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. Abstract

TFirst, the anthors drop some convex and concave conditions on function g, which are
needed for Theorems 1-and 3 in. [11,by making use of a better integral estimate. Secondly,
the authors consider two other resonance cases. In particular, the case g'(e0)=01is discussed.

§$ 1. Introduction

In [1] we consider the existence of nontrivial periodic solutions of the following

wave equation | '
(@ 3 u(0, 1) =ulm, 1) =0,

_ w(w, t-+2m) =u(®, 1),

where (@, 1) €Q={0<o<m, 0< < 2w},
2 2 ’ :

Let A be the selfadjoint extension of the operator [J= -g—tg - "38_52— determined by
(I). Its distinguishing eigenvalues are denoted by {\:}, and their multipliéity by
M (\;) and the corresponding eigenvector subspaces by Fi, for ¢ € &, where -« <A<
7»_¢+1<°--<7x0=0<?»1<---<?»;<~--, and M ();) is an even infeger. We write g(&, %, §)
as '

oo, 4, &) =bE+(a, 1, ©
and gel

6s, 1, [ o0, 4, min Gata, 4, O=],0(o, & Dn

Assumption [g]. The function g(w, t, £) is strictly increasing and eontinuous-

1y differentiable in &, for (v, i, &) €2 x (BY {0})’ and satisfies the following

conditions:
(g.) conditions at infinity.
There is & constants b= ¢’ (o0) such that
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lim g(w, ¢, §)/§=0€ (0, +o0)

1§12

aniformly in (s, £) €Q. And
(@) mf_gh,(@, , >0

(@,1)€Q
In case b= —A-,, for some finite positive integer p, We further agsume thab
(b) SUD |gs (2, t, )| <M, for some M>0; -

(@, t, ) EBXR!
(co)® Gulm, 1, £)—> o0, as | £} —>o0, aniformly in (&, ) €.
(go) conditions ab zero.
(i) g, t, 0)=0 and

lim g (2, %, &) [€= o9, uniformly in (o, ) €,

1£1-0
| (ii) Ina neighbourhood of zero, we have
(a0) 9, %, &) —g(m, 3, &) <¢:(o, 1, (é1+62)/2) (&2—E0)
* for £a> &30 or £1<€a<0s ’
B0 9@ 1, 06+ A ENZ09(@, £)+1—0)g(a, 1, &) for
&, £20, €10, 1], end (@, ?) € Q; the converse inequality holds for
&, £, <05 '
namely, g(®, #, £) 18 concave in £€R* and convex in (cR,
The main result of [1] is _
Theorem (¥) In addition 0 asswmption (g1, &f the. function g(m, t, £) 18 odd in
¢, then problem (I) has infinitely many periodic solutions, which are on different orbits.
It is improved and oxtended in this paper. In gection 2, we point oub that
conditions (o), (bo) can be droped out of [¢]. Thus the result is parallel t0 the work
of K. Thews™. In section 3 we deal with some resonanoce cages which are 1nob freated
in [1]. In particular, the 0ase =0 is discussed.

§2. Improvement of Theorem(*)

Theorem 2.1. Theorem(*) stilb holds without conditions (o), (Do) im its assum-
ptions. ,
For simplicity of expressions, wo do all the arguments in form g=g(t). Asin
[1, b1, we reduce the problem (1) into the variational problem |
1) =5 (Ku, u>+HH(u)clw dt 1
Q

in real Hilbert space 12(Q), where K = At defined on the range R(4) of operator 4
and H(@®)= S:h(s) ds, and h(s) is the inverse funotion of g having the form
h(8) —ag+hi(8),
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asily seen

where a=1/b, and hu(8)=—1/ bgs (7u(s)) - Set Hy(t) = S: hy(s)ds. Then ibise

4hat the following conditions are satisfied:
(frooy 1im k(%) /t=a=1/bE (0, ©°);

1t1->00
as 4= —MW-p= —1/Ap, We have
() (D<M
(co)* Hi(®)—>F 0 2° | {03
(bo) h(0) =0, and &/ (0) = him h(t) /t=0.

510
Note that conditions (ao0), (bo) Were psed only in varifying (P 8) oondition for
the functional I. Henoe it suffices to verify (F. 8) condition ander the assumptions
of Theorem 2.1, | .

Sot @ = — - Let NV be the kernel of the operator K, whichisa finite dimensional
Space; and N— e the orthogonal summation of subspaces Fy, + F-% and N7 the
orthogonal complement of NON~ in space R(4). For any uwER(A), we set '

: u=ud+u+u —+u, and o =ut U,
Suppose that the sequence {uny ER(A) ig"such that
\I(u,,)\<M Cand I'(un)sKun—}—Ph(u,,)—»O,
where P is the projector of H on R(4A). We now show that there ig a convergend
gubgequence of {uy}. The proof consists of B steps.

Olaim 1. {uq}y s @ bounded sequence.

Then there i8 & gubgequence (still denoted by Us) weakly convergent to  in H:
Ui, - |

Claim 2. SQH(u,.) dudi—> SQH@ dwdi, for all Q. ®)

Ag H (u) is a convex funotion of u, We gob

 Hun—H () =h(w) ).
Integrating it o0 QCQ, we have

L@SQH<%.>,>§QH@ - @

by Un—U
Set Kyt Ph(uy) = 8n: ‘We have

[, @w B e il Ko (u—t).

By means of the compactness of operator K@, Kty gtrongly converges 10 u. Henoce

weo gotb

{7 Sy ACHE
By virtue of H (u)=0, we have

SQH(M) + S Q/QH(M) 2560 H '<u”) + Sme H (u“))
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and

[ ) 4T, , 7w >0 ) +Em H).

Hence
[ B >Tm( Hew. | ®)
The inequalities (4) and (B) give 3.
Claim 8. H(u,) is equi- -integral continuous, namely, for any >0, there exists
5>0 such that s H (u,) <& for all n, prromded M(Q) <3 for any QCL.
By virtue of the mtegral continuity of H (u(a, t)), there exists a constant $>0

such that je H (u) <s for any QCQ and w(Q) <8, where w(Q) is the measure of the
Set Q.
Suppose tha’o the claim is not true. Then, for each 8,=3/2" k=1, 2, -, there

exigty a domain Q,,C.Q, w(Qy) <8/2%, and function u,, such that S H (w,,) =8, Where

(4

the index 1y tends to infinity. Set @= k@le. We have u(Q)< 2 w(Qy) <& and

k=1

L}H (w) = EI{J&SQH (u,) =6, & contradiction.

Claim 4 (QH (U —u)—>0, as n—>+0,

Divide Q into three parts Q, Q1n, Qs defined as follows:

={||u|>a},
Ou={o| |un—ul <s, |u|<d},
'Qém:{m‘ lun"‘u1>8, lu|<a},

For SQ H(u)=H (a) eu(Qq), w(Qs) becomes sufficiently gmall when @ is large
enough. Take Q, with w(Q,) <8 such that S H (un)<e and g H (w)<s. By condi-

tion (hoy, it is easy 10 see that there exist constants ¢i, ca>0 such thatb H @2n<
¢ H (8) ¢, for all {C R Furthermorse by the convexity and evenness of H(u), we

have

| H () < S LH @u)+H )] <o LH () + H (01
Therefore
L H (u,.——u)v:<20’18+02u/(90). ()

On the other hand, we have
H (un—w) <H(s), on domain Ox,
These two inequalities give

[, H () <cH (5). @
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Finally we should show that w(Qan)—>0, 88 n—>-oo. Therefore we can got the same
estimate as we have got on the domain £, For this end we first show that the
inequalities , |
. H (un) —H ) >h(w) (up—w) +7 (8)
hold on the domain Qsn, where y>0 18 dependent on & and a, bub independent of n,
The strict monotonioity of the funotion A implies that "
H (up) —H @) —h @) (un—)

= H (u+8) —H(u)—-h(u)e=s$u+s h (2) — ()1 dr=1() >0,

u

when ©= (@, t) is in the domain QN Q3, Where Qf = {z|us—u=8, |u| <a}. The
function A(u) is continuous in %, which has a positive lower bound A, on the domain.
{|u|<a}. The sameé argument shows that H (us) —H @) —h{u) (ua—u) (a8 & function
of u) has a positive lower bound A- on the domain '{\u\ <a}. Taking v= (Mgy M=)

- we obtain (8).

Integrating (8) on the domain Qa, and noting that

' H (un) —H W) —R(u) (un—w) =0 for all s, ©
we get

(@ <], ()~ H@ =) =]
<( 1) ~H @ PO (o=,

It implies that the right ‘hand side torm tends to zero by (8) and u—>u.

By the same reagoning on the domain Q,, We obtain
[, Hm—w <265+ 01 (Qan). ©

Thus we have SQ H (u,—w)—>0 a8 0> from the inequalities (), (7) and 9).

Claim 5. w, tends to ¥ strongly tn the space H=I*Q).
By condition (hey, H@)/P—a /2 as |t|~>-o0. Then there exists constant ¢,>0;
for any s>>0 such that w<c, H (u)+8* Hence ' '

Sglun—-u\2<cs§gﬂ (unfu) +82u(Q).

Taking & small and letting n—>-o°, We complete the yerification of (P. 8) condition.

§ 3. The other kind of resonance case

“When the regonance does not occur at infinity i. e., b#* —-p where p is any
positive integer, Theorem (*) ensures the existence of infinitely many periodio -
golutions on different orbits. However, When the Tesonance happens ab infinity, it is
necesgary to have more regtriction on the function g1 and b#0. Now we are going t0



658 _ CHIN. ANN. OF MATH. Vol. 5 Ser. B

disouss some fifferent type of resonance cage which implies the case b=0,

Condition (7). The function g(, ¢, ¢) igan odd and strietly inoreasing funetion
in the veriable' £, and there are constants v<3 and ¢>>0 such that

lg9(, %, &) |<7yé+e.

Theorem 3.1. Under the conditions (7), (C=)* and (go) (¢), problem (I) has
infinitely mamy periodic solutions, which are on different orbits.

Proof We simply reduce the problem into the case of Theorem (*). Consider
the truncated function gx (@, %, £):

y(E—M—1)+g(w, t, M+1), E=M+1;

| 9@, 8, £), €| <M;
gM(wJ t: §)= ;
y(E+M+1)+g(a, ¢, —M-1), &—-M-1;
smooth funection, otherwige.

T+ is easily seen that the funotion gu satisfies all the conditiong in Theorem (*) bub
(@) (now b=7). Note that what we really need ig the strict monotonicity of g.
Applying Theorem (*) to the problem
| ulf — v+ gu (o, B, u) =0,
(1) {0, 8) =u¥(w, 1) =0,
WM (m, t42m) =u (o, 1),

we get the existence of infinitely many solutions which are on different orbits.

Tt i known that there is an L.—estimate for the solution ¥ of problem (I*)™.
Tt follows that the solution of (I*) is also the solution of (I) when M is sufficiently
large. The proof is finished.

The following'example shows that the restriction on the boundedness of function
g, could be replaced by the other growth condition when the resonance also occurs
at infinity. ‘

Condition (e). There exist constants ¢, s, Gs, ¢,>0 and 0<a<1 such that

&% —0a<g1(®, t, &) <csf”+ 04, VvE>0,

Theorem 3.2. Under the assumptions of Theorem 2.1 with cond«)téon. (b..) being
replaced by condition (&), the conclusion of Theorem 2 .1 stall holds.

Proof It suffices to verify (P. S) condition. Tt is easy to see thatb there exist
congtants ¢}, ¢, ok, 04>>0 such that '

, i —y< — by (m, 1, m) <chn+cy, V>0,
Suppose that the sequence {u,} € R(A) has properties
| T(uny| <M and T’ () = Kt + @i+ Ph(un)—0,

In oxder to get the existence of convergent subsequence of {u,}, we only need to show

the boundedness of {ttp}. Then the other steps for conclusion will be the same as we

did in [1],
Setting sy =Kup+atta+Phy (u,) end making inner product with u;, we get
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c\urt\%&(Ku,,—kM,., wt><|<en, utS| 4 | < (uin), uiy|

<c\u‘;\m+g(o+clun\“) \ut\<c\u:§\r,a+6luﬂl"£w |wit | za.
Then
\u}t\ps<0+0\un\%s,
In the same faghion, We obtain

|tz | < +-o | .
Thus we have
Tt follows that \u;;\La§c+c\‘un\%s<c+c\u;\%,¢c\ug a,
ollows tha -
\u'n\m<c+c\ug\gg,. o)

On the other hand we have

S PRELES S [c——chi(u,.)]u,,<o\u,,\m-—c Shi(un)ug——cs Py () Un

<c\u,,\La+c\u§’,\m+c+c\u’n\%=<o+o\u2\m+c\u?, %
and A
\u?,,\}f;“<c\u?,|im<c(\u,.\}f{$+ lub | 25 <c+olu?,\ps+c\u2\%°§, (11)
Noting that 1+ a>20a, WO obtain |us|<se. Hence |u,| <0 and |ua| <50, .
Remark 1. Condition (&) could e slightly velaxed as follows:
There exist a, B with 0<B<a< 1+B)/2 oand constants 6:>0 such that

0,88 —62<<91(®@, ¥, £) <os€* 0
In this cage inequality (11) becomes
\u‘,’,\}fk"<c+c\u‘},\La+c\u?,\2;f§, (1)’
However we can not verify (P. S) condition when the function g gatigfies cerfain
one sided growth condition such as

| g1(, 1, £)| <elél”
with a<1,

Remark 2. All the theorems are true when the function ¢ is autonom us by
means of the Si-index theory. -
We wish to thank Prof. Ohang XK. Q. for the benifitial discussions.
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