A NOTE ON THE RESONANCE CASE LINEAR **ASYMPTOTICALLY** FOR WAVE EQUATIONS

(刘嘉荃) LIU JIAQUAN (吴绍平) WU SHAOPING (Institute of System Sciences, Academia Sinica) (Hangzhou University)

Abstract

First, the authors drop some convex and concave conditions on function g, which are needed for Theorems 1 and 3 in [1], by making use of a better integral estimate. Secondly, the authors consider two other resonance cases. In particular, the case $g'(\infty) = 0$ is discussed.

§ 1. Introduction

In [1] we consider the existence of nontrivial periodic solutions of the following wave equation

(I)
$$\begin{cases} u_{xx} - u_{xx} + g(x, t, u) = 0, \\ u(0, t) = u(\pi, t) = 0, \\ u(x, t + 2\pi) = u(x, t), \end{cases}$$

where $(x, t) \in \Omega = \{0 < x < \pi, 0 < t < 2\pi\}.$

Let A be the selfadjoint extension of the operator $\Box = \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}$ determined by (I). Its distinguishing eigenvalues are denoted by $\{\lambda_i\}$, and their multiplicity by $M(\lambda_i)$ and the corresponding eigenvector subspaces by F_i , for $i \in \mathbb{Z}$, where $\cdots < \lambda_{-i} < \infty$ $\lambda_{-i+1} < \cdots < \lambda_0 = 0 < \lambda_1 < \cdots < \lambda_i < \cdots$, and $M(\lambda_i)$ is an even integer. We write $g(x, t, \xi)$ as

$$g(x, t, \xi) = b\xi + g_1(x, t, \xi)$$

and set

$$G(x, t, \xi) = \int_0^{\xi} g(x, t, \eta) d\eta$$
 $G_1(x, t, \xi) = \int_0^{\xi} g(x, t, \eta) d\eta$.

Assumption [g]. The function $g(x, t, \xi)$ is strictly increasing and continuously differentiable in ξ , for $(x, t, \xi) \in \overline{\Omega} \times (\mathbb{R}^1 \setminus \{0\})$ ' and satisfies the following conditions:

 (g_{∞}) conditions at infinity.

There is a constants $b = g'(\infty)$ such that

Manuscript received September 15, 1982.

$$\lim_{|\xi|\to\infty} g(x, t, \xi)/\xi = b \in (0, +\infty)$$

uniformly in $(x, t) \in \overline{\Omega}$. And

ormly in
$$(x, t) \in \mathcal{U}$$
. And
$$\inf_{(x,t) \in \bar{\mathcal{U}}} g'_{1,\xi}(x, t, \xi) > -b.$$

In case $b = -\lambda_{-\rho}$, for some finite positive integer p, we further assume that

- $\sup_{(x,t,\xi)\in\overline{\mathcal{Q}}\times\mathbf{R}^1} |g_1(x,t,\xi)| \leq M, \text{ for some } M>0;$
- $(c_{\infty})^{\pm} G_{1}(x, t, \xi) \rightarrow \pm \infty$, as $|\xi| \rightarrow \infty$, uniformly in $(x, t) \in \overline{\Omega}$.
- (g_0) conditions at zero.
- (i) g(x, t, 0) = 0 and

$$0)=0$$
 and $\lim_{\|\xi\|\to 0}g(x,\ t,\ \xi)/\xi=+\infty$, uniformly in $(x,\ t)\in\overline{\Omega}$.

- (ii) In a neighbourhood of zero, we have
- (a₀) $g(x, t, \xi_2) g(x, t, \xi_1) \leq g'_{\xi}(x, t, (\xi_1 + \xi_2)/2) (\xi_2 \xi_1)$ for $\xi_2 > \xi_1 > 0$ or $\xi_1 < \xi_2 \le 0$;
- (b₀) $g(x, t, \theta \xi_1 + (1-\theta)\xi_2) \geqslant \theta g(x, t, \xi_1) + (1-\theta)g(x, t, \xi_2)$ for ξ_2 , $\xi_1\geqslant 0$, $\theta\in[0, 1]$, and $(x, t)\in\overline{\Omega}$; the converse inequality holds for $\xi_2, \ \xi_1 \leqslant 0;$

namely, $g(x, t, \xi)$ is concave in $\xi \in \mathbb{R}^+$ and convex in $\xi \in \mathbb{R}^-$.

The main result of [1] is

In addition to assumption [g], if the function $g(x, t, \xi)$ is odd in ξ , then problem (I) has infinitely many periodic solutions, which are on different orbits.

It is improved and extended in this paper. In section 2, we point out that conditions (a_0) , (b_0) can be droped out of [g]. Thus the result is parallel to the work of K. Thews^[6]. In section 3 we deal with some resonance cases which are not treated in [1]. In particular, the case b=0 is discussed.

§ 2. Improvement of Theorem(*)

Theorem 2.1. Theorem(*) still holds without conditions (a₀), (b₀) in its assumptions.

For simplicity of expressions, we do all the arguments in form g=g(t). As in [1, 5], we reduce the problem (I) into the variational problem (1)

$$I(u) = \frac{1}{2} \langle Ku, u \rangle + \iint_{\Omega} H(u) dx dt$$
 (1)

in real Hilbert space $L^2(\Omega)$, where $K = A^{-1}$ defined on the range R(A) of operator Aand $H(t) = \int_0^t h(s) ds$, and h(s) is the inverse function of g having the form $h(8) = as + h_1(8)$.

$$h(s) = as + h_1(s),$$

where a=1/b, and $h_1(s)=-1/bg_1(h_1(s))$. Set $H_1(t)=\int_0^t h_1(s)ds$. Then it is easily seen that the following conditions are satisfied:

the following condition:
$$(h_{\infty}) \lim_{|t| \to \infty} h(t)/t = a = 1/b \in (0, \infty);$$

as
$$\alpha = -\mu_{-p} = -1/\lambda_{-p}$$
, we have

$$(b_{\infty})' \mid h_1(t) \mid \leq M;$$

$$(c_{\infty})'^{\pm} H_1(t) \rightarrow \mp \infty$$
, as $|t| \rightarrow \infty$;

$$(c_{\infty})'^{\pm} H_1(t) \rightarrow +\infty$$
, as $|t|$
 $(b_0) h(0) = 0$, and $h'(0) = \lim_{|t| \to 0} h(t)/t = 0$.

Note that conditions (a_0) , (b_0) were used only in varifying (P. S) condition for the functional I. Hence it suffices to verify (P. S) condition under the assumptions

Set $a = -\mu_{-k}$. Let N be the kernel of the operator K, which is a finite dimensional of Theorem 2.1. space; and N^- be the orthogonal summation of subspaces F_{-1} , ..., F_{-k} ; and N^+ the orthogonal complement of $N \oplus N^-$ in space R(A). For any $u \in R(A)$, we set

ent of
$$N + N^{-1}$$
 in space $u^{-1} + u^{-1} +$

Suppose that the sequence $\{u_n\} \in R(A)$ is such that

he sequence
$$\{u_n\} \in R(A)$$
 is such that the sequence $\{u_n\} \in R(A)$ is such that the sequence $\{u_n\} \in R(A)$ we now show that the

where P is the projector of H on R(A). We now show that there is a convergent subsequence of $\{u_n\}$. The proof consists of 5 steps.

Then there is a subsequence (still denoted by u_n) weakly convergent to u in H: Claim 1^[1]. $\{u_n\}$ is a bounded sequence. $u_n \rightarrow u$.

U.

Claim 2.
$$\int_{Q} H(u_n) dx dt \rightarrow \int_{Q} H(u) dx dt, \text{ for all } Q \subset \Omega.$$
(3)

As H(u) is a convex function of u, we get

$$H(u_n)-H(u)\geqslant h(u)(u_n-u).$$

Integrating it on $Q \subset \Omega$, we have

$$\underline{\lim} \int_{Q} H(u_{\mathbf{n}}) \geqslant \int_{Q} H(u) \tag{4}$$

by $u_n - u$.

Set $Ku_n + Ph(u_n) = \varepsilon_n$. We have

$$u_n + Ph(u_n) = s_n$$
. We have
$$\int_{\Omega} (H(u) - H(u_n)) \ge \int_{\Omega} h(u_n) (u - u_n) = \int_{\Omega} (-Ku_n + s_n) (u - u_n).$$
or operator $K^{[2]}$, Ku_n strongly converges to

By means of the compactness of operator $K^{[2]}$, Ku_n strongly converges to u. Hence we get

$$\int_{\varrho} H(u) \geqslant \overline{\lim} \int_{\varrho} H(u_n).$$

By virtue of $H(u) \geqslant 0$, we have

$$)\geqslant 0$$
, we have
$$\int_{Q}H(u)+\int_{\Omega/Q}H(u)\geqslant \overline{\lim}\Big(\int_{Q}H(u_{n})+\int_{\Omega/Q}H(u_{n})\Big)$$

Hence

and

$$\int_{Q} H(u) + \overline{\lim} \int_{\Omega/Q} H(u_{n}) \geqslant \overline{\lim} \int_{Q} H(u_{n}) + \overline{\lim} \int_{\Omega/Q} H(u_{n}).$$

$$\int_{Q} H(u) \geqslant \overline{\lim} \int_{Q} H(u_{n}).$$
(5)

The inequalities (4) and (5) give (3).

Claim 3. $H(u_n)$ is equi-integral continuous, namely, for any s>0, there exists $\delta>0$ such that $\int_{o} H(u_n) < s$ for all n, provided $\mu(Q) < \delta$ for any $Q \subset \Omega$.

By virtue of the integral continuity of H(u(x, t)), there exists a constant $\delta > 0$ such that $\int_Q H(u) < \varepsilon$ for any $Q \subset \Omega$ and $\mu(Q) < \delta_n$, where $\mu(Q)$ is the measure of the set Q.

Suppose that the claim is not true. Then, for each $\delta_k = \delta/2^k$, $k = 1, 2, \cdots$, there exists a domain $Q_k \subset \Omega$, $\mu(Q_k) \leqslant \delta/2^k$, and function u_{n_k} such that $\int_{Q_k} H(u_{n_k}) \geqslant s$, where the index n_k tends to infinity. Set $Q = \bigcup_{k=1}^{\infty} Q_k$. We have $\mu(Q) \leqslant \sum_{k=1}^{\infty} \mu(Q_k) \leqslant \delta$ and

$$\int_{Q} H(u) = \lim_{k} \int_{Q} H(u_{n_{k}}) \gg s$$
, a contradiction.

Claim 4. $\int_{\Omega} H(u_n - u) \rightarrow 0$, as $n \rightarrow +\infty$.

Divide Ω into three parts Ω_a , Ω_{1n} , Ω_{2n} , defined as follows:

$$\Omega_a = \{x \mid |u| > a\},$$
 $\Omega_{1n} = \{x \mid |u_n - u| < \epsilon, |u| \leq a\},$
 $\Omega_{2n} = \{x \mid |u_n - u| \geqslant \epsilon, |u| \leq a\}.$

For $\int_{\Omega} H(u) \geqslant H(a) \cdot \mu(\Omega_a)$, $\mu(\Omega_a)$ becomes sufficiently small when a is large enough. Take Ω_a with $\mu(\Omega_a) \leqslant \delta$ such that $\int_{\Omega_a} H(u_n) \leqslant \varepsilon$ and $\int_{\Omega_a} H(u) \leqslant \varepsilon$. By condition (h_{∞}) , it is easy to see that there exist constants c_1 , $c_2 > 0$ such that $H(2t) \leqslant c_1 H(t) + c_2$ for all $t \in \mathbb{R}^1$. Furthermore by the convexity and evenness of H(u), we have

$$H(u_n-u) \leq \frac{1}{2} [H(2u_n) + H(2u)] \leq c_1' [H(u_n) + H(u)] + c_2.$$

Therefore

$$\int_{\Omega_a} H(u_n - u) \leq 2c_1' s + c_2 \mu(\Omega_a). \tag{6}$$

On the other hand, we have

$$H(u_n-u) \leqslant H(s)$$
, on domain Ω_{1n} .

These two inequalities give

$$\int_{\rho_{1n}} H(u_n - u) \leqslant cH(s). \tag{7}$$

Finally we should show that $\mu(\Omega_{2n}) \rightarrow 0$, as $n \rightarrow +\infty$. Therefore we can get the same estimate as we have got on the domain Ω_a , For this end we first show that the inequalities

$$H(u_n) - H(u) \geqslant h(u) (u_n - u) + \gamma$$
(8)

hold on the domain Ω_{2n} , where $\gamma > 0$ is dependent on s and a, but independent of n_s

The strict monotonicity of the function h implies that

$$H(u_n) - H(u) - h(u) (u_n - u)$$

$$\geqslant H(u + s) - H(u) - h(u) s = s \int_u^{u + s} [h(\tau) - h(u)] d\tau \equiv \lambda(u) > 0,$$

$$\Rightarrow h(u + s) - H(u) - h(u) s = s \int_u^{u + s} [h(\tau) - h(u)] d\tau \equiv \lambda(u) > 0,$$

$$\Rightarrow h(u + s) - H(u) - h(u) s = s \int_u^{u + s} [h(\tau) - h(u)] d\tau \equiv \lambda(u) > 0,$$

when $\bar{x} = (x, t)$ is in the domain $\Omega \cap \Omega_{2n}^+$, where $\Omega_{2n}^+ = \{\bar{x} | u_n - u \geqslant \varepsilon, |u| \leqslant a\}$. The function $\lambda(u)$ is continuous in u, which has a positive lower bound λ_+ on the domain $\{|u| \leq a\}$. The same argument shows that $H(u_n) - H(u) - h(u) (u_n - u)$ (as a function of u) has a positive lower bound λ_{-} on the domain $\{|u| \leq a\}$. Taking $\gamma = (\lambda_{+}, \lambda_{-})$, we obtain (8).

Integrating (8) on the domain Ω_{2n} and noting that

$$H(u_n)-H(u)-h(u)(u_n-u)\geqslant 0$$
 for all u_n , u

we get

$$\gamma \mu(\Omega_{2n}) \leq \int_{\Omega_{2n}} \left[H(u_n) - H(u) - h(u) (u_n - u) \right]$$

$$\leq \int_{\Omega} \left[H(u_n) - H(u) - h(u) (u_n - u) \right].$$

It implies that the right hand side term tends to zero by (3) and $u_n \rightarrow u$.

By the same reasoning on the domain Ω_a , we obtain

$$\int_{\Omega_{2n}} H(u_n - u) \leqslant 2c_1' \varepsilon + c\mu(\Omega_{2n}). \tag{9}$$

Thus we have $\int_{\Omega} H(u_n-u) \to 0$ as $n\to\infty$ from the inequalities (6), (7) and (9).

Claim 5. u_n tends to u strongly in the space $H = L^2(\Omega)$.

By condition (h_{∞}) , $H(t)/t^2 \rightarrow a/2$ as $|t| \rightarrow +\infty$. Then there exists constant $c_{\mathfrak{s}} > 0$, for any s>0 such that $u^2 \leq c_s H(u) + s^2$. Hence

$$\int_{\Omega} |u_n - u|^2 \leqslant c_s \int_{\Omega} H(u_n - u) + s^2 \mu(\Omega).$$

Taking s small and letting $n \rightarrow +\infty$, we complete the verification of (P. S) condition.

§ 3. The other kind of resonance case

When the resonance does not occur at infinity i. e., $b \neq -\lambda_{-p}$, where p is any positive integer, Theorem (*) ensures the existence of infinitely many periodic solutions on different orbits. However, when the resonance happens at infinity, it is necessary to have more restriction on the function g_1 and $b \neq 0$. Now we are going to discuss some fifferent type of resonance case which implies the case b=0.

Condition (γ) . The function $g(x, t, \xi)$ is an odd and strictly increasing function in the veriable ξ , and there are constants $\gamma < 3$ and c > 0 such that

$$|g(x, t, \xi)| \leq \gamma \xi + c.$$

Theorem 3.1. Under the conditions (γ) , $(c_{\infty})^{\pm}$ and (g_0) (i), problem (I) has infinitely mamy periodic solutions, which are on different orbits.

Proof We simply reduce the problem into the case of Theorem (*). Consider the truncated function $g_M(x, t, \xi)$:

$$g_{M}(x, t, \xi) = \begin{cases} \gamma(\xi - M - 1) + g(x, t, M + 1), & \xi \geqslant M + 1; \\ g(x, t, \xi), & |\xi| \leqslant M; \\ \gamma(\xi + M + 1) + g(x, t, -M - 1), & \xi \leqslant -M - 1; \\ \text{smooth function,} & \text{otherwise.} \end{cases}$$

It is easily seen that the function $g_{\mathbb{M}}$ satisfies all the conditions in Theorem (*) but (a_{∞}) (now $b=\gamma$). Note that what we really need is the strict monotonicity of g. Applying Theorem (*) to the problem

$$(I^{M}) \begin{cases} u_{tt}^{M} - u_{xx}^{M} + g_{M}(x, t, u^{M}) = 0, \\ u^{M}(0, t) = u^{M}(\pi, t) = 0, \\ u^{M}(x, t + 2\pi) = u^{M}(x, t), \end{cases}$$

we get the existence of infinitely many solutions which are on different orbits.

It is known that there is an L_{∞} -estimate for the solution u^{M} of problem $(I^{M})^{(4)}$. It follows that the solution of (I^{M}) is also the solution of (I) when M is sufficiently large. The proof is finished.

The following example shows that the restriction on the boundedness of function g_1 could be replaced by the other growth condition when the resonance also occurs at infinity.

Condition (a). There exist constants c_1 , c_2 , c_3 , $c_4>0$ and $0<\alpha<1$ such that $c_1\xi^{\alpha}-c_2\leqslant g_1(x,\ t,\ \xi)\leqslant c_3\xi^{\alpha}+c_4$, $\forall \xi>0$.

Theorem 3.2. Under the assumptions of Theorem 2.1 with condition (b_{∞}) being replaced by condition (α) , the conclusion of Theorem 2.1 still holds.

Proof It suffices to verify (P. S) condition. It is easy to see that there exist constants c'_1 , c'_2 , c'_3 , $c'_4>0$ such that

$$c_1'\eta^{\alpha}-c_2'\leqslant -h_1(x, t, \eta)\leqslant c_3'\eta^{\alpha}+c_4', \quad \forall \eta>0.$$

Suppose that the sequence $\{u_n\} \in R(A)$ has properties

$$|I(u_n)| \leq M$$
 and $I'(u_n) = Ku_n + au_n + Ph(u_n) \rightarrow 0$.

In order to get the existence of convergent subsequence of $\{u_n\}$, we only need to show the boundedness of $\{u_n\}$. Then the other steps for conclusion will be the same as we did in [1].

Setting $s_n = Ku_n + au_n + Ph_1(u_n)$ and making inner product with u_n^+ , we get

$$\frac{c|u_{n}^{+}|_{L^{2}}^{2} \leqslant \langle Ku_{n} + \lambda u_{n}, u_{n}^{+} \rangle \leqslant |\langle \varepsilon_{n}, u_{n}^{+} \rangle| + |\langle h_{1}(u_{n}), u_{n}^{+} \rangle|}{\leqslant c|u_{n}^{+}|_{L^{2}} + \int (c + c|u_{n}|^{\alpha})|u_{n}^{+}| \leqslant c|u_{n}^{+}|_{L^{2}} + c|u_{n}|_{L^{2}\alpha^{\circ}}^{\alpha} |u_{n}^{+}|_{L^{2}}.$$

Then

$$|u_n^+|_{L^2} \leqslant c + c |u_n|_{L^2}^{\alpha}.$$

In the same fashion, we obtain

$$|u_n^-|_{L^2} \leqslant c + c |u_n|_{L^2}^{\alpha}.$$

Thus we have

$$|u'_n|_{L^2} \leqslant c + c |u_n|_{L^2}^{\alpha} \leqslant c + c |u'_n|_{L^2}^{\alpha} + c |u_n^0|_{L^2}^{\alpha}.$$

It follows that

$$|u_n|_{L^2}^{\alpha} \leq c + c |u_n|_{L^2}^{\alpha}. \tag{10}$$

$$|u_n'|_{L^2} \leq c + c |u_n'|_{L^2}^{\alpha}.$$

On the other hand we have

er hand we have
$$\int |u_n|^{1+\alpha} \leq \int [c - ch_1(u_n)] u_n \leq c |u_n|_{L^2} - c \int h_1(u_n) u_n^0 - c \int h_1(u_n) u_n'$$

$$\leq c |u_n|_{L^2} + c |u_n^0|_{L^2} + c + c |u_n'|_{L^2}^2 \leq c + c |u_n^0|_{L^2}^{1+\alpha} + c |u_n^0|_{L^2}^{2\alpha}$$

and

$$|u_{n}^{0}|_{L^{2}}^{1+\alpha} \leqslant c |u_{n}^{0}|_{L^{1+\alpha}}^{1+\alpha} \leqslant c (|u_{n}|_{L^{1+\alpha}}^{1+\alpha} + |u_{n}^{\prime}|_{L^{2}}^{1+\alpha}) \leqslant c + c |u_{n}^{0}|_{L^{2}} + c |u_{n}^{0}|_{L^{2}}^{2\alpha}.$$

$$|u_{n}^{0}|_{L^{2}}^{1+\alpha} \leqslant c |u_{n}^{0}|_{L^{1+\alpha}}^{1+\alpha} \leqslant c (|u_{n}|_{L^{1+\alpha}}^{1+\alpha} + |u_{n}^{\prime}|_{L^{2}}^{1+\alpha}) \leqslant c + c |u_{n}^{0}|_{L^{2}} + c |u_{n}^{0}|_{L^{2}}^{2\alpha}.$$

$$|u_{n}^{0}|_{L^{2}}^{1+\alpha} \leqslant c |u_{n}^{0}|_{L^{1+\alpha}}^{1+\alpha} \leqslant c (|u_{n}|_{L^{1+\alpha}}^{1+\alpha} + |u_{n}^{\prime}|_{L^{2}}^{1+\alpha}) \leqslant c + c |u_{n}^{0}|_{L^{2}} + c |u_{n}^{0}|_{L^{2}}^{2\alpha}.$$

$$|u_{n}^{0}|_{L^{2}}^{1+\alpha} \leqslant c |u_{n}^{0}|_{L^{1+\alpha}}^{1+\alpha} \leqslant c (|u_{n}|_{L^{1+\alpha}}^{1+\alpha} + |u_{n}^{\prime}|_{L^{2}}^{1+\alpha}) \leqslant c + c |u_{n}^{0}|_{L^{2}} + c |u_{n}^{0}|_{L^{2}}^{2\alpha}.$$

$$|u_{n}^{0}|_{L^{2}}^{1+\alpha} \leqslant c |u_{n}^{0}|_{L^{1+\alpha}}^{1+\alpha} \leqslant c (|u_{n}|_{L^{1+\alpha}}^{1+\alpha} + |u_{n}^{\prime}|_{L^{2}}^{1+\alpha}) \leqslant c + c |u_{n}^{0}|_{L^{2}} + c |u_{n}^{0}|_{L^{2}}^{2\alpha}.$$

$$|u_{n}^{0}|_{L^{2}}^{1+\alpha} \leqslant c |u_{n}^{0}|_{L^{2}}^{1+\alpha} \leqslant c |u_{n}^{0}|_{L^{2}}^{1+\alpha} \leqslant c |u_{n}^{0}|_{L^{2}}^{2\alpha}.$$

$$|u_{n}^{0}|_{L^{2}}^{1+\alpha} \leqslant c |u_{n}^{0}|_{L^{2}}^{1+\alpha} \leqslant c |u_{n}^{0}|_{L^{2}}^{2\alpha}.$$

Noting that $1+\alpha>2\alpha$, we obtain $|u_n^0|_{L^2} \leqslant c$. Hence $|u_n'|_{L^2} \leqslant c$ and $|u_n|_{L^2} \leqslant c$.

Remark 1. Condition (a) could be slightly relaxed as follows:

There exist α , β with $0 < \beta < \alpha < (1+\beta)/2$ and constants $c_i > 0$ such that $c_1\xi^{\beta}-c_2\leqslant g_1(x, t, \xi)\leqslant c_3\xi^{\alpha}+c_4.$

In this case inequality (11) becomes

becomes
$$|u_n^0|_{L^2}^{1+\beta} \leqslant c + c|u_n^0|_{L^2} + c|u_n^0|_{L^2}^{2\alpha}.$$
 (11)'

However we can not verify (P. S) condition when the function g satisfies certain one sided growth condition such as

$$|g_1(x, t, \xi)| \leq c|\xi|^{\alpha}$$

All the theorems are true when the function g is autonom us by with $\alpha < 1$. Remark 2. means of the S'-index theory.

We wish to thank Prof. Chang K. C. for the benifitial discussions.

References

- Wu, S. P., A Resonance Case for an Asymptotically Linear Vibrating Strin Equation, J. Math. Anal.
- Chang K. C., Wu S. P. & Li, S. J. Multiple Periodic Solutions for an Asymptotically Linear Wave Equation, MRC Tech. Sum. Report, #2179.
- [4] Brezis, H., Periodic Solutions of Nonlinear Vibrating String, Proc. AMS Symposium on the Math.
- [5] Brezis, H, Coron, J. M. & Nirenberg, L., Free Vibrations for a Nonlinear Wave Equation and a
- Theorem of P. Rabinowitz, Comm. Pure Appl. Math., 33 (1980), 1-30. [6] Thews, K. Non-trivial Solutions of Elliptic Equations at Resonance, Proc. Royal Soc. Edinburgh, 85A (1980), 119-129.