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Abstract

In this paper the author studies the generalized degree for Clarke’s generalized gradient

mappings which are multivalued A-proper in Banach spaces. The resulfs of H. Amanntlon

. degree theory for gradient mappings which are compact vector fields in Hilbert spaces are
extended. '

In this paper we shall adhere to the following notations:
" X is a real Banach space, X" is the conjugate space of X, <z*, ») is the value of
e X*at o€ X.
For any sEX, AcX, BCX and >0 we denote
d(z, A) =inf{|s—y|:
44, B)—int {la—y]:0€.4, yE B},
d*(4, B)=sup {d(w, B):o€ A},
B(o, r)={yeX:|y—o|<r},
B4, r)={s€X:d(z, A)<r},
, B4, r)={s€X:d(s, 4)<r},
7 and 84 denote the closure and the boundary of A respectively.
T:QC X—>2% ig a multivalued mapping from Q into X*. Gy is the graph of 7'
The norm in X X X* is defined by | (2, ¥)|=max {|o|x, |y|x}-
If f:U—>R is a locally Lipschitz functional where U is an open subset of X, then
we denote by 8f () the Clarke’s generalized gradient of f at o €U (see [2, 8]).
For such a functional f and real numbers a<<g8 we denote
{f<B}—{wEU:f(2) <8},
{o<f<pB}={w€U:a<f(v)<B}

For convenience, according to F. E. Browder™, we introduce the - following

notational convention: “If a set ¥ appears several times in a single equation or
inequality, the equation or inequality is assumed o hold for each v in ¥V with the
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game chogen at all points of ocourrence of 7' in the given equation or inequality.”
For example the inequality <T'(%), #)=|T (#)|* denotes that Ly, wy=|y|? for each
y€T (o). |

Lemma 1. Let X be o reflewive Banach space and T:D€X — 2% w. 8. ¢. with
closed convex values. Tlhen for any given 8>0 there ewisls & continuous single-valued
 mapping Tyt D—>X such that

(i) T, is o locally Lipschitz mapping,

(1) |T.@)|<IT ()] for 2ED,

(iii) <T(w), T.(w)>> int {ly|2:9 €EB(T(B(w, 6)), &)} for vED.

TIn addition, when X is a Hilbert space, we require that

(iv) @*(GQr, Gr)<e.

Proof TFor simplicity we suppose that D ig an open subset of X, otherwise
consider the relative topology on D. ’

Let &>0 be given.

Since T' is u. 8. o,for each point # €D there is ‘& positive number () <s such ‘
$hat T'(B(a, 5(2)) CB(T'(s), 8)- ' ‘

Y—={B(w, d(#)) 1w €D} is an open cover of D. |

Let = {v.:a €W} be both a locally finite open cover of D and a star refinement "
of % where W is some indexing got. (Recall that a cover ¥ of D is said t0 be locally
finite if each point # €D has some neighborhood which intersects only finitely many
members of 73 ¥ is said to be a star refinement of % if for each » &€ D there is some -
u, € % such that ;D U {va:v. € V, 2CV}.)

As for the existence of the cover + see [B].

Lot {pa: € W} be a-locally Lipschitz partition of unity subordinate to {va:a EW},
that is, for each a EW @g:D—>[0, 1] is locally Lipschitzian,

supp g2 {w:0 €D, p.(#) %0} Cv, and 2 pa(2) =1 for each a€D.

For each fixed v, & V let
S.= N{B(T(x), &):x€D, Bz, 3(z)) Dva}.
Then each S, is & nonempty convex set with ST (va) -
Lot 4/, € S be such that |ga] =inf{|y]:7a €8,} and choose 2, € X such that 2] =
Iyl and <¥uy 2ap = |9a]?. Define Tyt D—>X by’
T(z)= agv pu(®)2, for o€D.

Since ¥ is locally finite, it may be seen that the single-valued mapping T’ is
well defined.

We now verify that 7', satisfies the required condifions.

(i) Since 7" is locally finite and each @, is locally Lipschitzian, 11; follows thab
7, is locally Lipschitzian on D.
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(ii) Lebt %€ D be given arbitrarily and Wo={aEW:2,E0,}. Then W, is a
finito seb because ¥ is locally finite. Tt is obvious that T (o) =T (va) 8.8, for
each 6 € Wo. Thus || = |ya.] =inf {]y| :y €S} <[ T (20) | for each a €Wo. Hence

(7, | = | 3, pulan)eal =1 3} pu(an)eal < T, pa(w) ol <IT @) -

So 7T, satisfies condition (ii). :
(iii) Let 2o € D and W be as above. Since 4" i 8, star refinement of 4, it follows
that there is some w,=B(w,, 8(»,)) € % such that w,D L%'va By the definition of
aEWy

8, it implies that S, B(T (w,), &) for each a € W,. Noting that |, — | <3(z,) <,
we have B(T'(z,), &) CB(T(B(wo, &), &). Hence yuESa cB(T (B (%o, €)), &) and
l9al >int{|y] :y € BT (B(wo, €)), &)} for each a&Wo.
By ‘the choices of g, and z,, it may be seen that <y, 2 =><Ya, 2ay= ||ya[[2 for each
o EW and each yES,. Especially, for each a €W we have
<P (59, 1=l =30t oy R =int Iy P9 € BT BGo, ), )
since T (wo) =8S,. Hence

< (@), Tolaio) > =<T (@), = sva(wo)za>>mf{lly|12 yEB(T (Bloy, €)), &)1

Thus 7T, satisfies condition (iii).

If X is a Hilbert space, then for any @€ D, under the notations mentioned
above, We have 2a=ysES.CB(T(,), &). By convexity of B(T'(2,), &), T () =
u§°¢a (%0)2. € B(T(w,), ). Noting that |o,— 0] <8(2,) <s, we have d((zo, Te (o)),

- @) <<s and therefore d* (G, Gr) <& since %, & D is arbitrary.
Lemma 3. ILet X =R" is an n-dimensional Euclidean space, U an open subset of
X, f:U—>R alocally Mpsch@tz functional and T =0f :U ~>2% the generalized gradient
of f. Suppose that there are real numbers a<fB and >0 and a point vo€U such that
QA{f< B} is bounded with QU and {f <a}cB (@0, 7) Q. Moreover suppose that
0ET ({a<f<B}).
Then deg (T, .Q 0) =1, where deg(T Q, 0) is the Cellina-Lasota degree (see [6]).
Proof Note that T':U—>2% is . 8. 6. with compact convex values (see [2]), so
deg (T, Q, 0) is well defined and deg (T, @2, 0) =deg (T, B(#o,r), 0) since 0ET ({o<<
F<Bh.
Without loss of generality we may assume that {f< a}CB(cvo, r), otherwise
replace r by ¢’ which is slightly large than r.
Lot sy=inf {|y|:9 €T ({a<f<B}). Then &;>0 since T({a<f<,8}) is compactk
(see [7]).. By the continuity of f, there exist real numbers o and B’ such that a<a’
<B'<Band {f<a’}B(wo, r){f<B}.
Let 8:=d(@{f<pB'}, 6{f<,8}) and 3;= d@{f<a}, 6{f<oo’}) It ig obvious that
- 9;>0 and 8,>0.
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We take a positive numb;ar g<min {81, da, -—%1-} Let T,:2-—>X be a mapping

satisfying conditions (i)—(iv) of Lemma 1 (for D=). Without loss of generality
we suppose that the & is already so gmall that
deg (T, B(wo, 1), 0) =deg (Ts, B(o, r), 0)
(se0 [6]). _
Now we consi&er_ the following initial value problem of ordinary differential
equation of abstract functions: | '

| {i%%iL ~T,(u(t, @), (1)

u(0, ©) =w,

Tt is well known that for each x€ B (2o, r) Problem (I) has a unique solution
u(t, ) on 10, #*(2)) where ¢* () =sup {>0: Problem (I) has the solution on [0,7)}.

If for a fixed point @€ B (o, ) We denote F(£) =f(u(t, #)), then F:[0, ¢*(2))
—»R is locally Lipschitzian. By Chain Rule (see [8]) we have ' :

| oF (1) =<T (u(t, #)), —Te(u(t, ®))). ey

By condition (iii) and (1), F is monotone decreasing on [0, ¢¥(#)). It follows
that u (¢, @) € {f<B'} for ¢€ [0, (#)) and therefore #* (#) = +oo.

Lot A= {o/< f<B}. Then

1nf{"y“:yEB(T<B<w; 8))) 8)}>81“3>31;—82L= %1
for € A. By condition (iii) we have
{T(x), Ts(m)>>—‘f—— for w€ A, 2)

From (1) and (2), it follows that if o€ B(w, r) is given and u(t, ) €4 for 1€
[ts, ta] where 0<\iéy<<fs, then

F s, ) — F @, 2))>-Cta—te). ®

Now we define @: [0, o0) % B(zq, r) =X by (@, #) =a—u(t, z) for € [0, )
and 2 € B (=, 1), where u(¢, ) is the solution of (I). Then @ is continuous. '
Denote @;(») =®B(%, ). Then 0E &;(0B (2, r)) for all £>0 by (8). According to
the homotopy invariance property of Brouwer’s degree, we obfain
deg (@1, B(wo, 1), 0) =deg (@, B(mo, 1), 0), Vi, £>0,
From (3) it follows that there exists a sufficiently large positive number ¢ such
that _
w(ta, ®) € {f<d}B(@o, v) for all ©€aB (w0, r)-
For o€ B (m, r) 1ot I, (@) =w—,. Then it iy easy to verify that 0 ((1—MA) I,
+A®D,) (0B (wo, 1)) for any AE [0, 1]. It follows that |
deg (Dy,, B(wo, 1), 0) =deg (Iz, B®wo, 1), 0)=1
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(seo [8], Chapter 3). .
On the other hand, by [9] (p. 101) there is a sufficiently small positive number
ty such thatb
®,, () % — wl'-(z) for each o€ 0B (w0, ) and all u>0.
Bocauge of the well-known property of Brouwer degree, it follows that
deg (@, B(@o, 1), 0) =deg (T,, B(wo, 1), 0).

Thus deg (T, B (2o, 7, 0) =deg (T., B (w0, 7), 0) =deg (@, B (o, r) =
deg (D, B(wo, ), 0)=1.

Remark 8. In Lemma 2 (and in the following Theorem 4), if we replace the
ball B(w,, r) by an open convex sot, the assertion remains true.

In the following we always assume that X is a Banach space and U is an open
subset of X. '

Lot I'= ({Xu}, {Pu}; {Xa}, {P£}) Yo an admissible injective scheme of (X, X%
(see [107). : : '

. J—>2%" ig said to be A-proper (w. r. b, I') if for any closed sef DcU T\p:D—>
2X* jg A-proper.

About the multivalued A-proper mappings and their generalized degree so0 [7l.

Theorem &. Suppose that all the hypotheses of Lemma 2 ewceps X=R" are
satisfied. Moreover suppose that of :U—>2%" is A-proper. Then dog (2f, 2, 0) ={1}.

Proof Denote T=of, Us=UN X Qu=8NX4 fo= FPuUa— R, T,=P,TP,:
U,—2%.

Note that each bounded linear mapping P, X ,—> X is continuously Fréchet
differentiable and dP, (w) = P, where dP,(#) is the Fréchet derivative of P, at o (see
[8], Chapter 1). By using Ohain Rule (see [3]) 1o fn, We obtain Ofn(w) CTy(@).

~ In addition, of, is u. 8. c. gince X is finite dimensional.

Since T is A-proper and 0€ T ({a<< F<PB}), it follows that there exigts a positive
integer np such that 08T, ({a<< fo<<B}) for all n=n0 and 50 0E of,({a<< fu<B}) for
N=Ng. ' '

Tt is easy fo verify that for each n=no f,.:U,,—->R satisfies all the conditions of
Lomma 2. Hence deg (8fn, 2w 0) =1 for n>ne by Lemma 2 and the invariancé
property' of Brouwer degree under nongingular C*-coordinate transformation (see
[111). R
Note that deg (T, Qs, 0)=deg (Of ny n, 0) since Of n(@) CTn(w). It follows that
Deg (T, Q, 0) = {1} by the definition of Deg (T, @, 0) (see [7]).

Theorem 5. Let f:X — R be locally Lipschitzian and 0f X —> 2% A-proper.
Suppose that f(x)—>oo as |w|—> oo. If there is some ro>0 such that 0Eof (w) for
|| =0, then Deg (8f, B(0, r), 0) = {1} for r=ro. :

Proof Note that Deg (of, B(0, r), 0) =Deg (af, B(0, ro), 0) for r=ro since
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0Eof (&) for |@|=ro. It suffices to show that Deg (of, B0, ro), 0) ={1}.

Let T, T,, f.be as in the proof of Theorem 4. It is obvious that for each n, f: X
—>R ig locally Lipschitzian, f, is u. s. ¢, 9fa(®) T, (%) and f,(w)—>c0 ag |@]—>co.

Denote By=B(0, o) (| Xy Since T'=23f is A-proper, it implies that there is np=>1
such that 0€ T, (X ,\B,) for n>no, SO Oeaf,.(X,.\B ) for n=>no.

For each n lot a,=sup{fa(®) 0 € B,.} Then a,< +oo gince f, is contmuous Let

ro=sup {| 2] :2 € {fa<<an}}. Then 5,< oo since fol@)—>o0 as |a]—>00. Let B,=1+
sup {fn(2) :9€ Xy, |#| <rs} and Q.= { Fa<<fBu}. Then similarly Bp<-oco and Q, is
bounded.

Thus for each n>>ne f, satisfies all the conditions of Lemma 2. By Lemma 2

dog (0f s, @u 0)=1, 50 dog (9fn Bs 0)=1 and deg (Ts B, 0)=1. Hence
deg (T, B(0, ro), 0)={1}.

Lemma 8. Let f:U—> R be locally Lfbpschfbtzwn and DU. Suppose that |of (@) |
>b for «€D where b is a positive constant. Then there ewists a locally Lipschitz
mapping P:D—>X such that

(i) |P(@)|<lforeeD,

(i) <of (»), P(w)>>—— b for s €D,

The proof of Lemma 6 is similax to the corregponding proof of Lemma 3.3 in
[12]. |

Let f:U —> R be locally Lipschitzian.

2, €U is said to be a critical point of f if 0€2f (2o) -

We say that f satisfies Condition (P. §) if each sequence {w} along which {f (#,)}
is bounded and ' |

“af(‘”n) l.& inf {]y|: yEf (w,)} —>0 (n->00)

has a convergent subsequence (see [12]).

If z, is an isolated critical point of f and 9f is A-proper, then we denote by
I(of, o) the Deg(of, 2, 0), where 2 is a sufficiently small open neighborhood of .

Lemma ¥, ILet f:U—>R be locblly Lipschitzion. Suppose that o CU is an isolated
eritical point of f at which f has & local minimum. Moreover suppose that f satisfies
Condition (P. 8). Then there ewists some Ry>0 such that

inf { £ (@) 171 | o —wo| Sra} >f (w0) whenever 0<rsi<rs <R,.

Proof We can assume that 4o=0 and f(0)=0. |

By our hypotheses there exests Eo>0 such that

(1) wo=0 is the only critical point of f in B(0, Ry) U at which f has the
global minimum in B(0, Ry),

(2) f(x)<M for € B(0, Ro) where M is a positive constant.

Let 0<13<ra<<Ro. Choose >0 such that r1—20>0 and r3-+23 <Ro. Denote
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D= {wE U:r;—20<< Hmll <’)"2+23}.>
Since f satisfies Condition (P. 8.), it implies that there exists a constant >0
guch that |of (v) | =>b for s € D.
Let P:D—>X be as mentioned in Lemma 6.
Now we congider the following Problem (II):

{@_%__@_=—P(u(t, @),

%(0, @) ==.

Let @ be given with r;<|#|<rs. For thig initial value s, Problem (II) has a
unique solution u(f, #) on [0, £ (v)) where #*(s) =sup {#>0: (II) has the solution
on [0, t)}.

We claim that there exists ¢, € (0, ¥ (#)) such that either i) |u(Z,, )| <ri—8 or
i) Ju, @) | >ratd. Otherwise 71 —3<< |u(%, @) | <rs+9d for ¢ [0, ¢* (z)). It follows

ay

that ¢+ (o) ~ oo gince ]]p(_w) |<1 for #€D. But f(»)—f(u(, w))>-—g—t (see [12]).

This contradicts the fact that f (&) <M for # € B(0, R,), so the claim is true.
In case i) there are two numbers #; and #» with 0<#;<i3<¢"(¢) such that
u(ts, o) | =rs and |u(ts, @) | =ri—3. Then

F @t ) — F (s, 9))>o(ta—t) > - [ults, 2)—ults, o) [>5
It in@plies that f (@) =f (w(0, 2)) >—% d.

Similarly, in cage ii) we have algo f () >% 3. Henoe

inf {f (0) tra< o] <ra}>5-8>0.

Theorem 8. Suppose that all the hypotheses of Lemma 7 are satisfied. If of :U—>2%
is A-proper, then I(0f, wo)={1}.

Proof We agsume still that z,=0 and f (o) = 0

Let R, be as mentioned in the proof of Lemma 7. Let ry and r; be fixed with
0<r1<ra<Ro. Then inf {f (&) :r;<|o| <ra} =B>0 by Lemma 7.

Noting that {f< 8} isan open set containing 0€ X, we may choose an >0 such
that B(0, r) ={f<B}.

Lot a=-+ inf {f (=) < |#| <<rs}. By using Theorem 4 to f|B(0, rs) we obtain

2
I(af, 0)=Deg (8f, B(0, r), 0)={1},

Lemma 9. Let Q be a bounded open subset of X, f:Q->R locally Lipschitzion and
of :2—>2%" A-proper. Suppose that f is bounded from below on 0Q. Then f is also bounded
Jrom below on Q.

Proof Suppose that the asgertion of Lemma 9 ig false. Then there exists a
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sequence {wy} 2 such that f (w)—>—o0 as k—>oco. By the definition. of injective
scheme (see [10]) and the continuity of f, we may find a sequence _{w,,(k)} such that
i) n(k)-—>co ag k>0,
1) agy € Quay =2 N X ago,

i) | Fao () —F (@) | <y WhOTo Facy=F B

Tt ig clear that fum (Tagn)—>— 0 a8 k—>oo. _

" For cach n(k), fa: Pngy—> B attaing its global minimum in O,y 8t some point
By € Bogy. OF 00UTSe, Frity (@hen) < Fuiwy (@naw) 81 congequently fag (@nam)—>—02 a8
f->c0. Without loss of generality we can assume that @y € Quqy Tor ervery n(k) since
f is bounded from below on 2. Then 0€ Of wiy (@awy) (see [8]), therefore
0 € (Of) nwy (@) for each n (k).

Since df is A-proper, it follows that there oxists a subsequence {@huynt < {@hat

guch that n(k) (§)—>o0 and Pugn@ad > € 0. By the continuity of f we obtain
J OO y

. f (@) =1im frgm @ham) = —°.
This ig absurd. Hence the agsertion of Lemma 9 is true.

Lenima 10. Under the hypotheses of Lemma 9, if inf{f ()10 € QY <inf {f (o) :2
€ o0}, then f attains its infimum in O at some point », € Q. '

Proof Let ¢=inf{f(2):2€0}. Then ¢>—c0 by Lemma 9. By the same
arguments ag in the proof of Lemma 9, we may show that there exists some o, EQ |
such that f(w,) =e.

Corollary 11. Suppose that all the hypotheses o f Theorem 4 are satisfied and @, € Q
is @ local mindmam point of f, which és not @ global minimum point of f in Q. Moreover
suppose that f satisfies Condition (P. 8) on 2. Then f has at least three critical points
in Q. _ v

Proof TFirst we note that @1 i a critical point of f (see [8]).

Since f(x) = B> —oo for & €0, it follows that f is bounded from below on 2 by
Lemma 9. Since inf {f(2) 1€ 2} <a<B=Inf{f (#) :0€0Q}, f attaing its infimum in
8 at some #, € 2 by Lemma 10. Thus o, 4 is another oritioal point of f. If #; and =,
are the only critical points of f in Q, then |

Deg (of, Q, 0) = I(of, x) +I(of, w,) ={1}+{1}={2}
by Theorem 8 and the additivity of generalized degree (see [7]). This contradicts
Theorem 4, €0 f has at least three critical points in Q.

Coaollary 12. Let f:X —> R be locally Lipschitzian and of 1 X —»2%" A-proper.
Suppose that f (w)—>c0 as |@]|—>c0 and vy s @ local minimum point of f which is not &
global minimum point of f. Moreover suppose that f satisfies Condition (P. 8). Then f
has at least three critical poinis.

Proof This follows by using Theorem 5 instead of Theorem 4 in the proof of
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Qorollary 11.

"The results obtained in this paper may be oxtended to the case fhat generalized
gradient mappings are the uniform limits of multivalued A-proper mappings.

1 am very grateful 0 Professor Chen Wenyuan, Professor Li shujie and Professor

- Chang Kungehing for their useful directions.
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