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Abstract

In this paper, the periodic boundary problems and the initial value problems for the
nonlinear system of parabolic type u;= (grad (4)) 4. are studied, where wu=(u1, *** uy) is
an N-dimensional vector valued function, @(u) is a strict convex function of vector variable
, and its matrix of derivatives of second order is zero-definite at w=0. This system is
degenerate. The definition of the generalized solution of the problems: u(z, ¥) € L..((0, T;
La(RY), grad 9 (w) € La((0, I); WP (R)) and it satisfles appropriate integral relation. The
existence and uniqueness of the generalized solution of the problem are proved. When N=1,
the system is the commonly so-called degenerate partial differential equation of filtration

type.

§ 1

The purpose of this paper is to study the existence and uniqueness of the solutions
of the nonlinear systems of partial differential equations
uy= (grad () 0 M
for the periodic boundary problems ‘

u(@w+2D, t) =u(w, 1),

u(w, 0) =uo(®) (—D<a<D) S )
end for the initial value problems
u(s, 0) =to(e) (—oo<w<0), 3)

where u (@, 1) = (ua(w, ), >, Uy (z, 1)) isan NV —dime}nsibnal vector valued function,
pw) =puy, =, uy) is a soalar function of the vector variable u, to(®) = (uos(®), **,
Uy (@)) isan N _Jimengional vector valued function whioh is periodic with period 2D

jn the cage of periodic boundary problems and is given in R=(—oo, oo) in the case

of injtial value problems, “orad” denotes the gradient opertor with respect %o the
yootor variable w. Suppose that p(u) is a convex function. This means that the.

Hessian matrix H (p) = (i), composed of all the derivatives of ¢ (uw) of second order,

v R v
is an N % N non-negatively definite matrix where @i;= aaz)gz (3, j=1, ==, N). Hence
¢
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(1) is a nonlinear degenerate parabolic system of partial differential equations.
When N=1, ’ohe above system (1) takes the form _ |

w=1f (&) o, : ' ' @)
where f(u)= =9 '(v), f'(w)=¢"(w)>0. This equation is eo:mmonly called the
equation of filtration type. From yrars of the fifties, there have been a great amount
of works™~7 contributed to the deep research of the properties of solutions for the
so-called equations of filtration type. By this means, we call the systems (1) the
systems of filtration type.

The component expressions for system (1) are

, N N
Usp = E ?’wum‘l‘j% Pigithialno (¢=1, o, N ), )

where ¢(u) with indeces 4, j, & denotes the derivative of p(u) with respect to

2 B 3 .
variables u;, Us,uy, 1. €., Py= gu(pa(:;,) s ¢¢m=—a—%% (4, §, k=1, -, N) and so
(e b %

forth. The coeficient matrix H (u) = (py) for the terms of second order derivatives
on the right hand side of system (5) is non—négative definite, i. e., (¢, Hw)¢{) >0,
for any N-dimensional vector ¢ € RY and for u€RY.

When the Hessian matrix H (u)of p{u) is positively definite, i. e., there existsa
constant s>0, such that for any N-dimensional vector £, (&,H (w) §)>s(§, £), and
system (1) is & nonlinear parabolio system. In this time, the system is non-degenerate.

We introduce the lemma® on: the periodic boundary problem for linear parabolie
systems for the following discussion.

Lemma 1. Suppose that the linear parabolic systems

ws— A(®, U+ B(w, D)u,+0(w, DHu=F (e, t) (6)
and the periodic boundary conditions (2) satisfy the following conditions, where u= (uy,
eee, Uy) B8 an N-dimensional vector valued function.

Q) A(w, %) is an N x N bounded positively definite matriz in Qr={—D<2z<D,
0<t<T'}, 4. e., the elemenis ay(w, ) of the matriz are bounded in Qr (i, j=1, -+, N)
and for any N-dimensional vector & ERY, (€, Af)=ao(E, &), where ap>0.

(2) B(w, t) and C(z, ) are NxN mairices bounded in Qr, 6. €., their elements
by(w, £) and oy(o, t) (6, j=1, 2, -, N) are all bounded in Qr.

(8) The free term f(, t) is an N~dimensional vector valued funciion, quadratic
integrable in Qp, ¢.e., all of its components fi(w, ) (6=1, «=+, N) are quadratic
integrable in Qr.

 (4) The initial value uo(w) is an N ~dimensional vactor valued funcmon, belongrmg

0 W (—D, D) and periodic with period 2D, i. e., all of its components ue () €
W (—D, D) are periodic functions with period 2D.

Then problem (6), (2) has & unigue sobution u(®, t) €Z=L.((0, T); W‘D( D,
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D)) NWEP(Qr) and the estimation
“uu% = 0S<tt1£T “u(°: t) “ ?yéﬂ(-p,p)+ “'Mt“ %a(Qr)_“ uuM?“ %a(Qr)- 4
<K1{HU'0H ?y§1)(,p,b)+ “ f“%ﬁ(gz')} (7)

holds, where Ky is @ constant depending on ao>0 and the norms | ay| z.c» 184 2o
hou| .o Of the coefficients of system (1) in L., (@r).

The square norm of vector valued function is defined to be the sum of the square
norms of all its components. If all of the components of a vector valued function
belong to certain functional space, then we say simply that the veotor valued
function belongs to thig functional space. Similarly, if all of the elements of a matrix
belong to certain functional space, then we say that the matrix belongs to the space.

Corollary. Suppo&e that besides the conditions in Lemma 1, there are also the
conditions:

(1) Derivatives D;D;A(w, %), D;D;B(w, 1), D:DIC(, t) of the coefficient matrices
are bounded in Qr(r=0, s=0). | '

(2) Derivatives DiD.f (w, t) of free term wvector valued function s quadratio
integrable in Q.

(3) Initial wector valued fumction uy(2) cWgstr+O(~D, D). Then the solution
u(w, t) of problem (6), (2) has derivative D:Diu(w, t) EZ.

Now we turn to the periodic boundary problem (2) for non-degenerate system
@. _ '

Take B={u|u€L.(Qr), uELs(Qn}. For any N-dimengional vector valued
function v € B, let us construct a corresponding vector valued function u satisfying
the following linear parabolic sgystem ' -

¥y N .
Ui = A E D3 (Q)) um—l—- (1 —_ ?\-) 8Uypzt 7\:5%1 Digx (’U) V35V%2, (’I/ = 1, ooy N) (8)

and the periodic boundary conditions _
w(w+2D, t) =wlw, ?),
wi (@, 0)=Mioi(2),
where 0<A<1 and &>>0. Suppose U(®) €W (—D, D). Since the Hessian matrix
H (u) = (py;(w)) of the function p(u) is positively definite, the coefficient matrix
A(m, 1) =AH(v(w, £))+ (1—A)eH of terms of gocond order derivatives for linear
parabolic system (8) satisfies obviously (£, A =s(¢, §), for any N-dimensional
yeotor ¢ €R¥, where E ig the N « N unit matrix. Hence system (8) and periodio
boundary conditions (9) satisfy all the conditions in Lemma 1. Thus for every

(’5::1: ) N): (9)



636 OHIN. ANN. OF MATH. Vol. 5 Ser. B

0<XA<1 and every N-dimengional vector valued funetion vE€B, problem (8), (9)
hag a unique solution w(x, t) € Z < B. Then a functional mapping 7', : B~»B is defined,
where 0<KACI.

By means of the compactness of the imbedding mapping ZG B, for every value
0<<A<1, the operator T',: B~>B ig completely continuous.

Let M be any bounded subset of B. For &€ M B and 0<<A, A<<1, we have
u="T,w and u="T5v. The difference vector valued function w=u—u satisfies the linear
system

N
Wi =\ E @i (V) Wigy+ (L —A) 8W;zg

— N —_— — hid *
+ (A —1) [gli Pig (V) Uga0— Suwz‘*‘j %0 @i (V) V100 ], (¢=1, -, N) (10)
and the periodic boundary conditions '
wi(o+2D, t) =w;(w, 1),
Wy (w: O) = (7\.-——?;)'%0; (w):
From Lemma 1, we know that u and » belong to Z, hence u,, is quadratic integrable

(@=1, e, N), (11

in @p. Then the free term part of system (10) is quadratlc integrable in Qr. Owing
to the estimation (7), we obtain
lu—u],<Ks|r—4],

where K, depends on the bounded subset M B. Hence, for any bounded subset
Mc B, the operator I',: M—>B is uniformly bounded for A.

When A=0, problem (8), (9) has a unique #rivial solution u(z, ¢)=0.

Now we are going to establish the a priori estimations in space B, uniformly for
0<<A<<1 for all possible solutions for the periodic boundary problem

u(o+2D, t)=u(s, 1),

u(w, 0) =Aup(®) 2
of the nonlinear parabolic system
uy= (grad § (1)) o, (12)
where
¢ (@) =2p(w) + (1—2) e |ul® (13)

and |u|?= 2 u3. The Hegsian matrix of the function is A (u) =AH (u)+ (1—A)sH.

Since for any N —dimengional Veetor E€RY, (& Hw)é)=se(E, £), we geo thab
& Hwo)=e(, ).

Making the scalar product of a vector v and system (12), we have

(u, ur) = (v, (grad (¥))sa).
Integrating in @, and simplifying, we obtain the relation

Ju(., ») H%ac—n.m—7‘-2"”0”%.(—17.1»"‘“ (o, H (W) )dwdt=0,
| ¢
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Since for 0<<A1, matrix H (u) is positively definite, there is
luCe, ) |hnm+ 8l tsltu@o<A?[uol ic-p o (14)
where #>0. : '
Multiplying system (12) by the matrix H (u), we have
(gl’adff'(u))ﬁ H (u> (gradg? (u)>m.
Then taking the scalar product with the vector (grad P (4)) o2y WO got
((@rad 5(u))as, (grad 5())s) = ((grad§(w))es, H(w) (grad (%)) ).
Again integrating in Q.(v>0) and simplifying, the inequaliby
u (gra’d 5(“ (° ) t) ) zn %a(—D,D) +8 u (grada(u))az “%a(gr)
< | (grad @ (Mio)) o] Foc—0,0 _ - (15)
holds.
Becauge
| (grad §(w)).|%= | AH @)+ (@ —1) sE)u;|*>8%us|?,
from (14) and (15) it follows that
Sup [u(e, O wpenmn<Ks, (16)

where K, is independent of 7'>0, A>0 and D>0, but depends on s>0.
From (15), we have

| (grad & (1)) sol Feon <K
or
N N ~ N ~ 2
H ;(E P17 (U) Wgae +j g PigilsdUne ) da dt <Ky,

=1\i=1
@z

It ig easily seen that the inequality can be rewritien as

82| te| Facry — Ko s | econ<<Ks. @an
By means of interpolation formula, there ig
T T
| %.«z,)"”s o l4eCe, 8| i-nm) dt<0§ . EACH] IX= S |%a0Ce, £) | zac-n 2yt
<SOKENT | %o zaconds
Thus (17) becomes : .
8 || Ugs || Zaon—K sCK3vV T " Yoz “ La(Qz)<K 4o
From this it can be derived that
II Uzy “ La(Qz)<K 65

where constant K is independent of A>0 and D>0, but depends on T'>0 and ¢>>0.

Following the previous discussion, we see that all possible solutions of problem
(12), (9) are uniformly bounded for 0<<)}<1 in the norm of the space B. Therefore,
periodic boundary problem (2) of nondegenerate system (1) has at leagt one golution
w(w, t) € B. From Lemma 1, we know that this solution belongs o Z.

Theorem 1. Suppose that for periodic boundary problem (2) of non—degenerate
system, (1), the following assumpiions hold. S
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(1) The function q)(u) 48 three-times cont@nuously differentiable with respect to the
vector variable w, and iis Hessian matris H(uw) is positively definite, 4. e., for any
N-dimensional vector £ ERY, (&, Hw)E)>s(E, £), where 60,

(2) The mitial vector walued funciion uo(w) EWSP(—D, D) is periodic with
period 2D.

Then periodic boundary problem (2) of non—degenemte system (1) has at least one
solution u(w, t) €EZ.

Corollary. If ¢(u) ds four-times continuously differentiable, and

wy () EWE(—D, D),
then the solution u(w, t) of periodic boundary problem (2) for non-degenerate system
(1) is classical, and u, w, €Z.

Theorem 2. Under the conditions of Theorem 1 and iis corollary, the classical
solution of periodic boundary problem (2) for non—degenerate system (1) is unique.

Proof Suppose that the non-degenerate problem hag two clagsical solutions
u(w, t) and u(w, t), where u, s %, UgEZ and Uss Uew € Le(Qr). The difference
yeotor valued function w(w, £) =u(w, t) —u(w, t) satisfies the system

Wy = 2 Ps; (u) Wigs T E Digk (u) (get+ ’Ufa:) Wy

—l—E[E(L) pin(zu+ (L—7)u) dfs‘)um

=1

+j’§1 (jo Pia(vut+ (L—)u)dv >ﬁj$ﬁm]fwg
and the homogeneous boundary conditions
wi(w+2D, 1) =wiw, 1),
wi(w, £) =0 (=1, -, N),

From the estimation (7) of Lemma 1, we see that w(w, 1)=0, i. e., u(e, t) =u(w, 1).
So that the classical solution of non-degenerate problem is unique.

The obtained generalized solution u(z, ¢) € Z in Theorem 1 is also unique. The
uniqueness of weak solution will be proved later. Thus naturally the uniqueness of
the generalized solution is also available.

§ 3

Now we are going to consider initial value problem (3) of non-degenerate
system (1) in domain Qr={zER, 0<t<T}, where R=(—o0, o0).

Lot us take a sequence {D,; such that Dg>co, as s—>oot®, For every s, let us
construct an N-dimensional vector valued function u§!(w) of x, periodic with period
2D,, such that wf! () =ue(2), as v € [— (D;—1), (Ds—1)], ub’(w) possesses the same
smoothness as uo(s) and has uniformly bounded appropriate norm for s and D, i.
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0., if uo(@) EWEP(R), then wi () EWE (—Ds, Ds) and | wb| we -y 00 BT uniformly
bounded for s, where F=>1. '
For every s, lot us consider the periodic boundary problem
w(z+2D;, 1) =u(®, b,
| u(a, 0) =4 @),
for non-degenerate gystem (1) in domain Q) = {— D, <aw<<Ds 0<t<T?}, where s=
1, 2, . On account of Theorem 1, problem (1), (18) has ab leagh one solution

(—D<w<Ds) (18)

u(z, 1) € Z (QF"). From +he disoussion of previous seetion, it can be seen that the
following estimation holds

5] zegger <K |0 ]| we=DprD0 » (19)

where Ky depends on 5>0 and the behavior of function @(w), but is independent of
$>0 and Ds>0.

In the sequence {u(w, 1)}, a subsequence can be solected still denoted by
{u"* (@, ?)}; when s—>0 and D—>oo, the subsequence {u(w, t)} converges to the
limiting vector valued funotion w(w, §) in every point of Q%. Also the subsequences
{u*(, 1)} and {ul (@, t)} uniformly converge 0 w(w,t) and dw (w, t) in any domain
{——L<m<1}, 0<t<T} respectively; gubsequences {uf (2, 7} and {uf'(w, )} are
weakly convergent o generalized derivatives Uz, (w, t) and w;(w, £) In Q5 Tespectively.
The obtained limiting vectoT valued function w(e, ) € Z is just the solution of initial
yalue problem (8) of non-degenerate systom ).

Theorem 8. Suppose that the function p(w) is threetimes continuously different-
iable, its Hessian matris H(w) is positively de findte, and up(w) EWEP(R). Then indtial
value problem ®) of non—degenerate Sysiem (1) has at least one generalized solution
u(w, 1) € Z(Qr)- When the function p(w) is four-times continuously differentiable and
uo(w) EWE (R), initial value problem (8) of non—degenerate system (1) has & unique
classical solution u(®, t), where U, s € Z(Q7)- ‘

Similarly, the generalized solution w(w, 1) €Z(@Qr) I8 algo unique. As the
uniqueness of weak golution is proved, the generalized solution is unique.

§ 4

Beforo the consideration of periodic boundary problem (2) and initial value
problems (8) for nonlinear degenerate parabolic systems (1), let us make some
simple digousgions on the properties of function @(u) in gystem @).

Suppose that the function @(w) satisfies the following conditions:

(I) The function p(u) it three-times continuously differentiable with regpect to
veotor variable « in Rj. As |u| #0, p(u)>0, and ¢(0)=0.
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@1y For any N-dimensional veotor §, holds the inequality :
¢, Hw) =), £), ‘ (21)

where H(w) is the Hessian matrix of p(u), o(u) is a function possessing the

" following properties:

(i) In a certain neighborhood of [u| =0, o(w) =00|u]*, where 00>0, w=>0;
(ii) When |u| is sufficiently large, o (%) =0.|u| ™", where 0=>>0, »<1;

(iii) As u€RI\0 or 0< ju| <o, o (u)>0.

(II1) For w& Ry, the relations

S

200 1 _0(p(w)) @)
)

hold, where 1<M<X2, j=1, -, N.

" Lemma 2. Assume that the function @(w) satisfies condiiions (D), (AI) and (III).

Then the continuously differentiable mapping &:RY—>RY, defined by the correspondence
of any wERY to B(u)=gradep(u) =vE& RY, has an inverse mapping @1 RY->RY, which

is locally Holder continuous with indew S
1+w

Proof Firstly, we are going to prove that for any » € RY, the solution of system
p=grad p(v) ' (28)
is unique. Lot uy, 1y € RY be two different solutions of (28), a7 ua. On account of
grad p(u,) =grad ¢(us), We then have A
0= (grad p(us) —grad @(us), Ua—1)

S RCICA (1—7)us) (g =), (va—us))d
>ﬁa vt (L—7)us) dwe |ta—ua|?,

From the properties of a(d) given in condition (1), the integral
jz o (vug+ (1—7)ug)dv |

has positive value, as 4; #us. Then the right hand side of the inequality is positive.
Thig contradiction shows that uy=1,.
In order to prove the existence of solution of systems (23) for any given v €RY,
it ig sufficient to verify that all solutions of the system
v=(1—n)u+ngrade(w) ‘ (24)
are uniformly bounded with respect to o0<7n<l. '
From (24) there ig

ful |0} (@, > @=n) ]2+ ]| o Gude )lul (25)

Wo know from (IIii) that o(u) =0.|u|™ as |w|=>Mo. Then For any chosen 0<zo

My
To ?

<1, when |u|>
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j:; o(zu)dv= 5:; o (vw)dv -+ 5:0_ (vu)dv

1—a§"
1—»

1
>‘.’°°L,,lwl-w=aw lu] =,

Thus, when |u| >-1;£‘-’—,
0

. R T
o+ ] > (L—-+n8) [+ o 72—l =,

(]

. gl A\
where >0, 0<y<<1 and 0<7o<1, »<1. When W1>("°° 11_’”;: ) ‘

ol ‘ el '
i To nlul.z—v>gm_];_i_i@v__‘ul2—u.

lo] e |u|=@—n v +0e—F—;

1
So, when |u| >{< \ (;'_" . 1£;f_v )by }, the ahove inequality cannob be available.
oo 0

1

1—v
contradiotion takes place. This shows that all possible golutions of system (24) satisty

1
A — -y
_ Therefore, when lu]>M*=max{—’Zg—°—, Oo ——1——1"———> ) ('Q)‘ i )1 }, the
0

0w 1—787"

the estimation |u|<<M*, where M" is independent of 7. Hence, system (23) always
has solution . '
Now we prove that the inverse mapping @-1:R¥—>RY ig Holder continuous with

index

1
1+’ , ' :
Lot o(u) =00|®|* in & neighborhood S(0, d) of zero point 0 € Ry, where 00>0,
w=>0. When 0<|u|<d and v=grad@(u), we have
o]+ [ul >0, 0) = (grad o(w), W) |4l (26)
Hence , _
L+ \TF 1
<[ T
ul<(EEL) T ol
As lfv|<5=1o_l-_°lb81"'“, |u|<8. When 5<|v| <K, there I8 d<|u|<K. When
<< |u| <K , o(u)=>n>0, H (w) is positively definite. Then the Jacobi matrix

%:)-6- — H-*(u) for the inverse mapping @-1:RY—>RY ig bounded. So in any bounded

domain of RY, the inverse mapping @-+:RV—>RY is Holder continuous with index
1
T+w .

Corollary. Suppose that the continuously differentioble mapping @,:RI->RY s
defined by the relation v=sgu-+gradp(u), where £>0. For any bounded set V cRY,
&1 (V) RY is uniformly bounded for e>0. Inverse mapping O;*: Ry >Ry possesses the
local Hilder contnuity with indes (14 w)~* uni formly for 8>0. '
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§ O

Lot ug congider now periodic boundary problem (2) for the nonlinear degenerate
parabolic system ' _
uy= (grad ¢ (%)) ¢z, : €y
where the function @(u) satisfies conditions (I), (A1), (III), its Hessian matrix
H (w) is non-negatively definite. In this seotion, let us disouss the existence of the
weak solution of problem (1), (2).

Definition 1. The vector valued function u(z, t) is called the weak solution of
periodio boundary problem (2) for nonlinear degenerate parabolic system (1), if u(®, 1)

 satisfies the following conditions:

(1) u(w, ) is @ bounded function in Qr and periodio for & with period 2D.
(2) (gradp(w)). belongs to L..((0, T); Ls(—D, D)).
(8) For any test function Yr(w, t) € H*(Qr) periodic for & with period 2D, the
dntegral relation ' '
[[ b= u(grado().Jdwdi+ [ ¥, 0uo(a)as=0, @)
Ox
holds where Pz, T) =0 (—D<ao<<D).
Tn order to study the existence of the weak solution of periodic boundary problem
(2) for nonlinear degenerate system (1), let us construct the solutions of periodio
boundary problem for the approximate non-degenerate systems and use the obtained
solutiong to approach the weak solution. Replacing the ¢(u) in degenerate system
(1) by the function @,(%) —=@(w) +¢|u|? we obtain the approximate non—degenerate
gystem
u, = (grad @, (%)) 2z ’ (28)
or
;= (grad @()) oot 8%se, (29)

v where grad p,(u) =grad p(u) +su, H,(u) =H(u)+sE. Now let us congider periodio

boundary problem (2) for systems (28) or (29). Since for every >0 the Hegsian
matrix H,(u) is positively definite, 1. e., for any N-dimensional veotor ¢,

& Hw)é)=s(, &),
the conditions in Theorem 1 are satisfied. Hence for every >0, problem (28), (2) or
(29), (2) has at least one vector valued function solution u.(w, ¢) €Z(Qr), Where
the initial vector valued funcﬁon uo () EWE(—D, D) is assumed. Then the so
obtained set {u.(w, 1)} of vector valued functions can be regarded as the set of
approximate vector valued functions for the weak solution of problem (1), (2).
" For gystem (28), making the gimilar derivatives ag (14) and (16), we get the
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egtimation relation for the obtained set {u.(w, )} of vector valued functions

Sup, lws (o5 )| Fa-nm>+2 SS (tes, (grad@(We))e)d® di-+-28 | o Facen<2| %o |Zaco0s

@x
(80)
sup | (grad @o(ts(e, D)alts-n.0> |
+ 2“ ((grad @ (o) ) wws He () (grade: (%)) o) A0 A
or
<2| (grad @ (o) Yol ta-nm T 267 vos “ 24(~D,D)s - (31)

Without loss of generality, it can be agsumed that 0<e<<1. Then the right hand side
of the inequality is uniformly bounded for é. Taking the scalar product of vector
grad @, (us) with gystem (28), we get '

Sup FRCICN 1,y 2] (grad? ()l Ee@n

0<i<

- <2|p(uo) “In(—D,D)"‘ze“’wO“%g(—D,D). (32)

The right hand side of the inequality is aniformly bounded for ¢>0. The following
Jomma can be obtained from (80), (31) and (82).

Lemma 3. Suppose that the function satisfies conditions (1), (AT) and (111). For

the vector valued solution {ue(w, £)} of periodic boundary problem (2) for approvimate
system (28), >0, the following estimation rebation

sup [us(e, t) “%s(-—D,m"f oi?gz' | (grad . (us (e, DNl i-pm>

o<t<T

+ sup |@e(us(e, £) | za¢-p, >+ SUD Jotes o, 1) “2H-1<—D.D)<K8 - (33)
o<t<T o<i<T

holds, where K s depends on the norm of (@) w(—D, D) and the behaviour of
@(u), but is independent of >0, 70 and D>0, moreover tps(u)r—tp(u)—\—a\u\g,
grad . (v) =grad g (u) + &u. '

Proof The boundedness of the first throe terms on the left hand. side-of (33)
can be obtained directly from (30), (81) and (82).

For the forth term, let us derive as follows

|| ¥ @t £)da| - 7 4(6) (grad e, £))eede|

- \S: 4 @ (grad @, (s(@, 1)) 0o

< | | s | (grad @ ORI NS 5
<C|¢|mep.0»
where (x) is any fest function belonging 10 Hi(—D, D), Oisa congtant indepen-
dent of §>0, D>0 and o<¢<T. According to the Jefinition of the norms in

Hilbert space with mnegative order, we know that |t (o5 ) lzse-nm < O- This
complotes the proof of the Jemama. _
Corollary. For the set of vector valued functions {us(, 1)}, there isan eglimation
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| 8| teo ] 2aconrt | (grad @ () o[ oo+ SUP lo(@sCe, ) |00 < K, (34)
where Ko is independent of e>0, T>0 and D>0. _ .
Lemma 4. Let the function p(u) possess properties (D), (A1) and (III). Then
the vector valued solution {us(@, £)} of periodic boundary problem (2) for approximate
system (28) or (29) has the estimation

|grades () | zuon < K10, : (85)
where Ko tsn’t dependent of & and D individually, but depends on the product eD.

Proof Denote v.(w, t) =Mf—(w( j=1, «, N) and v,(s, 1) =grad g, (v (o, |
a’w; J - )

£)). From property (ILI), we know
op (w) \*‘
‘ au,- <01(P (u):
where 1<M,<<2, j=1, 2, +--, N. Without loss of generality, it can be assumed that

for 0<e<<1, we have
e*|u|*<<e|u|®+s,

‘where 1<<A<x2. Then there ig

ops(u)
3’&6;

A A
’ <O’2\ _8%%6)_‘ " 1 Chet | u] ML Cops(u) +C8,

~ Integrating the above inequality for « in [—.D, D], we gel

1 i
[9C 5 ) [aye-py <Ol @a(tts(e, D)) |2%-nm +Cu(eD) ¥, (86)
where 0<t<<T. The right hand part depends on ¢D, but ig independent of >0 and
D>0. , . o
On accunt of interpolation formula, it can be obtained that

) 25z - 2—2j ' Q-2
Jves (e, 1) |zs-n,2><Cs| e (2, | 25, 22° {JoesCe, D 2%, oyt [0 (o, )| 200},

where 1<A,<2, §=1, 2, -+, N. It ig not difficult to derive from the inequality the

eglimation
|95 Ce5 ) | 2a-00m>
22, 2=~Ay
<Oe{]ves (e, 1) |5s,c-pm+ [ 2ei (e, ) | 2o, o [vesa (e D Tmy, @D
[9: (e, DM|z-0,m= | (grad . (e, 1)) o] n-nim,
Henoce from (36) and (87), we can see that the right hand side of the inequality

|96l 2o = Sup |ves (e, )

where

I L-(ny D)

1 ~ 1
<O sup los (e, D Einm [vesCes D weepumy

can be expressed by |@s(us(¢, ) | m-nmy 80d | (grad @, (4:(+, )))a| -,y and the
upper bound of sD; thus it is bounded. Thig proves the lemma.

Lemma 5. Assume that the function p(u) satisfies conditions (L), (Ii) and, (T11).
Then the set {us(®@, t)} of solutions of problem (29), (2) or (28) has the estimation
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Sup g (o _t) | g (0, 5y < K1, (38)

where s=———;“—(1+ w)~t and K1 depends on eD and |%o|we —p.m -

Proof Let D be given and &D be bounded. By means of the corollary of Lemma
2, the uniform for & boundedness of {u.} follows from the uniform for 8 boundedness
of {v;}. Thus |%e]z.c0 18 uniformly bounded for .

Let @1, #s€ [—D, D]. We have

' 2] ' 1 !
"Us(wm t) '—"Us(wiy t)l = H'w 'vsm<-’l7, t) (ZCI}\<| mz——wiﬁﬂfvw(-, t) “Lﬁ(_.p,l))°
Heonce there is an egtimation

sup |0.Ce, Ol gonnm S 8, |2 (e, 8 | m-0.00

o<t<T o<t<T
From Lemma 2, it can be derived thab '

|ty £ — (@1, 8] <Ol va(as, D) —v:las, Nk

1
<O, | Do — D1 | .‘2‘(‘1 EynN s

_ where the consgtants Cy, Cs aTe independent of 8>>0 and D>0.

The lemma ig proved.

Now we prove the existence of weak solution of periodio boundary problem (2)
for nonlinear degenerate system (1), by the method of limiting process ¢—>0. Let ¥’
be the set of test functions, 1. e.,

@ ={(z, 1) | WEH (@), $(@+2D, H=1(2, 1), $(o, T) =0},

For any ¥ (@, ¢) €, the veotor yalued solution u.(w, t) of non-degenerate problem

- (28), (2) or (29), (2) satisfies the integral relation

[ = e g ()l i+ [* (@, Ou(a)da=0. (39)

(o
From Lemmas 3, 4 for given D>0, the gots {v.(w, )} and {ug(w, 1)} of vector

valued functions are uniformly bounded for ¢>0 in functional space L..((0, T);

| L;(—D, D)) and L.((0, T); H*(—D, D)) respectively. And from Lemma 5, for

given D>0, the sot {us(w,t)} of veotor valued functions is uniformly bounded for &
in the functional space L..((0, T); 099 (~D, D)), where s= (2+2w)~. It can be
geen that the set {u.(w, £)} of vector valued functions is compact in Ip((0, T);
0©®"(—D, D)), where 1<p<<=o, 0<r<sH9, A subgequence, denoted by {w., (@, ©)},
can be selected from {u,(z, )}, such that when i—>c0, &—>0, w.(®, 1) converges to
u(w, 1) in Ly((0, ); 0O (—D, D)). Then, in @ u, (@, ©) oconverges almost
everywhere 1o (e, {). Henece in Qr, grad ., (v, (2, £)) is also almost evyerywhere
convergent to grade(u(e, £)). Since grad @5 (s (w, 1)) 18 bounded in L..((0, T);
w(—D, D)). uniformly for e, {grad ¢, (u (o, )} is weakly convergent to
grad p(u(z, 1)) in L,((0, T); Ly(—D, D)) and {(grad @, (%, (@, )t is weakly
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convergent to (grad o (u (=, H))e in L0, TY; Le(—D, D)), where 1<\p<oo.
Therefore, as —>° and s—>0, the limit of integral relation (89) is just integral
rolation (27). That is, w(w, 1) is the weak solution of periodic poundary problem (2)
for nonlinear degenerate systemn (1). '

The above obtained weak solution u(w, 1) belongs 0 functional space Ly(0, T);
0»(—D, D)), and there is (grad (w))2€ 1,((0, T); Ls(—D, D)), where 1<<p<0,
0<r<s. From uniform boundedness of {u(w, 1)} i L..((0, T): 0©9(—D, D)), it
can be geen that the norm of w{w, t) in Ly((0, Ty; 09" (D, D)) is uniformly .
bounded for 1< p<oo, 0<Lr <. Henoe u(®, t) € L. ((0, T); 0%?(—D, D)). Moreover,
on account of the aniform boundedness for & of veo(®, £)in L.((0, TY; Ls(—D, D)),
it can be obtained that the morm of (grade(u))s in L,((0, T); La(—D, D)) is
uniformly bounded for 1< p<co. Hence (gradq)(u))¢€Lw((0, TY; Ly(—D, D)).

Theorem & Suppose that the function p(u) satisfies conditions (1), (AT), (IIL)
and uo () EWE(—D, D) is the initial vector valued function, periodic with period 2D.
Then for periodic boundary problem (2) of nonlinear- degenerate system 1), there
exists at least one weak solution u(w, ) € L. ((0, Ty, 09 (—D, D)) and gradp(u (, 1))
€ L.(0, T); WP (—D,D)), where s= (2+2w) ™"

§ 6

Now we are going 0 consider the uniqueness of the weak solution u(w, t) of
periodic boundary problem (2) for nonlinear degenerate system @®). :

Lot wy(#, t) and ua(a, £) be two different weak solutions of problem @, @.
Then their difference ua(®, ) —us(®, t) satisfies the integral relation

([ o) — o (radp (4}~ (grdp ) 128 =0,

Gs

where i(#, ¢) € ¥ 18 any tost function. Now we take $he vector valued test funoction
~ ¢ '
3o, )| lgradp(ua(e, D) —gmadplu(e, DI, (40)

Tt can obviously be seen that a1l of its components are the test functions belonging
to ¥. The equality
(1@ )~ s GEmad e (grodp(u)))1dedi=0 (4D

(e
holds. Substituting expression (40) of # in (41), the firgt term of thus obtained

relation is

SS (s, vp—uz)dw di =

Qr

(grad @ (us) —grad o(ur), Up—tis)dwdb

5 ,
- (ji (H (gt (L =) ua) (s =), (s 02) )7 Jdw b,

0
Q

Qi
E
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‘The gecond term i

[[er (aradptua))o—(gradp(u) ) do s

@

~[[(]: t(amadotua(a, D)) (gradoluate, D)L,

x

(rad o (e, ))e— (Erad(plua(e, D))e)lodt

"%‘Sj [ Hamd (e, D))o @mdotul, oML | dwdt
=__%_ ﬁn j: [(grad@(us(@, 1))~ (gradp(u(e, Ol dlrdb;
<0. .

Then (41) becomes

SX U:; (H('Tfua-l‘ (1—’5‘)?,61)'(1,&2-—151), (uz;‘u1>)d’u‘]dm dt<<0
Qr ‘

or

Ucr(il) | eta— 41 | *dow dt =0,
. Qr .
where % ig the intermediate value on the joining gogment of ty and u, in RY. This

equality shows that +he measure of the set in Qr of points which makes
o (i, £)) |ua(w, 1) —u(, ) [*#0 |
must equal to zero, or the measure of the got of points for which v, (&, t) #us(e, t) can
only be zero, t0o. Hence there is ua(®, t) =us(w, t) almost eyerywhere in Qr.
Theorem 5. The weak solution u(w, t) of periodic boundary problem (2) for
nonlinear degenerate system (1) s unique.- ' :
Corollary. The generalized solutéon w(w, t) €Z (Qr) obtained in Theorem 1 for
periodic boundary problem (2) of nonlinear non—degenerate system (1) ds unigue.

87

In $nis geotion, we want to congider the existence theorem of the weak vector

valued solution for the initial value problem

(o, 0) =to(®), #€R | ®
of the nonlinear degenerate parabolic system -
= (grad (¥))es V (€))

in domain Qh—{#ER, 0<1<T}. |

Definition 2. The vector valued function u(w, £) ds cabled the vector volued weak

solution of initial value problem (3) for nonlinear degenerate parabolic system @) in
%, of u(w, ) satisfies the following conditions: ' ‘
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(1) The vector valued function u(w, t) belongs t0 the frwnctq}oml space L ((0, T);
L,(R)). | -
(2) grado(u(®, 1)) belongs to L..((0, T_‘); WP R)).
(8) For any test fumction contained in H*(Qr), the integral relation

[ b a(gradp()dde i+ (@, Ouo(@)da=0 (42)
o :
holds, where ¥(#, Ty=0 (zER) and supp ¥ (@, £) <o

Now we take the yootor valued solutions u,(w, t) of the periodic boundary
problem for non-degenerate system (28) or (29) as t$he approximations of the vector
valued weak solution u(2, 1) of the initi.al value problem (8) for the degenerate

- gystem (1).

Let us construct a sequence {D.} such that D—>o0 88 g—>0,and &D, i8 kept to be
bounded or &D>0. Suppose eD,<1. For every g>0, we define & vector valued
funotion tos(®) guch that to.(®) —up(w), 88 2€ [— (Ds—1), (Ds—1) 1, and the
egtimation Telations

[l woe | W&‘; apo <At lvpe +B,
| (o) | 2D baﬁ<4 lo (uo) | a0+ B

take place, where A>1, B=0. From Theorem 1, We know the periodic boundary

(43)

problem

w(x+2D,, 1) =u(w, 1),
| u(w, 0)=tes(®@), #EL—De D},
for non—degenei‘ate system (28) or (29) has at leagt one vectoT velued ‘generalized
solution (@, 1) €2 (Q3), where 60, and QP = {—D.<o<Ds o<t<T}.
Using- the similar method, we get the following lemmas. :
Lemma 6. Suppose that the function p(u) satisfies conditions (T), (A1) and (I1I),
and suppose that the indtial wector valued function uo () EWS (R) and @(uo(®)) €
Ly (R). For the vector valued generalized solutions {us(@,0)}) >0 of pertodic boundary

(44)

rprroblérm (44) of approwimate non—degenerate System (28) or (29), the following

estimation

sup Jus (s, ) M Eic-pumo T sup ﬁ(g_radtps(u.(-, £))) sl Zsc-pap0

o<t<T o<t<T

+ OS<‘:t1?T “ Ps (u5 (. ’ t)) uIJ;(—Dc.Ds) -+ sup “u“(. ’ t) “ ZH-'"(—Dsle)gKm (45)

o<t<T

holds, where K1z is independent of 8>>0 and T>0.
Temma 7. Under the conditions of Lemma 6, the wector valued generalived
golutions {us(m, D} of periodic boundary problem (44) for approwimate non—degenerate



No. 4 Zhow, Y. L. IVP FOR DERENERATE SYSTEMS OF FILTRATION TYPE 649

system (28) or (29). have the estimation

|grad @ (tte) || zces <Kz, (46)

where Kg ts independent of 8>0.
L emma 8. Under the conditions of Lemma 6, the set {u,(w, 1)} of the "solutions
of approwimate problem (28), (44) or (29), (44) has the estimabion

-SUPT ““s(', t) “0<°'3><—D,.Da><~K 14, 1P

o<si<
where K 1 is independent of 6>0 and s= (2+2w) ™
For the generalized solution u,(w, 1) of non~-degenerate problem (28), (44) or
(29), (44), the integral relation | ‘

[ chanmtha(grad -] dndi| " (e, Oen(a) =0 )
o » -
holds, where Y(#, {) is any given test function belonging to HY(Qm), i. e,
Y (z, T)=0 (w€R) and gupp P (@, 1) < and stis taken to be sufficiently small or '
D, is taken to be sufficiently 1argé.y | ' ,
Since {u,(®, )} and {u“(a;,'t)} are uniform_ljr bounded for & in the norms of
functional spaces L (0, T); 009(~D,, D)) and Lu(© T); H~*(— Dy D))
respeotively, {us(w, t)} ig compact in Ly((0, T); c@n(—L, 1)), where L ig any given
positive constant, 1<p<o° and 0<r<g. The subsequence, denoted by {u,(m, D}
can be selected from {ue(®, 1)} guch that the subsequence in any given rectangular

. domain Qr= {(— L<o<l; 0<t<T} converges to & Veotor valued function u(z, ©) €

L,((0, T); c©n(R)) in the sence of the norm of funciional space L, (0, T);
oo (—L, L)). Hence e, (®, 1) CODVOIEES to u(w, t) almosh everywhere in Q%. Then
grad @, (v, (@, £)) also converges ) 'gradq)(u(w, %)) almost everywhere in Q. Also
grad @, (%, (2, t)) ‘and (grad @, (s, (2, £))), weakly converge to gradp(u(e, %)) and
(grad ¢ (u(#, D))e regpectively. When 80, Dy>00, the limit of integral relation
(48) is mnaturally integrai rolation (43). Therefore the limiting yeotor valued
funotion u(w, ?) is just the weak solution of initial value problem (3) for nonlinear
degenerate system (1). The weak golution u(w, t)- thus obtained is contained in
L0, T); 0" (R)), where 1< p<Loo, 0<r<s. According 0 the egtimationg in
Lemmas 6, 7 and 8, it can be seen that u(@, #) € L..( (0, T7y; 0% ®)) and
gradp(u(@, 1)) € La((0; T); WP ®R))- |
Theorem 6. Suppose that the function satisfies conditions (0, an, (11T) and
suppose that the initial vector valued function o (&) EWE (R) and @(% (2)) cIs(R).
For imitial value problem (8) of nonlinear degenerate system (1), there ewists at least
one weak vector valued solution w(®, ) € L.((0, T); O o(R)) and grad o (u(®, D)) E
L.((0, T); WP ®)), where s= (@+2w) ™ '



650 OHIN. ANN. OF MATH. Vol. 5 Ser. B

§8

Now we turn to the uniqueness problem of the weak solution u(w,?) for
degenerate initial Value'problem 1), 3. ’

Lot ui(w, £) and ux(, £) be the two different weak solutions of initial value
problem (3) for nonlinear degenerate system (1). Their difference satisfies the integral
relation ‘

[] (o) = i Cgrod )= (grad pu)) D100,
12 .
where (#, ¥) is any test function.

Let us take the vector valued test function

B (@, 1) = an(@) . [gradp(ua(e, 1) —gradpalo, DI, (49)

where o (w)‘ hag uniformly bounded for » continuous derivative in #ER; () =0,

ag |o| <n—1; (@) =1 as |#| =n; and 0<o,(®)<l, as n—1<lw]\<\n.\ It is obvious
that Pz, T)=0(z€ R), supp ¥ (m, ) <0 and s («, t) hag the generalized derivatives
Te(m, t) =an(2) [grad ¢ (a(@, 1)) —grade(u(, D),

Bu(a, =@ || lerad o (e, ) —gradp(us(e, D)IL

+an(®) [ [(gradp(una, ) (gradpiae, D)L

Qubstituting these expressions into the integral relation

[[ £, v = @y (gradp(sn))e (Ead o)1=
wo gob “

H ain () (grad @ (u) —grad @ (), Ua—us)dwds
% .
[t (], emadptuata, D)o @dpliate, DAL,

oF

(grad ot (@, 1)) (gradp(us(a, D))s )dand

- g j a;,@(g; [grad ¢ (ua(z, 1)) —grade(u(z, )1dL,

Qs '
(o (a(a, 1)) (gradp(ua s, D))o,

Denote QP = {n—1<|z| <n, 0<{<T?}. The above equality becomes
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S S Oin (wj (H (w) (“2‘”‘ ur), (up—uy))dwd
L]
L[ onte) | Lgmapteate, Do (o p s, DY)1dL | 00

=$S ol (o) (S; [grad @ (ua (e, ¢)) —grade(u (w, 1))1dL,

o

(grad ot 1)) (EEadP (o, D))o

Ginoe the integrands of two integrals on the left hand side of the equality are non-

negative, these two integrals are non-negative. Because wi(w, 1) and (e, t) are the
weak solutions of problem (1), (8), we have ui(®, t), »ug(m, $) € L..(0, T); L.(B)),
grad ¢ (us(w, 7)), grad e (ua(s, £)) € L..((0, T; WP (R)). Therefore the functions
(grad p(ua(e, 1)) —grad ¢(uale, ), us(e, )= (@, 1)),
T 2
| Cgradoate, D))o (@redp(uste, DDA

and

([} tgradp(uata, D) —grad pals, DI (gradp(uas, D))s
' (gudp(u(s, 9)):)

are all integrable in Qr. Qo the three integrals in the equality are uniformly
bounded for n.
For the integral, denoted by J,, in the right part of the equality there is an

estimation

1< [[ |([, taratota(e, ) —grdeute DI

o
(o ua(s, D))o (@adP(aa(s, D))
The right part of the inequality is the integral in @ of the integr and which i8

dx dt,

integrable in Qr, then it can be regarded as the general torm of a convergent positive
geries. When n—0, the yalue of this integral ends to zero. Thus | Ja]—0, as n—>0
Therefore when a—>co, the limit of previous equality is

[[ rad () —gradota), ua— )0t =0
e
or
H (H (&) (ua—u1), (g —uy))dwdt=0
e :
A+ the point uy%us, 70, (H () (ta—), (us—us)) #0. Hence i (m, 1) =ta(2, )
almost everywhere in Q%. The weak solution ig unique.
Theorem 7. Suppose that the function p(u) in nonlinear degenerate parabolic
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system (1) satisfies condidions (1), (A1) and (IL). The wealk solutton of initial value
p_rroblem @, 3) is UNAQUe.
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