## A NOTE ON GENERALIZED DEGREE FOR GENERALIZED GRADIENT MAPPINGS

FAN XIANLING (范先令)

(Lanzhou University)

## Abstract

In this paper the author studies the generalized degree for Clarke's generalized gradient mappings which are multivalued A-proper in Banach spaces. The results of H. Amann<sup>[1]</sup> on degree theory for gradient mappings which are compact vector fields in Hilbert spaces are extended.

In this paper we shall adhere to the following notations:

X is a real Banach space,  $X^*$  is the conjugate space of X,  $\langle x^*, w \rangle$  is the value of  $x^* \in X^*$  at  $x \in X$ .

For any  $x \in X$ ,  $A \subset X$ ,  $B \subset X$  and r > 0 we denote

$$d(x, A) = \inf \{ \|x - y\| : y \in A \},$$

$$d(A, B) = \inf \{ \|x - y\| : x \in A, y \in B \},$$

$$d^*(A, B) = \sup \{ d(x, B) : x \in A \},$$

$$B(x, r) = \{ y \in X : \|y - x\| < r \},$$

$$B(A, r) = \{ x \in X : d(x, A) < r \},$$

$$\overline{B}(A, r) = \{ x \in X : d(x, A) \le r \}.$$

 $\overline{A}$  and  $\partial A$  denote the closure and the boundary of A respectively.

 $T: \Omega \subset X \to 2^{X^*}$  is a multivalued mapping from  $\Omega$  into  $X^*$ .  $G_T$  is the graph of T. The norm in  $X \times X^*$  is defined by  $\|(x, y)\| = \max\{\|x\|_X, \|y\|_{X^*}\}$ .

If  $f: U \to R$  is a locally Lipschitz functional where U is an open subset of X, then we denote by  $\partial f(x)$  the Clarke's generalized gradient of f at  $x \in U$  (see [2, 3]).

For such a functional f and real numbers  $\alpha < \beta$  we denote

$$\{f < \beta\} = \{x \in U : f(x) < \beta\},$$
$$\{\alpha \leqslant f \leqslant \beta\} = \{x \in U : \alpha \leqslant f(x) \leqslant \beta\}.$$

For convenience, according to F. E. Browder<sup>[4]</sup>, we introduce the following notational convention: "If a set V appears several times in a single equation or inequality, the equation or inequality is assumed to hold for each v in V with the

Manuscript received July 10, 1982. Revised June 11, 1983.

<sup>\*</sup> Research supported under CSASF Grant Math-386.

same chosen at all points of occurrence of V in the given equation or inequality." For example the inequality  $\langle T(x), x \rangle \gg ||T(x)||^2$  denotes that  $\langle y, x \rangle \gg ||y||^2$  for each  $y \in T(x)$ .

**Lemma 1.** Let X be a reflexive Banach space and  $T:D\in X\to 2^{X^s}$  u. s. c. with closed convex values. Then for any given s>0 there exists a continuous single-valued mapping  $T_s:D\to X$  such that

- (i) To is a locally Lipschitz mapping,
- (ii)  $||T_s(x)|| \le ||T(x)||$  for  $x \in D$ ,
- (iii)  $\langle T(x), T_s(x) \rangle \gg \inf \{ \|y\|^2 : y \in B(T(B(x, s)), s) \} \text{ for } x \in D.$

In addition, when X is a Hilbert space, we require that

(iv)  $d^*(G_{T_s}, G_T) \leq \varepsilon$ .

Proof For simplicity we suppose that D is an open subset of X, otherwise consider the relative topology on D.

Let  $\varepsilon > 0$  be given.

Since T is u. s. c, for each point  $x \in D$  there is a positive number  $\delta(x) < \varepsilon$  such that  $T(B(x, \delta(x)) \subset B(T(x), \varepsilon)$ .

 $\mathcal{U} = \{B(x, \delta(x)) : x \in D\}$  is an open cover of D.

Let  $\mathscr{V} = \{v_a : a \in W\}$  be both a locally finite open cover of D and a star refinement of  $\mathscr{U}$  where W is some indexing set. (Recall that a cover  $\mathscr{V}$  of D is said to be locally finite if each point  $x \in D$  has some neighborhood which intersects only finitely many members of  $\mathscr{V}$ ;  $\mathscr{V}$  is said to be a star refinement of  $\mathscr{U}$  if for each  $x \in D$  there is some  $u_x \in \mathscr{U}$  such that  $u_x \supset \bigcup \{v_a : v_a \in \mathscr{V}, \ x \in v_a\}$ .)

As for the existence of the cover  $\mathscr{V}$  see [5].

Let  $\{\varphi_{\alpha}: \alpha \in W\}$  be a locally Lipschitz partition of unity subordinate to  $\{v_{\alpha}: \alpha \in W\}$ , that is, for each  $\alpha \in W$   $\varphi_{\alpha}: D \rightarrow [0, 1]$  is locally Lipschitzian,

$$\operatorname{supp} \varphi_{\alpha} \triangleq \{x \colon x \in D, \ \varphi_{\alpha}(x) \neq 0\} \subset v_{\alpha} \quad \text{and} \quad \sum_{\alpha \in W} \varphi_{\alpha}(x) = 1 \quad \text{for each } x \in D.$$

For each fixed  $v_a \in \mathscr{V}$ , let

$$S_a = \bigcap \{B(T(x), s) : x \in D, B(x, \delta(x)) \supset v_a\}.$$

Then each  $S_a$  is a nonempty convex set with  $S_a \supset T(v_a)$ .

Let  $y_{\alpha} \in \overline{S}_{\alpha}$  be such that  $||y_{\alpha}|| = \inf\{||y|| : y_{\alpha} \in \overline{S}_{\alpha}\}$  and choose  $z_{\alpha} \in X$  such that  $||z_{\alpha}|| = ||y_{\alpha}||$  and  $\langle y_{\alpha}, z_{\alpha} \rangle = ||y_{\alpha}||^{2}$ . Define  $T_{s} : D \to X$  by

$$T_s(x) = \sum_{\alpha \in W} \varphi_\alpha(x) z_\alpha \quad \text{for} \quad x \in D.$$

Since  $\mathscr V$  is locally finite, it may be seen that the single-valued mapping  $T_*$  is well defined.

We now verify that  $T_s$  satisfies the required conditions.

(i) Since  $\mathscr V$  is locally finite and each  $\varphi_\alpha$  is locally Lipschitzian, it follows that  $T_{\mathfrak o}$  is locally Lipschitzian on D.

No. 4

(ii) Let  $x_0 \in D$  be given arbitrarily and  $W_0 = \{\alpha \in W : x_0 \in v_\alpha\}$ . Then  $W_0$  is a finite set because  $\mathscr V$  is locally finite. It is obvious that  $T(x_0) \subset T(v_\alpha) \subset S_\alpha \subset \overline{S}_\alpha$  for each  $\alpha \in W_0$ . Thus  $||z_\alpha|| = ||y_\alpha|| = \inf\{||y|| : y \in \overline{S}_\alpha\} \le ||T(x_0)||$  for each  $\alpha \in W_0$ . Hence

$$||T_s(x_0)|| = ||\sum_{\alpha \in W} \varphi_\alpha(x_0)z_\alpha|| = ||\sum_{\alpha \in W_0} \varphi_\alpha(x_0)z_\alpha|| \leqslant \sum_{\alpha \in W_0} \varphi_\alpha(x_0) ||z_\alpha|| \leqslant ||T(x_0)||.$$

So T<sub>s</sub> satisfies condition (ii).

(iii) Let  $x_0 \in D$  and  $W_0$  be as above. Since  $\mathscr V$  is a star refinement of  $\mathscr U$ , it follows that there is some  $u_* = B(x_*, \delta(x_*)) \in \mathscr U$  such that  $u_* \supset_{\alpha \in W_0} v_\alpha$ . By the definition of  $S_\alpha$ , it implies that  $S_\alpha \subset B(T(x_*), \varepsilon)$  for each  $\alpha \in W_0$ . Noting that  $\|x_* - x_0\| < \delta(x_*) < \varepsilon$ , we have  $B(T(x_*), \varepsilon) \subset B(T(B(x_0, \varepsilon)), \varepsilon)$ . Hence  $y_\alpha \in \overline{S}_\alpha \subset \overline{B}(T(B(x_0, \varepsilon)), \varepsilon)$  and  $\|y_\alpha\| \ge \inf\{\|y\| : y \in B(T(B(x_0, \varepsilon)), \varepsilon)\}$  for each  $\alpha \in W_0$ .

By the choices of  $y_{\alpha}$  and  $z_{\alpha}$ , it may be seen that  $\langle y, z_{\alpha} \rangle \gg \langle y_{\alpha}, z_{\alpha} \rangle = \|y_{\alpha}\|^2$  for each  $\alpha \in W$  and each  $y \in \overline{S}_{\alpha}$ . Especially, for each  $\alpha \in W_0$  we have

 $\langle T(x_0), z_\alpha \rangle \geqslant \|y_\alpha\|^2 = \inf\{\|y\|^2 : y \in \overline{S}_\alpha\} \geqslant \inf\{\|y\|^2 : y \in B(T(B(x_0, \varepsilon)), \varepsilon)\}$  since  $T(x_0) \subset \overline{S}_\alpha$ . Hence

$$\langle T(x_0), T_{\varepsilon}(x_0) \rangle = \langle T(x_0), \sum_{\alpha \in W_0} \varphi_{\alpha}(x_0) z_{\alpha} \rangle \gg \inf\{\|y\|^2 : y \in B(T(B(x_0, \varepsilon)), \varepsilon)\}.$$

Thus  $T_s$  satisfies condition (iii).

If X is a Hilbert space, then for any  $x_0 \in D$ , under the notations mentioned above, we have  $z_{\alpha} = y_{\alpha} \in \overline{S}_{\alpha} \subset \overline{B}(T(x_*), \varepsilon)$ . By convexity of  $B(T(x_*), \varepsilon)$ ,  $T_{\varepsilon}(x_0) = \sum_{\alpha \in W_0} \varphi_{\alpha}(x_0) z_{\alpha} \in \overline{B}(T(x_*), \varepsilon)$ . Noting that  $||x_* - x_0|| < \delta(x_*) < \varepsilon$ , we have  $d((x_0, T_{\varepsilon}(x_0)), G_T) \leq \varepsilon$  and therefore  $d^*(G_{T_{\varepsilon}}, G_T) \leq \varepsilon$  since  $x_0 \in D$  is arbitrary.

**Lemma 2.** Let  $X = R^n$  is an n-dimensional Euclidean space, U an open subset of X,  $f: U \to R$  a locally Lipschitz functional and  $T = \partial f: U \to 2^X$  the generalized gradient of f. Suppose that there are real numbers  $\alpha < \beta$  and r > 0 and a point  $x_0 \in U$  such that  $\Omega \triangleq \{f < \beta\}$  is bounded with  $\overline{\Omega} \subset U$  and  $\{f \leqslant \alpha\} \subset \overline{B}(x_0, r) \subset \Omega$ . Moreover suppose that  $0 \in T(\{\alpha \leqslant f \leqslant \beta\})$ .

Then  $\deg(T, \Omega, 0) = 1$ , where  $\deg(T, \Omega, 0)$  is the Cellina-Lasota degree (see [6]). Proof Note that  $T: U \to 2^X$  is u. s. c. with compact convex values (see [2]), so  $\deg(T, \Omega, 0)$  is well defined and  $\deg(T, \Omega, 0) = \deg(T, B(x_0, r), 0)$  since  $0 \in T(\{\alpha \le f \le \beta\})$ .

Without loss of generality we may assume that  $\{f \leq \alpha\} \subset B(x_0, r)$ , otherwise replace r by r' which is slightly large than r.

Let  $\varepsilon_1 = \inf \{ \|y\| : y \in T(\{\alpha \leqslant f \leqslant \beta\}) \}$ . Then  $\varepsilon_1 > 0$  since  $T(\{\alpha \leqslant f \leqslant \beta\})$  is compact (see [7]). By the continuity of f, there exist real numbers  $\alpha'$  and  $\beta'$  such that  $\alpha < \alpha' < \beta' < \beta$  and  $\{f \leqslant \alpha'\} \subset B(x_0, r) \subset \{f < \beta'\}$ .

Let  $\delta_1 = d(\partial \{f \leq \beta'\}, \partial \{f < \beta\})$  and  $\delta_2 = d(\partial \{f \leq \alpha\}, \partial \{f < \alpha'\})$ . It is obvious that  $\delta_1 > 0$  and  $\delta_2 > 0$ .

We take a positive number  $\varepsilon < \min \left\{ \delta_1, \ \delta_2, \ \frac{\varepsilon_1}{2} \right\}$ . Let  $T_{\varepsilon}: \overline{\Omega} \to X$  be a mapping satisfying conditions (i)—(iv) of Lemma 1 (for  $D = \overline{\Omega}$ ). Without loss of generality we suppose that the  $\varepsilon$  is already so small that

$$deg(T, B(x_0, r), 0) = deg(T_s, B(x_0, r), 0)$$

(see [6]).

Now we consider the following initial value problem of ordinary differential equation of abstract functions:

$$\begin{cases}
\frac{du(t, x)}{dt} = -T_s(u(t, x)), \\
u(0, x) = x.
\end{cases}$$
(I)

It is well known that for each  $x \in \overline{B}(x_0, r)$  Problem (I) has a unique solution u(t, x) on  $[0, t^+(x))$  where  $t^+(x) = \sup\{t > 0 : \text{Problem (I) has the solution on } [0, t)\}$ .

If for a fixed point  $x \in \overline{B}(x_0, r)$  we denote F(t) = f(u(t, x)), then  $F: [0, t^+(x)) \to R$  is locally Lipschitzian. By Chain Rule (see [3]) we have

$$\partial F(t) \subset \langle T(u(t, x)), -T_{\varepsilon}(u(t, x)) \rangle.$$
 (1)

By condition (iii) and (1), F is monotone decreasing on  $[0, t^+(x))$ . It follows that  $u(t, x) \in \{f \le \beta'\}$  for  $t \in [0, t^+(x))$  and therefore  $t^+(x) = +\infty$ .

Let  $A = \{\alpha' < f \leq \beta\}$ . Then

$$\inf\{\|y\|:y\in B(T(B(x,\,\varepsilon)),\,\varepsilon)\}\!\geqslant\!\varepsilon_1-\varepsilon\!>\!\varepsilon_1-\frac{\varepsilon_1}{2}=\frac{\varepsilon_1}{2}$$

for  $x \in A$ . By condition (iii) we have

$$\langle T(x), T_s(x) \rangle \gg \frac{\varepsilon_1^2}{4} \quad \text{for} \quad x \in A.$$
 (2)

From (1) and (2), it follows that if  $x \in \overline{B}(x, r)$  is given and  $u(t, x) \in A$  for  $t \in [t_1, t_2]$  where  $0 \le t_1 < t_2$ , then

$$f(u(t_1, x)) - f(u(t_2, x)) \geqslant \frac{\varepsilon_1^2}{4} (t_2 - t_1).$$
 (3)

Now we define  $\Phi: [0, \infty) \times \overline{B}(x_0, r) \to X$  by  $\Phi(t, x) = x - u(t, x)$  for  $t \in [0, \infty)$  and  $x \in \overline{B}(x_0, r)$ , where u(t, x) is the solution of (I). Then  $\Phi$  is continuous.

Denote  $\Phi_t(\cdot) = \Phi(t, \cdot)$ . Then  $0 \in \Phi_t(\partial B(x_0, r))$  for all t > 0 by (3). According to the homotopy invariance property of Brouwer's degree, we obtain

$$\deg (\Phi_{t_1}, B(x_0, r), 0) = \deg (\Phi_{t_2}, B(x_0, r), 0), \quad \forall t_1, t_2 > 0.$$

From (3) it follows that there exists a sufficiently large positive number  $t_2$  such that

$$u(t_2, x) \in \{f < \alpha'\} \subset B(x_0, r) \text{ for all } x \in \partial B(x_0, r).$$

For  $x \in \overline{B}(x_0, r)$  let  $I_{x_0}(x) = x - x_0$ . Then it is easy to verify that  $0 \in ((1-\lambda)I_{x_0} + \lambda \Phi_{t_0})(\partial B(x_0, r))$  for any  $\lambda \in [0, 1]$ . It follows that

$$\deg (\Phi_{t_0}, B(x_0, r), 0) = \deg (I_{x_0}, B(x_0, r), 0) = 1$$

(see [8], Chapter 3).

On the other hand, by [9] (p. 101) there is a sufficiently small positive number  $t_i$  such that

 $\Phi_{t_1}(x) \neq -\mu T_s(x)$  for each  $x \in \partial B(x_0, r)$  and all  $\mu > 0$ .

Because of the well-known property of Brouwer degree, it follows that

 $\deg (\Phi_{t_1}, B(x_0, r), 0) = \deg (T_s, B(x_0, r), 0).$ 

Thus  $\deg (T, B(x_0, r), 0) = \deg (T_s, B(x_0, r), 0) = \deg (\Phi_{t_1}, B(x_0, r) = \deg (\Phi_{t_2}, B(x_0, r))$  $\deg(\Phi_{t_1}, B(x_0, r), 0) = 1.$ 

Remark 3. In Lemma 2 (and in the following Theorem 4), if we replace the ball  $B(x_0, r)$  by an open convex set, the assertion remains true.

In the following we always assume that X is a Banach space and U is an open subset of X.

Let  $\Gamma = (\{X_n\}, \{P_n\}; \{X_n^*\}, \{P_n^*\})$  be an admissible injective scheme of  $(X, X^*)$ (see [10]).

 $T:U\to 2^{x^*}$  is said to be A-proper (w. r. t.  $\Gamma$ ) if for any closed set  $D\subset U$   $T|_D:D\to$  $2^{x^*}$  is A-proper.

About the multivalued A-proper mappings and their generalized degree see [7].

Suppose that all the hypotheses of Lemma 2 except  $X=\mathbb{R}^n$  are satisfied. Moreover suppose that  $\partial f: U \rightarrow 2^{x^*}$  is A-proper. Then  $\deg (\partial f, \Omega, 0) = \{1\}$ .

Proof Denote  $T = \partial f$ ,  $U_n = U \cap X_n$ ,  $\Omega_n = \Omega \cap X_n$ ,  $f_n = fP_n : U_n \to R$ ,  $T_n = P_n^* TP_n : Q_n = Q \cap X_n$  $U_n \rightarrow 2^{X^*}$ .

Note that each bounded linear mapping  $P_n: X_n \to X$  is continuously Fréchet differentiable and  $dP_n(x) = P_n$  where  $dP_n(x)$  is the Fréchet derivative of  $P_n$  at x (see [8], Chapter 1). By using Chain Rule (see [3]) to  $f_n$ , we obtain  $\partial f_n(x) \subset T_n(x)$ .

In addition,  $\partial f_n$  is u. s. c. since X is finite dimensional.

Since T is A-proper and  $0 \in T(\{\alpha \le f \le \beta\})$ , it follows that there exists a positive integer  $n_0$  such that  $0 \in T_n(\{\alpha \leqslant f_n \leqslant \beta\})$  for all  $n \geqslant n_0$  and so  $0 \in \partial f_n(\{\alpha \leqslant f_n \leqslant \beta\})$  for  $n \geqslant n_0$ .

It is easy to verify that for each  $n \ge n_0$   $f_n: U_n \to R$  satisfies all the conditions of Lemma 2. Hence deg  $(\partial f_n, \Omega_n, 0) = 1$  for  $n \ge n_0$  by Lemma 2 and the invariance property of Brouwer degree under nonsingular  $C^1$ -coordinate transformation (see [11]).

Note that  $\deg (T_n, \Omega_n, 0) = \deg (\partial f_n, \Omega_n, 0)$  since  $\partial f_n(x) \subset T_n(x)$ . It follows that Deg  $(T, \Omega, 0) = \{1\}$  by the definition of Deg  $(T, \Omega, 0)$  (see [7]).

**Theorem 5.** Let  $f: X \to R$  be locally Lipschitzian and  $\partial f: X \to 2^{X^*}$  A-proper. Suppose that  $f(x) \to \infty$  as  $||x|| \to \infty$ . If there is some  $r_0 > 0$  such that  $0 \in \partial f(x)$  for  $||x|| \ge r_0$ , then Deg  $(\partial f, B(0, r), 0) = \{1\}$  for  $r \ge r_0$ .

Proof Note that  $\operatorname{Deg}(\partial f, B(0, r), 0) = \operatorname{Deg}(\partial f, B(0, r_0), 0)$  for  $r \ge r_0$  since

 $0 \in \partial f(x)$  for  $||x|| \gg r_0$ . It suffices to show that Deg  $(\partial f, B(0, r_0), 0) = \{1\}$ .

Let T,  $T_n$ ,  $f_n$  be as in the proof of Theorem 4. It is obvious that for each n,  $f_n: X_n \to \mathbb{R}$  is locally Lipschitzian,  $\partial f_n$  is u. s. c,  $\partial f_n(x) \subset T_n(x)$  and  $f_n(x) \to \infty$  as  $||x|| \to \infty$ .

Denote  $B_n = B(0, r_0) \cap X_n$ . Since  $T = \partial f$  is A-proper, it implies that there is  $n_0 \gg 1$  such that  $0 \in T_n(X_n \setminus B_n)$  for  $n \gg n_0$ , so  $0 \in \partial f_n(X_n \setminus B_n)$  for  $n \gg n_0$ .

For each n let  $\alpha_n = \sup\{f_n(x) : x \in \overline{B}_n\}$ . Then  $\alpha_n < +\infty$  since  $f_n$  is continuous. Let  $r_n = \sup\{\|x\| : x \in \{f_n \le \alpha_n\}\}$ . Then  $r_n < +\infty$  since  $f_n(x) \to \infty$  as  $\|x\| \to \infty$ . Let  $\beta_n = 1 + \sup\{f_n(x) : x \in X_n, \|x\| \le r_n\}$  and  $\Omega_n = \{f_n \le \beta_n\}$ . Then similarly  $\beta_n < +\infty$  and  $\Omega_n$  is bounded.

Thus for each  $n \ge n_0$   $f_n$  satisfies all the conditions of Lemma 2. By Lemma 2  $\deg(\partial f_n, \Omega_n, 0) = 1$ , so  $\deg(\partial f_n, B_n, 0) = 1$  and  $\deg(T_n, B_n, 0) = 1$ . Hence  $\deg(T, B(0, r_0), 0) = \{1\}$ .

**Lemma 6.** Let  $f: U \to R$  be locally Lipschitzian and  $D \subset U$ . Suppose that  $\|\partial f(x)\|$   $\geqslant b$  for  $x \in D$  where b is a positive constant. Then there exists a locally Lipschitz mapping  $P: D \to X$  such that

- (i)  $||P(x)|| \le 1 \text{ for } x \in D$ ,
- (ii)  $\langle \partial f(x), P(x) \rangle > \frac{1}{2} b \text{ for } x \in D.$

The proof of Lemma 6 is similar to the corresponding proof of Lemma 3.3 in [12].

Let  $f: \mathcal{U} \to R$  be locally Lipschitzian.

 $x_0 \in U$  is said to be a critical point of f if  $0 \in \partial f(x_0)$ .

We say that f satisfies Condition (P. S) if each sequence  $\{x_n\}$  along which  $\{f(x_n)\}$  is bounded and

$$\|\partial f(x_n)\|_* \leq \inf\{\|y\|: y \in \partial f(x_n)\} \to 0 \quad (n \to \infty)$$

has a convergent subsequence (see [12]).

If  $x_0$  is an isolated critical point of f and  $\partial f$  is A-proper, then we denote by  $I(\partial f, x_0)$  the  $Deg(\partial f, \Omega, 0)$ , where  $\Omega$  is a sufficiently small open neighborhood of  $x_0$ .

**Lemma 7.** Let  $f: U \to R$  be locally Lipschitzian. Suppose that  $x_0 \in U$  is an isolated critical point of f at which f has a local minimum. Moreover suppose that f satisfies Condition (P, S). Then there exists some  $R_0 > 0$  such that

$$\inf \{f(x): r_1 \leq ||x-x_0|| \leq r_2\} > f(x_0) \quad \text{whenever} \quad 0 < r_1 < r_2 < R_0.$$

 $P_{roof}$  We can assume that  $x_0 = 0$  and f(0) = 0.

By our hypotheses there exests  $R_0 > 0$  such that

- (1)  $x_0=0$  is the only critical point of f in  $B(0, R_0)\subset U$  at which f has the global minimum in  $B(0, R_0)$ ,
  - (2)  $f(x) \leq M$  for  $x \in B(0, R_0)$  where M is a positive constant.

Let  $0 < r_1 < r_2 < R_0$ . Choose  $\delta > 0$  such that  $r_1 - 2\delta > 0$  and  $r_2 + 2\delta < R_0$ . Denote

$$D = \{x \in U : r_1 - 2\delta \leqslant ||x|| \leqslant r_2 + 2\delta\}.$$

Since f satisfies Condition (P. S.), it implies that there exists a constant b>0 such that  $\|\partial f(x)\| \ge b$  for  $x \in D$ .

Let  $P:D \rightarrow X$  be as mentioned in Lemma 6.

Now we consider the following Problem (II):

$$\begin{cases}
\frac{du(t, x)}{dt} = -P(u(t, x)), \\
u(0, x) = x.
\end{cases}$$
(II)

Let x be given with  $r_1 \le ||x|| \le r_2$ . For this initial value x, Problem (II) has a unique solution u(t, x) on  $[0, t^+(x))$  where  $t^+(x) = \sup\{t > 0$ : (II) has the solution on [0, t).

We claim that there exists  $t_* \in (0, t^+(x))$  such that either i)  $||u(t_*, x)|| < r_1 - \delta$  or ii)  $||u(t_*, x)|| > r_2 + \delta$ . Otherwise  $r_1 - \delta \le ||u(t, x)|| \le r_2 + \delta$  for  $t \subset [0, t^+(x))$ . It follows that  $t^+(x) = +\infty$  since  $||p(x)|| \le 1$  for  $x \in D$ . But  $f(x) - f(u(t, x)) \ge \frac{b}{2}t$  (see [12]). This contradicts the fact that  $f(x) \le M$  for  $x \in B(0, R_0)$ , so the claim is true.

In case i) there are two numbers  $t_1$  and  $t_2$  with  $0 \le t_1 < t_2 < t^+(x)$  such that  $||u(t_1, x)|| = r_1$  and  $||u(t_2, x)|| = r_1 - \delta$ . Then

$$f(u(t_1, x)) - f(u(t_2, x)) \geqslant \frac{b}{2}(t_2 - t_1) \geqslant \frac{b}{2} ||u(t_1, x) - u(t_2, x)|| \geqslant \frac{b}{2} \delta_{\bullet}$$

It implies that  $f(x) = f(u(0, x)) \geqslant \frac{b}{2} \delta$ .

Similarly, in case ii) we have also  $f(x) \ge \frac{b}{2} \delta$ . Hence

$$\inf \{f(x): r_1 \leq ||x|| \leq r_2\} \geqslant \frac{b}{2} \delta > 0.$$

**Theorem 8.** Suppose that all the hypotheses of Lemma 7 are satisfied. If  $\partial f: U \rightarrow 2^{X^{\circ}}$  is A-proper, then  $I(\partial f, x_0) = \{1\}$ .

Proof We assume still that  $x_0 = 0$  and  $f(x_0) = 0$ .

Let  $R_0$  be as mentioned in the proof of Lemma 7. Let  $r_1$  and  $r_2$  be fixed with  $0 < r_1 < r_2 < R_0$ . Then  $\inf \{ f(x) : r_1 \le ||x|| \le r_2 \} = \beta > 0$  by Lemma 7.

Noting that  $\{f < \beta\}$  is an open set containing  $0 \in X$ , we may choose an r > 0 such that  $\overline{B}(0, r) \subset \{f < \beta\}$ .

Let  $\alpha = \frac{1}{2} \inf \{ f(x) : r \le ||x|| \le r_2 \}$ . By using Theorem 4 to  $f(B(0, r_2))$  we obtain  $I(\partial f, 0) = \text{Deg } (\partial f, B(0, r), 0) = \{1\}$ .

**Lemma 9.** Let  $\Omega$  be a bounded open subset of X,  $f:\overline{\Omega}\to R$  locally Lipschitzian and  $\partial f:\overline{\Omega}\to 2^{X^*}$  A-proper. Suppose that f is bounded from below on  $\partial\Omega$ . Then f is also bounded from below on  $\overline{\Omega}$ .

Proof Suppose that the assertion of Lemma 9 is false. Then there exists a

sequence  $\{x_k\}\subset\Omega$  such that  $f(x_k)\to-\infty$  as  $k\to\infty$ . By the definition of injective scheme (see [10]) and the continuity of f, we may find a sequence  $\{x_{n(k)}\}$  such that

- i)  $n(k) \rightarrow \infty$  as  $k \rightarrow \infty$ ,
- ii)  $x_{n(k)} \in \Omega_{n(k)} = \Omega \cap X_{n(k)}$ ,
- iii)  $|f_{n(k)}(x_{n(k)}) f(x_k)| < \frac{1}{k}$ , where  $f_{n(k)} = f|_{\overline{\Omega}_{n(k)}}$ .

It is clear that  $f_{n(k)}(x_{n(k)}) \rightarrow -\infty$  as  $k \rightarrow \infty$ .

For each n(k),  $f_{n(k)}: \overline{\Omega}_{n(k)} \to R$  attains its global minimum in  $\overline{\Omega}_{n(k)}$  at some point  $x'_{n(k)} \in \overline{\Omega}_{n(k)}$ . Of course,  $f_{n(k)}(x'_{n(k)}) \leqslant f_{n(k)}(x_{n(k)})$  and consequently  $f_{n(k)}(x'_{n(k)}) \to -\infty$  as  $k \to \infty$ . Without loss of generality we can assume that  $x'_{n(k)} \in \Omega_{n(k)}$  for every n(k) since f is bounded from below on  $\partial \Omega$ . Then  $0 \in \partial f_{n(k)}(x'_{n(k)})$  (see [3]), therefore  $0 \in (\partial f)_{n(k)}(x'_{n(k)})$  for each n(k).

Since  $\partial f$  is A-proper, it follows that there exists a subsequence  $\{x'_{n(k)(j)}\}\subset \{x'_{n(k)}\}$  such that  $n(k)(j) \to \infty$  and  $P_{n(k)(j)}x'_{n(k)(j)}\to x\in \overline{\Omega}$ . By the continuity of f we obtain

$$f(x) = \lim f_{n(k)(j)}(x'_{n(k)(j)}) = -\infty.$$

This is absurd. Hence the assertion of Lemma 9 is true.

**Lemma 10.** Under the hypotheses of Lemma 9, if  $\inf\{f(x):x\in\overline{\Omega}\}<\inf\{f(x):x\in\overline{\Omega}\}$ , then f attains its infimum in  $\overline{\Omega}$  at some point  $x_*\in\Omega$ .

Proof Let  $c=\inf\{f(x):x\in\overline{\Omega}\}$ . Then  $c>-\infty$  by Lemma 9. By the same arguments as in the proof of Lemma 9, we may show that there exists some  $x_*\in\Omega$  such that  $f(x_*)=c$ .

Corollary 11. Suppose that all the hypotheses of Theorem 4 are satisfied and  $x_1 \in \Omega$  is a local minimum point of f, which is not a global minimum point of f in  $\Omega$ . Moreover suppose that f satisfies Condition (P, S) on  $\overline{\Omega}$ . Then f has at least three critical points in  $\Omega$ .

Proof First we note that  $x_1$  is a critical point of f (see [3]).

Since  $f(x) = \beta > -\infty$  for  $x \in \partial \Omega$ , it follows that f is bounded from below on  $\overline{\Omega}$  by Lemma 9. Since  $\inf \{ f(x) : x \in \overline{\Omega} \} < \alpha < \beta = \inf \{ f(x) : x \in \partial \Omega \}$ , f attains its infimum in  $\overline{\Omega}$  at some  $x_* \in \Omega$  by Lemma 10. Thus  $x_* \neq x_1$  is another critical point of f. If  $x_1$  and  $x_*$  are the only critical points of f in  $\Omega$ , then

Deg 
$$(\partial f, \Omega, 0) = I(\partial f, x_1) + I(\partial f, x_*) = \{1\} + \{1\} = \{2\}$$

by Theorem 8 and the additivity of generalized degree (see [7]). This contradicts Theorem 4, so f has at least three critical points in  $\Omega$ .

Coaollary 12. Let  $f: X \to R$  be locally Lipschitzian and  $\partial f: X \to 2^{X^*}$  A-proper. Suppose that  $f(x) \to \infty$  as  $||x|| \to \infty$  and  $x_1$  is a local minimum point of f which is not a global minimum point of f. Moreover suppose that f satisfies Condition (P. S). Then f has at least three critical points.

Proof This follows by using Theorem 5 instead of Theorem 4 in the proof of

The results obtained in this paper may be extended to the case that generalized Corollary 11. gradient mappings are the uniform limits of multivalued A-proper mappings.

I am very grateful to Professor Chen Wenyuan, Professor Li shujie and Professor Chang Kungching for their useful directions.

## Reference

- [1] Amann. H., A note on degree theory for gradient mappings, Proc. Amer. Math. Soc., 85 (1982), 591-595.
- [2] Clarke. F. H., Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975), 247—262.
- [3] Clarke. F. H., Generalized gradients of Lipschitz functionals Adv. Math., 40 (1981), 52-67.
- [4] Browder. F. E., Multi-valued monotone nonliear mappings and duality mappings in Banach spaces, Trans. Amer. soc., 118 (1965), 338-351.
- [5] Willard. S., General topology, Addison-Wesley, Reading, Mass., 1970.
- [6] Cellina. A. and Lasota. A., A new approach to the definition of topological degree for multi-valued mappings, Atti Accad. Naz. Lincei Rend. C1. Sci. Fis. Mat. Natur., 47: 8 (1969), 434-440.
- [7] Massabo. I. and Nistri. P., A topological degree for multivalued A-proper maps in Banach spaces, Boll. Un. Mat. Ital., 13-B: 5 (1976), 672-685.
- [8] Chen Wenyuan, Nonlinear functional analysis, "Cansu Renmin", (1982) (Ccinese).
- [9] Krasnosel'skii. M. A., Translation along trajectories of differential equations, "Nauka". Mosscow.
- [10] Browder. F. E. and Petryshyn. W. V., Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces, J. Functional Anal., 3 (1969), 217-245.
- [11] Lioyd. N. G., Degree theory, Cambridge Tracts in Math., 73 (1978).
- [12] Chang. K. C., Variational method for non-differentiable functional and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129.