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Abstract

This paper investigates structure theorems for some types of rings with involution in
which for everv symmetric clement s there exists a symmetric clement ¢ such that si=fs,
s=28%,

§$ 1. Introduction

Let B be a ring with involtion ée, and let S(R) be the set of symmetric elements
of R with Tespect t0 *,

' S(R)={sER|s=2"}.
Sometimes we will simply write S ingtead of S(R).

The structures of rings with involution have been investigated when S satisfies
cartain conditions, e. g. every non-zero symmetric element is invertible™, is not
nilpotent™ or is periodic™; S has Von Neumann regularity™; & satisfies a
polynomial identity™ or generalized polynomial identity™"; ete.

On the other hand, the concept of G-inverse of a complex matrix, which plays

_ gn important role in modern matrix theory, has been generalized to rings with

involution™,
Definition. Let A be o subset of @ ring R with involution *. An, element €A @8
said to be G-invertible in A if there ewists an element y € A such that A
wyv=wv, YY=Y )
(oy)* =y, (yo)*=Yo.
A ring R is said to be a G-ring if every element of R is G-invertiblein R. Risa
GS-ring if every element of S(R) is G-invertible in S(R). |
A division ring with involution ig 8 G-ring. The ring of all nxn matrices over
the complex field with transposed conjugation as the involution ig also a G-ring.
In thig paper we study the gtructures of some types of GS-rings.
Using the same techniques as in matrix theory, it has been shown that for each

olement & in a G-ring R there oxigty only one elementy satisfying (I). yis called the
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G-inverse of », and an operation - ig defined on R by setting #*=y. It is easy to see
(@")*=(a")".

Recall that a ring R with involution x ig called =—regular if zw* =0 implies =0
for any #€R. In a »—regular ring R, for every elements @, ¥, 2 ER, ywa® =ivw"
implies ya =2a(cancellation law). |

§ 2. GS-rings

Note that a symmetric element s is G-invertible in § if and only if there exists
t €S such that —
sts=s, tst=t, st=1s, (IT)
Lemma 1. In a GS-ring R there are no non-zero nilpotent dlements in S(R),
Proof Lets€s, and let t€ 8 satisfying (II), then
s=s%t == .. =g"""1, for every integer n>>2,
¢0 §=£0 implies s"#0 for every positive integer n, _
Corollary. In a GS-ring R, wa* =0 implies xa*=0 for every s ER. In fact, if
a” =0 then (&2)2=0, so #"5=0 by Lemma 1, '
Lemma 2. In a »regular ring B, if s is @ symmetrio dlement which s G-
snwertible in R, then s is Ginvertible in S,
Proof If yE€ R satisfies (I) with s, then sy= (sy)*=y"s and ys= (ys)*=sy", s0
s=sys=y"s® and s= (sys)" = sy*s=ys®. Therefore (y— y*)s?=0, so ‘
0=(y—1")s s(y"—9) = [(y—y")s1 [{y—y)sl".
which implies (y—y*)s=0, since B is s—regular. Thus ys=y's and sy=sy". So we have
y=ysy=y'sy" = (ysy)*=y".
Lemma 8. In a GS-ring R, for each sC S, there ewists only one element teS
satisfying (II).
Proof If there exist #, £, €S such that
t18t1 =151, St18=S, st1 =118
1osta =1, S1a8=S§, Sta =128,
then s=1tis? =12s%, [(#1—12)s]=0 and (t;—ta)s=0 by Lemma 1. But t,=13s, ta=13s, 80
§y —ty =I5 — 135 =tis—1a(t5) = (31 —ta) tas= (f1—1%a)st1 =0,
Lemma & A ring R is o GS-ring if and only &f for every sC & there ewists an
element $E€S swi@sfyfz}ng |
sts=s, st=1s, (III)
" Proof Suppose s and ¢ satisfy (I11). Let y=1st, then
shis=sists=s,  tusty=Tstslst= st =1,
sly =sist =1st8 =138,
50 s iy G-invertible in §,
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Theorem 1. If @ GS-ring R is prime, then 4t is either a =—regular ring or @
ring of 2 %2 matrices over @ field.

Proof Since R ig prime in which no non-zero oloment of S(R) is nilpotent, by
[B, p. 73], either sz* =0 implies o =0 for any #€ R, hence R is s-regular, or S(B)S
Z(R) the center of B,

In the second case, for any element s€S, s+0, there oxists an element ¢ES
satisfying (II). So for any s € E, |
4 _ ﬁ ' ws =wsts, (w—wst)s=0,
But s€ Z(R), R is prime, so s can nob be a zero-divizor. Thus w=ausi, for all s ER,
shereforoe st is the identity of ring R and s is invertible. By [B, p. 621, R is ‘either a
division ring, of course, it is a s—regular ring, or a Ting of 2%2 matrices oVer &
field, relative to the symplectic involution. - '

We will see in next section that in the first case, R just is a G-ring.

§ 3. G—ring,sf

Theorem 2. A ring B with involution = is @ G-ring of and only if B is &
s—rogular GS-ring. - "
Proof Let R be a G-ring, € R. If a5* =0, then

0=gz*(a*)* =o(ote) =oots=2
s

g0 R ig #—regular. By Lemma 2, all the gyminetric elements in R are G-invertible in

8, so R is a GS-ring. . .

Qonversely, let B be a »—regular GS-ring, and let # € RB. Then oo €8, so there
exigts ¢ €S such thai '

wwttor” =oat,  tow't=t,
2wt =tow”,

Lot y=a". Then wyws* =oo" implies (oys—o) (vys— w)*——=0 and sys=o; tos’t=1
implies ywy =y; 2"t — oo implies oy = (zy)*, and (y2)* =y 18 obvious.

Lemma 5. Every two sided ideal I in a G-ring R with tnvolution % is a widedl,

and I is a G-ring relative 1o *.
| Proof Let a€ I, then a*=a"aa* € I and
' a* = (aa*a)* =a*(ae*) " =a’aa* €I, |

Theorem 8. Let o be a homomorphism of @ G-ring R with involution = onto @
ring R'. Then = induces an involution on R, R is a G-ring relative to this inwvolution,
and

v ot (a)=c(a"),

for all aER, C _
Proof Let N={sER|o(s)=0}, then N=N*, R/N=R and = induces an
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" snvolution ¢*(@) = o(a") in B,
Let o €R and &' =0 (a). Since R is a G-ring so there exists a* € R satisfying
(I). Hence ‘
o(a)o(a")o (@) =0 (au*a) =0 (@),
o(at)o(@)o (a™) = o(ataa™) =0 (w*),

lo(a)o(@)]"=0" (a*a) =cl(@* @) ]1=0 (ata) = o(a")o (@),

[o(a)o(a*)]"=0"(aa™) — o[ (aa*)*) =0 (aa") =o(a)o(a®).
therefore R is a G-ring relative t0 its induced involution * and o*(@)=0 (a*) for
all aER. | |

§ 4. Strong 2—tdrSion free GS-rings

Definition. A ring B with involution * s called strong 2-torsion free if for every
s—ideal I in B, 20€1 impliesw € I for any zER, '

Lemma 6. If R isa strong 9-gorsion free GS-ring, then every x—homomonrphic
image R of R is also @ @8-ring. .

Proof Suppose o:R—>R, R/I ~R, where I is & «—ideal in R. For every
gymmetric eloment o’ —o(x) ESRD, o*(v) =0 () means 20 (0) = o(o+ao*). ‘

R ig a GS-ring, so there oxists an element tE8 (R) satisfying (II) with o+
Therefore (w+a%)t(+2") =g+, 20 (%) o' (£) 20 () =20 (x), and 2w+ 2-0—) EL. BY
the strong 2-torsion free property, o+2i:v=2, 80 a.(w)a(Zt)d(w) =0o(®).

Also o (8) +20(®) o (t)=a(t), 80 o‘(2t)0'(w)a(2t) =g (2t), and

o (@) -0'(2t)'=2o‘(w)o*(t) =o[(z+5")t] —o[t(z+aM)] =g (2t)o (@),
Thus o (2t) satisfies (1), with &/, and R is a GS-ring.

Now Wwe can prove our main theorem.

Theorem 4. 1f R is a strong o-torsion free GS-ring with Jacobson radical J,
then J&={0} and R/J is @ subdirect sum 'of s—primitive rings R,, «a€Q, some Q,
where each Ro is either & primitive G-ring or @ Ting of 2%X2 matrices over o field or
R,=P.®P., where P, is a division Ting.

Proof Forany® €R,ifs€l (R), then there oxists an element ¥ ES(R) such
that wys=w, since B i8 GS-ring. If furthermorse ¢ CJ, then there oxists an element
2 € R such that oy+2=22Y, sherefore @yw-+20=22YT, oys=2=0. S0 S(R)NJ =1{0},
But, for every s€J, woe knew ot+o €J NS(R), which means z* = —a for every
&€ J, hence J3={0}. '

Lot E=R/J. R is semi-primitive, 40 18 a subdirect sum of primitive Tings R,
o€ Q, some Q. R.,=R/P, Qg p,={0}, where {Pa} i8 the set of all primitive ideals

of R.
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Noto that ﬂQPa= Q (PaNPa), gince Py is also 2 primitive ideal in R. So the
1]

ac

ring R is o subdirect sum of rings R,=R/(Pa0 P, «€Q,

For the gimplification, W€ write P instead of Pa.
If P= P*, then Ra= R/P, is primitive, S0 it ig prine. By Lemxod 6, R, is GS-Ting.
By Theorems 1 and 2, R is either & @-ring or & Ting of 2% 2 matrices OVOL & field.

I¢ P+ P", then in the ring R, there are wo ideals P/ (PN P and P*/ (PNPH |
guch that P/(PN PHYNP/ (PN P*)={0}. So R, has a wideal I=P/(PN PH+
P/(PNP). It i eagy 1o see S(I) =1 AS(R). - |

Since R, is a GS-ring, S0 for every s€iS (I) there oxists an clement €S (Ra)
cotisfying (II) With s. |

But i=1s€INS (Rs) =8 (I), Which means T is also a GS-TING.

On the other hand, for every s€P/(PNPY, (z, ®) €8(I), so there oxigts an
olement t€8(I) satisfying (1), with (w, @). Bub every gyrametric olement in I
must be of the form (z, 2), 2€P/ (PN P"). Suppose t=(, ¥)» yeP/(P (P*), then

(w, ©)(y, (@ )= (2, 2),
G, o) (@ W = (y, ¥
| (@, %) (@, V) =@ V& o), |
therefore zys =2, Y2Y=Y oy =yo. Thus, ring P/ (P NP isa -Ting

Additionally, P/(PN P (P+PH/F, (P+P")/P* 18 & two sided ideal of
primitive Ting R:=R/P*, 80 P/(P N P¥) isalso a primitive ping™ e . By [10], a
primitive §-Ting ig a division ring S0 P/(P nP*) ig a division Ting and I is the
direct sum of & divigion Ting and itg opposite ring.

Let ¢ be the identity of ring P/(P nP*), then for any %, yel and rERq We
have : ‘ |

[r(et+e)—7) (w+y") =a_'em—-q'w+rre*y*——ry* =0,
which means [r (e+6)— +1I=1{0}.

Let

1103

J = {u€Ra|ul =0},

then J is a tWO gided ideal of TIng R,and JI= {0}. Since ring B i8 *—primé, hence
it ig semi-prime [3]. Qo J I ={0} implies (IJ)?= {0}, IJ = {0} and J'I= {0y, J*cJd,
J is a »—ideal. But, T7+{0}, 80 J ={0}.

In a word, for any 7 €R,, r(ete) —r=0, o-¢* is the identity of ring Ra,
therefore Ra=I=F /(PNPY) @P'/(PN P9,

Here we would like to give & IMOre complex oxample of & primitive G-ring,
constructed in [al. ' ‘

Let U be all the countebly infinite matrices over K, the real numbers, which.

have the form
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A0
00
where A is a nXn matrix and n varies. U has ordinary transpose * as involution.

~ For each n€ N, the natural numbers, let U,=U, Ny=N and form the direch
products '

R=11U, P=I1Na
neN

neEN
R hag an. involution # defined componentwise by ff(n)=Lf (m)71",

Let F be a mon-principal untrafilter on N. Define the mapping o R—P by
a(f) (@) —rank f(n) for each n€N, and |
J={f€R: 3kEN, GEFeyYndq, o(Hm) <k},

Tt was shown in [2], that J isa »—ideal and R/J is a primitive ring with involution
and zero socle in which for each symmetric olement there exists an element ¢ such
that s%c=s, sc=0s,

We prove that R/J is a G-ring.

Note that -:ét- €U and —%— € R. Thus if s%=s, sc=08 then %" =s, sc*=c"s and s’ =
s, st=ts, where {= (c+¢*) ES(R/JT), which means R/J is a GS-ring. ‘

For any element f € R, if ff*€J, since rank (ff*) (n) =zank f(n). So R/J is a
x—rogular ring. ' | '

Therefore B/J is a primitive G-ring, by Theorem 2, with zero socle.

§ 5. G-rings whose sets of symmetric elements
are commutative

The definition of G-inverse is & generalization of the definition of inverse in an
agsociative ring. But not in every G-ring R the G-inverse property always satisfies |
aat =a*a, (bo)* =c*b*, av)
- for all @, b, ¢ € R like the inverse property does in every ring.

For example, let B be the 2X2 matrices Ting over real field, " be the transposed

matrix of @, for every ¢ € R. Thisis a G-ring.
Let | _

0 1 10 (1 0
a= ; b= , €= ’
0 0 00 10

1 1

a+=<0 0), b*=b, c+=<'§ ~2—>
10 0 0

Furthermore, we geob

PN R At

then.
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Loy (1 0\ (10
b(} += =
aor=((2 %) (2 2 =6 o)
11 | 1
c+b+=(2 2) (1 0>=<7 0 )
o o) V0% oo

aat=0"a, (bo)r=c*b".

Lemma 7. Let B be & G-ring such that for every v ER, ot € Z(R), the center
of R. Then for every w, yE R, . '

ww* =o*w, (my)ir =qyta®,
and 2y =Y% imyplies ©*Y =yu’,
Proof Xirst pote if € R, then sro=ot(@)*E Z(R). 8o
wot = (wo*)? — o(zto)* =gtpeaat = ot (o) s =2"0,

We can directly check that y*aﬁ‘f catigfies (I) with oY, s (w)*=y" »+ by the
uniqueness of G-inverse. '

If oy =yw, then |

ory=at(er)y=o"Y (20 =o* () @" =Y (w*o)at =yo".

Theorem 5. Elements @, Y in @ G-ring whose set of symmetrio elements @8
commutative swtrz',sfry (IV) and wat =",

Proof Let J be the Jacobson radical of R. For any non-zero element s€R,
(ant)2 =05 +0, 80 wetd . Mherefore J = {0}. R 18 gemi-primitive. But § is
commutative, §= 7(8). By [5, P 239], S=Z (8)cZ(R). Thus, 2o* = (ao*)*ESC
Z(R), for a1l » € R. By Lemma 7, the elements of R satisfy (IV)- '

Tor every s ER, o7 s €8cZ(R), 80 w(pt+o) = (w-+5")®, therefore vs* ="

Corollary. Every left (right, tvo sided) ideal 1S @ w—ideal in @ G-ring whose
symmetric clements commute with each other.

In fact, let L be & 1eft ideal in R and o€ L, we have

o= (ewte)" = o (o ) = (s*2")wE L,
The right and ¥WO gided ideals cages 8I° eagily proved.

Theorem 8. Every G-ring R awhose set of symmetrio clements 18 commutative s &
subdérect SuMm of diviston rings R, wEQ, some Q, where ecach Ra either has @
commutative seb of symmetrio lements or has ch Ru=2 and (my~ym‘)2 c Z(Ry) for any
v, y€Ra.

Proof Risa gomi-prime Ting, hence R is a subdirect gum of prime rings Ra,
€0, some Q. |

By Theorem 3, each Rq 18 & G-ring and Ra= R/I,, where I,is 8 s—ideal. Leb o
be the homomorphism of R onto . '

If wC Ry and u= o(a), ¢e€R, then u* =0 (a") by Theorem 3. Ris gomi-prime and
S(R) is commutative, SO ScZ(R) by (5, p- 932]. But aa” ¢ Z(R) means '
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- wt=o(a)E Z(Ra).

Note that R, is prime, (uu*)? =un® € Z(Rq), so for any @ €R,, [wuu*—s]un®= 0.
If w0, then wu* #0. So zuu® =« for any 4 € R,. Therefore, every pon-zero element u
in R, must be invertible, R is & divisi(_)n ring with involution.

Furthermore, for every 2 € R,, suppose z=o(b), bER, then

w+o* =0 () +o* () —o(b+b") €EcZ(R)] —Z(Ra),
vt =o(B)o*(b) =0 (bb*) €Z (Ra).

So for every symmetric oloment  in ring Ra, ¥’ € Z(Ra), 2u€Z (Ra).

If ch R, %2, 2u€Z (R,) implies u€ Z(Ra), for any %€ S (R,). Therefore R, hasa
commutative set of symmetric elements.

1f ¢h B,=2, for every %, yE Ry, o+9" € Z(R,) implies (+o")y= y(o+a*), oyt
yo=a"y+yv'; Y +4y*€Z (Ra) implies #y+ys= oy +y'w, S0 BY+YP €S(Ry), (oy— yx)?
€Z(Ra).

Remark. If the set S(R) of gymmetric olements in a division Ting R with
involution and chR=2 18 commutative, then B itgelf is commutative. ' |

In fact, suppose € R, v Z(R), then there exists y € R guch that oy -+ 2y #0. By
Theorem 6, wy+yw€S(R} ~Z(8)cZ(R). So o (oy +ym) —goay—2y-wES and

o (wy+yo) = [ (ay+yp)1* = (@Y +y2) 7.
On the other hand @y + yrEZ(R), 80 aw(y+yv) = (wy-+yo)®, thus
(wy-+ym) (w—a") =0, o=2"

which ig a contradiction since SR)CZ(R).

The author will always be indebted to Professor Martindale for his advice, help

and encouragement.
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