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.Abstract
This note is concerned with the equation
. %%—+g(w)=p(t), @
where g(®) is a. continuously differentiable function of r¢ R, zg(x)>0 whenever 0, and

g() /% tends to co as || ~>eo. Lot p(t) be 2 bounded function of ¢ € R. Define its norm by

|p| =supser [P |
The study of this note leads to the following conclusion which improves 2 result due to

J. E. Littlewood. :

For any given small constants a>0 and >0, thereis a continuous and roughly periodie
(with respect to Q(a)) function p(t) with ol <e such that the corresponding equation (1)
hag at least one unbounded solution.

§ 1. Introduction

In this note we are ooncerned with the equation

L2 1 g(a) =@, @0

‘where g(o) is, for gimplicity, & continuously differentiable function of z€R, wg(w)

0 whenever #+0, and g(w) /o increases t0 o° as |o]|—>oo. Let p(t) be a bounded
function of + ¢ R. Define its norm by
|p] =supeerl 2|
For any constant a>>0, consider & family of intervals.
| T (o) ={tER: |t—nw| <a}, (n€a&),

and a cloged set
Q(w) =R\U,ezla(®).

Noto that 2(0) =R,
A function p(f) is said t0 be roughly periodic (with respect 0 Q(e)) it p(t-+2m)
=p(t) for all 1€ (). A function p(t) is said to be roughly periodio in limit (with
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respect to Q(a)) if there is a constant 7=7(e) >0 such that p(é-+2mw) =p(¢) for all
t € Q(a) whenever =>7. T4 is clear that if p(¢) is roughly periodio, then it i8 roughly
periodic in limit; bus the convyerse is not frue in general.

In 1965, J. B. Littlewood™ proved that for any given positive constant o, there
ig a sectionally continuous function p(4) with |p|<1, which is roughly periodic in
limit(with respect to Q(a)), such that the ahove-stated equation (1.1) admits at loast
one unbounded solution. However, G. Morris™ proved the boundedness of solutions
of (1.1) in a very special case of that g(a)=20° and p(¥) in2m—periodic Therefore,
it is 0.K. O.K. to decide whether all solutions of (1.1) are bounded if p(t) is a con-
tinuous periodic funotion with small norm (cf; [81), or even if p(f) is & continuous
and roughly periodic function with small norm. '

The study of this note leads o the following conclusion.

Tor any given small constants >0 and >0, there i3 a continuous and roug-
hly periodic (with respect o Q(a)) function p(t), |p|<e, guch that the correspond-
ing equation (1.1) has a% least one unbounded solution. |

§ 2. Auxiliary equations

We first consider an auxiliary equation

do_, 8 __g@y+l
By, Y eg@)+5 B, @.1)

where E is a positive constant. Let

6(a) =2 g(@)ds.
Then a first integral of (2, 1) can be derived in the following form
y?+ [G(2) — Bl =G (0) — He, L (2.2)

where ¢ is an arbitrary constant. Since
—%;[G(w) — Ex]—>o0 a8 |#]|—>00,

the equation (2, 2) defines & simple cloged orbit I's(c) whenever |e| is large enough.
It can easily be seen that I'y(¢) surrounds the origin of (w, y)-plane and ig symme-
iric with respeot to s—axis. Let 71(c) denote the least period of I'1(c)- Then we arrive
ab ' ‘ B
o do
%(0) =2j—a MO RO Tk
where the constant >0 is determined by

G(—‘-a)+Ea=G(c)—Ec, v (2.8)

or in other words, I's(c) intersects the w—axis at the points (¢, 0) and (—a, 0). As |

in [1], we can prove



No. 4 Ding, T. E. UNBOUNDED SOLUTIONS OoF CONSERVA’I‘IV R OSGILLATOBS 689
(2.4)

pi(0)=0(1) as e, '
Let I'y(¢) intersect the y-axis ab the points (0, b) and (0, —b). Then We havé
b=~/ G()—Ee, (2.5)
which increages t0 < as ¢—>.
Denote the motion of(2.1)satisfying the initial condition (w(£), y(@©)=(-a 0)
by
' m=——w1(t, g: 0), y=flj1(t, 5, C), (26)
for 1€ [f , &+ <k+ %)m‘i (c)]. Geometrically, the motion (2.6) moves clockwise along
the orbit I'1(¢) from the point (—@ 0) to the point (¢, 0) for <k+—%—> turns.

We next consider another auxiliary equation

o _, 9 _g@) -5 |
dt y’ . dt g(m) 2 En (2'7>
Tn the same way a8 before, we get & first integral

y?+ (G (@) + Ho] =Ge) +EHe, (2.8)

which defines a cycle I'a (c) of (2, 7) whenever ¢ is large enough. The cycle I (¢) has
a gimilar property as that of I'1(¢); and its least period is defined by

o do
wa(0) =2§ TG (o) + el -G (o) + Bo]’
where the constant >0 is determined by
G(——e)—Ee=G(c)+Ec-. (2.9)

This means thab I'y(c) intersects the w—axis ab the points(—e, 0)and(c, 0). Moreover,

we have
za(c) =0(1) @8 >0, (2.10)
Let I'a(c) intersect the y-axis ab the points (0 d) and (0, —d). Then we get
4=~ G(o)FEe, (2.11)

which increages 10 o° ag c—>°. _

Denote the motion of (2,7) satisfying the jnitial condition (w(n), y() = (0 0)
by _ o | _
o=us(t, M, €, y=12(t, M, ). (2.12)

for tE€ [n, n+(l+%—> Ta (c)]. Then the motion (2.12)moves clockwise along the orbib

I'a(c) from he point (¢, 0) to the point (—é, 0) foﬁ:(l—l——ig—) turns.

§3. An quxiliary motion

For any given congtant oa>0(a>%—>, it follows from (2 .4) and (2 ,10) that there

oxists a constant® ¢*>0, such that
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73(¢) +7a(c) <—‘;—: whenever ¢=¢". (8.1)

By (2.8), we can assume a=ay>0 is so large that the corresponding congtant 6=0 i8
larger than ¢*. Then Wwe got £=0 and ¢=¢o In the motion(2.6), and by (8.1), we can
chooge an integer k=Tk=>0, such that '

t= <k0+ %‘)71(0_0) el 1(—%—).
Tn this case, we denote the corrégponding motion by
o=po(t), y=o(t) (O<i<ty),

with the corresponding numbers @, 6o and bo defined by (2.3) and (2.5).

Next, we pub n=11 and ¢=¢p in the motin (2.12), and by (8.1), we can take an
integer I =110, such that

n—tot (ot (o) €1 (5).
And in this cage, we rewrite (2.12) in the form
ompu(i), Yy=hu() (a<i<h),

with the corresponding numbers ¢, ¢ and d, defined by (2.9) and (2.11).

Tt follows from (2.8) and (2.9) that

G(—eo) —G(—ao) — F (ao+e0+200) >0,

which implies that éo> o- Therefore, if we put &=a1="¢ in (2.8), the corresponding
constant ¢=c, i larger than ¢*. Then the above-stated procedure can be repeated once
more. _ , o .

In general, we can successively define & séquence of motions

o=pu(®), Y=o, (ta<t<tws1), (3.2

with £, € I,(%—) (n=>0). When n=2j, (3.2)s i8 @ golution of the equation (2.1),
with the corresponding constants a;, ¢; and bj, determined by (2.8) and (2.5); when
n=2j+1, (3 .2), i8 & solution of (2.7), with the corresponding constants ¢;, and d;,
determined by (2.9) and (2.11), and moreover, apra=e;>a (§=0, 1, 2, ),

Qinco @n (fasr) = Purt (fary) 804 P (Barr) = Pura (tn+r), WO obtain a continuous

motion

s=p(1), y=$(@) (ER), (8.3
by combinning (8.2)n (n=0, 1, 9, «++) together and then taking a continuition as
follows

o(—t) =o(), P(—0)= —g@)  @=0).

Hence, the motion (8.8) satisfies the equation
dit Y, dt g (w) ! f (t)) (3 4)
where f(#) is an even function, and is equal 0 (—1)”—1; on the interval (f, ta+1) (@

=0,1,2, ).
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It may be noted that ¢’ (&) =y (#) is continuous in +CR, but ¥ (@) (=¢/(—1)) is
discontinuous at the points {&1,}, with the limits '

[ -—g(—-aj)—l——%—E, when t=15-+0;

“g(OD +%— E, when t=t25+1—*0;
VAOR
‘ —g(c{i) ‘——%‘ E, when t=t25+1+ 0

L —g(-—aﬂi)——-é—E, When. t=t25+2“"0,

(j=0, 1, 2, ). |
Now, we are going t0 prove the unboundedness of the auxiliary motion (8.3),
that is '

Lemma 1. The functions p(t) and (%) are unbounded o R.

Proof In guffices to prove the anboundedness of the sequence {@} -

Now, suppose on the contrary that the sequenée {ay} is bounded. Then the gequen-

- ce {c,} is also bounded. Since they are increasing, their limits exist, say

A=lima, and C=limcy,

n—rce n—ro

Then
, A+C=ay+0o>0. (8.5)
On the other hand, it follows from (2.8) and (2.9) that

G(—a,) —G(— 1) + Ba,+ Ban1+2Ec,=0,

Betting n—>c0, We conclude that

2B (A+C)=0, -
which contradicts (3.5). We have thus proved the desired conclusion.

§$ 4. The main theorem

By means of smoothing the auxiliary motion (3.3), we are trying to look for a
continuous function p(t); with the desired property gtated in the Section 1, ingtead
of the function F(¢) in (3.4). The basic technigue congists of the following lemmas.

Oonsider the equation '

TV W g@)+B  (s<t<r), (4.1)
where the constants B+0, and s<r. Let

w=2(t), y=y() (s<t<<r) (4.2)
be & continuous solution of (4.1), where we mean that s=s--0 and r=r—0. Assume
that . _

w(s) =0, o(r) =0, y(&) =0, y(1) =0, (4.3)
Then we have
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7 (s) =y (=0,

and :
o (5)=2"(8) = —g(o)+B. 4.9
Lemma 2. For (4.2), we cam find an arbitrarily small positive constant O, and @
pair of continuousty differentiable fumnctions
u=u(t), p=v(t) (s<t<T)5 (4.5)
such that
(1) the identibies
u() =2 (@), v =y(t)
hold on the snterval [s1, 71 (s1=s+ d);
(ii) u(s) =0, w(s) —p(s) =0 and

W (s)=u' ()~ —g(0), (4.6)
(111) (4.5) satisfies the equation
&, & - — g () +h(®) (4.7

on [s, 1, where h(t) is continuous on [s, 11, with the properiies: (D)h(s) =0; @Q)r@E) =
B for all 1€ [s1, 715 @) |h() | <18| B| onls, . |
~ Proof First, WO define
u(®) =@, v —y(t) onlss, 7l
Then leb '

oy =—L (-9 G~ s1>2+w-—s> (4—5)*
NGB TORIC O NG

on the intervalls, $11, M bemg an mdetermmed parameter T can be verified directly
that

w(s) =0, ¥ ()= —g(0)
v(sy) = y(si) v (s0) =Y '(81),

which guarantee the continuous differontiability of v($) on I8, r]. Then we sot

u(t) = S 'v(t)dt—l—w(s) fortE[s $11,

and

and
u(ss) = Sv(t)dm(s)——w(so, | . (4.8)

which imply that u(t) 18 continuously d1fferent1able on [s, r]. It follows from (4.8)
thatb

[ (9= oD w(s)>+_.<,_g (1-9) G0
_La-oleer@®Ts 2y (60) -8 e

Then we obtain
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1= 20 (a(o) ~0(9) + 7 9() - G-y ¢
and the functions v(¥) and u(t) are completely defined on [s, r]. Hence, what is loft
now ig the proof of (iif). .
Tn what follows £ always gtands for an infinitesimal as 6—0, i. o, £=0(1) as
5—0. Using (4.9), togethes with the following estimates

o(s2) —(s) =08 (§) +-5- (" () +E) = 2 (g(0) ~B)+%,
2 )=~ F WO 1= (9() - BY+%,

2 y(sd=—2(g(0) ~B)+ %,

12
we obtain 7\,=—g§3—+—§; £,

which implies fv(t‘) =¢ on s, sil.
Then we conclude that, for t€ [8, s1l, ‘

u(t) =w(s) +Ys v()dt=0+E

gu@)=g9(@)+& (4.10)

and

On the other hand, gince

o ()= — L8 (10" 206 (3-5) (4=

+ 20y 0)-+ (o (50— 5Y() -]+ (e -2 w55
L[ (Gs) (=) + 9 (E—sD] (st

we have
o' (8= —9(o) +4B<ig-§>~33 (Lg_if +BB [(i“;)(i:gif
+<Lg-s-)2 (i”iaﬁl)] +£ for t€[s, sl (4.11)
Let h(t) =" () + g(u()) on [s, 1.

Then k(t) is continuous on Ls, 1, and h($) =B for all 1€ [sy, 1. Note that
h(s) =2 () +g(u(s)) = —g(e) +9(@) =0.
Trom (4.10) and (4.11), we obtain the desired estimate
|1(5) | <4|B| 4+3|B|+10|B|+ | B| =18 B|
prorided that & |<|B|, ordis sufficientlysmall. the proof of the lemma is completed.
Tn the same way, We can piove the following lemma.
Lemma 3. For (4.B), we can find an arbitrary small fposritfime constant O, and @
pair of continuously di fferentiable fumctions
| =), v=1® (s<t<r), (4.12)
such that (i) the identities a () =u(t), v(EH=v (%) hold on the snterval [s, r1] (ri=1—8)%
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(i) u(r) =0, ¥ )=o) =0 and T () =" (1) = —9(0)s
(i) (4.12) satisfies the equation

du _, 0 _ 7
L= g g(u) +h () (4.13)

on [s, 71, where k(%) is continuous on [s, r1, with the properties: (1) h(r)=0; 2)
k(t) =B for alb $€ [s1, ril; (3) \R (%) | <18|B| on Ls, r].

Now we are ready to prove $he main result of this note.

Theorem. For any given function g(w) € CH(R,, R)with the properiies mentioned
in the first section, and for any given constants a>0 and >0, shere is @ continuous and
roughly periodic(with respect to Q(a)) function p(8), || <&, such that the corresponding
equation (1.1) admits at least one unbounded solution. '

Proof We gtart with the auxiliary motion (3 .8). Then, applying Lemmas 2 and
3 to (3.8) on the intervals [s, #1= [tn, faral (or[ —tns, —tnl); (n=0, 1, 2, +=*), We
get a pair of continuously differentiable functions
u=u(t), v=2(), (4.14)
on the interval [s, =1, which satisfies the following conditions:
(1) u(s)=0(s), 2 =), w(r) =p(r), v() =)
(i) v'(s)=—g()), v)= —g(ur)s
(i) (4.14) satisfies the equation
By, Lo g +2 (4.15)
on [s, r1, where p(t) is continuous on [s, 7], p(s) =p(r) =0, lp(f) | <9E on [s, r],

and p(t) =(—1)" %’1— on [s+a, r—a] when s=tp, =1 =141 (0T §= ~lnss, T —tn) -

 THence, it follows that there i3 & pair of continuously differentiable functions
(4.14) defined on R, which is unbounded because of (i), and satisfies the equation
(4.15)with a continuous function p()on R. Moreover, p(t)is roughly periodic (with

respect 1o 2(a)), and |p| <& whenever E=—$e 6. We have thus proved the degired

conclusion.
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