 0= (h), My=PP D", (19)
‘We have
Lemma 5. .
Det (@—AI) =0m,(A), O+0, (80)

a(d) is defined by (B1), ¢#0, |g|#*1.
Proof Let P(z) be the polynomial of degree n which satisfies (77), then
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P@) = 3} agf= SIPO) (¢-1"P <=1)'. (81)
From (79) (81), we have
(Q—-AHW =0, (82)
where
Wi
W=| : |, We=P®)(¢-1)*,
Wn'—:l
Since
= k —J
Wy= (q 1) Z = la)' a;, O<k<n,
and
n—1
Gy +Go=— D) ay,
=1
n—1

. . qnaﬂ_*—ao = 2 qja:i;
(lg|#1), hence W, W ,_; may be represented by {a,}1* uniquely. Thug

Ty
W=Y4, A=| : | des(¥) =0, (83)
. L
From (82), (88) we have
(Q—MI)Y A=0, - (84).

But (84) may also be obtained directly from the following system of equations
2 (n Z)(g”“ A) =0, §=0, n—1,

l—nO ( 85)
gg a=0, ,

By eliminating @, and @, from (85) we have
24=0, : (86)-

where 2= (%) is an (n—1) X (n—1) matrix,

o= 2 [(]) @-n -1 -(; Y e @-» ]
6Dl
It is easy to prove that

det () = (¢"~1) det (Da) = (¢"~1)4,, 87y

where D, is the matrix of the system of equations (85), From(84), (86), (87) and.

(78), Lemma b is proved. :
Q. E. D.

Corollary. The system of equations (77) has n—1 sobutions iff @,(A) has n—1
distinct zeros. These solutsont form the eigenvectors of the matrim Q (seo (79)),
We now suppose that m,(A) =0 has n—1 distinet zeros Ay, +++, M,
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Qongider two cases:

(1) |Ad] <1, i=1, n—1 for 0<|q| <1; (88)

Gi) M) >1, i =1, n—1 for 1< |gq| <oo, (89)
In either of these two cases, we have the funotions 8;(2) =4, 0(2(®), M)
satisfying (77), for A=2;, where o(z) =Inz/Ing, ;
Since {A:}4~" are distinct, {Si}3~ are linearly independent. 8,(z) may be extended
to I" by means of the functional equations
8()=M8(g™%), 2€T, } (90)
8(z) =8i(2), 2€ L,
8(z) oI, |
The functions so obtained are called eigensplines and denoted by 8:(Z),
4=1, n—1, and

S8i(g"z) =A8i(g™"2), € To, -
The symbol F3(I") denotes the class of functions satisfying the following
conditions:

S(z) Em,, €T, §=0, £1,
8(z) €0 (),
8(¢") =0, »=0, 1, -,

From Lemma 1 we obtain _

Lemma 6. If {\M}i™* are distinct, then the n—1 eigensplines are linearly

independent. Bvery S(z) €S O(I") can be uniquely expressed as a linear combination of
elgensplines

$6) =086, =€,

and 8(2) €S 3(I) (see (48)s).
Following C. A. Micchelli U3 we may-prove the following two lemmas.
" Temma 7. If {M}%t are distinct and (88) (or (89)) ds walid, then there is @
Sunction Un(Z) belonging to Sn(I") such that
Un(g?) =3s, »=0, £1, =, ' oL
U, (Z) may be constructed as follows.
@) If (88) is valid, then

n—1
E%S;(@, zcly, §=>1,

Uu)={ @@, =€l
Qz(ﬂ), ZEI‘__:,_,
0, ) ZET,’, j<——2’




390 OHIN. ANN. OF MATH, Vol. 5 Ser. B

where {a;}1™" are constants. Qs (z) and Qu(z) are polynomials of dearee n in z,
(ii) If (89) is valid, then

0, 2€ly,  j=1,
Pi(2), 2€ 1,
Un(®) =4 Py(z), = €@,

n—1
Zbﬂgd(z); rely, <=2,

wkerre {0,357 are constants. P1 (2) and P;3(2)’ are polynomials of olegm en im g,
Lemma 8. If {A}: are distinct and, (88) (or(89)) s valid, then there is one
and only one function 8(z) belonging to S such that '
8@ =0(|Inz[m), 8(¢)=(¥.), »=0, £1, -
S(2) may be represented as & complew Cardinal series:

8= 3 Y, Uu(g), =€,

The eigenvalues of the matrix Q for n=2,8,4 are given by (84), (55) and (56),
Let Dy, 1, D,, 2 be the regions

D“,ii 0<[qf<'r,,,, Dn,237;1<|9|<°° ) (92>‘
respectively, where
1, n=2,
1 . |
= —2‘(3—\/5), n=3, (93)

FG-VE), 0=,

From Lemma 2—8, we have
Theorem 5. Let values y=(9,), v=0, %1, - be given, where
9.1 =0(|»|?) =0, |
I f q EDM U Dy,s, 2<n<<4, then there is one and only one functfbon 8, (2) €S such that
8.(¢”) =y, v=0, %1,
Corollary If (y,) is bounded, then the mterpolamon splfme és also bounded.
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