UNBOUNDED SOLUTIONS OF CONSERVATIVE OSCILLATORS UNDER ROUGHLY PERIODIC PERTURBATIONS

(丁同仁) DING TONGREN

(Beijing University)

Abstract

This note is concerned with the equation

equation
$$\frac{d^2x}{dt^2} + g(x) = p(t),$$

where g(x) is a continuously differentiable function of $x \in \mathbb{R}$, xg(x) > 0 whenever $x \neq 0$, and g(x)/x tends to ∞ as $|x| \to \infty$. Let p(t) be a bounded function of $t \in \mathbb{R}$. Define its norm by $||p|| = \sup_{t \in \mathbf{R}} |p(t)|.$

The study of this note leads to the following conclusion which improves a result due to

For any given small constants $\alpha>0$ and $\epsilon>0$, there is a continuous and roughly periodic J. E. Littlewood. (with respect to $\Omega(a)$) function p(t) with $||p|| < \varepsilon$ such that the corresponding equation (1) has at least one unbounded solution.

§ 1. Introduction

In this note we are concerned with the equation

$$\frac{d^2x}{dt^2} + g(x) = p(t), \tag{1.1}$$

where g(x) is, for simplicity, a continuously differentiable function of $x \in \mathbb{R}$, xg(x)>0 whenever $x \neq 0$, and g(x)/x increases to ∞ as $|x| \rightarrow \infty$. Let p(t) be a bounded function of $t \in \mathbb{R}$. Define its norm by

$$||p|| = \sup_{t \in \mathbb{R}} |p(t)|.$$

For any constant $\alpha \geqslant 0$, consider a family of intervals

$$I_n(\alpha) = \{t \in \mathbb{R} : |t - n\pi| < \alpha\}, \quad (n \in \mathbb{Z}),$$

and a closed set

$$\Omega(\alpha) = \mathbf{R} \setminus U_{n \in \mathbf{Z}} I_n(\alpha)$$
.

Note that $\Omega(0) = \mathbf{R}$.

A function p(t) is said to be roughly periodic (with respect to $\Omega(\alpha)$) if $p(t+2\pi)$ =p(t) for all $t\in\Omega(lpha)$. A function p(t) is said to be roughly periodic in limit (with

Manuscript received November 16, 1982.

respect to $\Omega(\alpha)$ if there is a constant $\tau = \tau(\alpha) > 0$ such that $p(t+2\pi) = p(t)$ for all $t \in \Omega(\alpha)$ whenever $t \gg \tau$. It is clear that if p(t) is roughly periodic, then it is roughly periodic in limit; but the converse is not true in general.

In 1965, J. E. Littlewood^[1] proved that for any given positive constant α , there is a sectionally continuous function p(t) with $||p|| \le 1$, which is roughly periodic in limit(with respect to $\Omega(\alpha)$), such that the above-stated equation (1.1) admits at least one unbounded solution. However, G. Morris^[2] proved the boundedness of solutions of (1.1) in a very special case of that $g(x) = 2x^3$ and p(t) in 2π -periodic Therefore, it is O.K. O.K. to decide whether all solutions of (1.1) are bounded if p(t) is a continuous periodic function with small norm (cf. [3]), or even if p(t) is a continuous and roughly periodic function with small norm.

The study of this note leads to the following conclusion.

For any given small constants $\alpha>0$ and $\epsilon>0$, there is a continuous and roughly periodic (with respect to $\Omega(\alpha)$) function p(t), $||p|| < \epsilon$, such that the corresponding equation (1.1) has at least one unbounded solution.

§ 2. Auxiliary equations

We first consider an auxiliary equation

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = -g(x) + \frac{1}{2}E, \qquad (2.1)$$

where E is a positive constant. Let

$$G(x) = 2 \int_0^x g(x) dx.$$

Then a first integral of (2, 1) can be derived in the following form

$$y^{2} + [G(x) - Ex] = G(c) - Ec, (2.2)$$

where c is an arbitrary constant. Since

$$\frac{1}{x^2}[G(x)-Ex]\to\infty \text{ as } |x|\to\infty,$$

the equation (2, 2) defines a simple closed orbit $\Gamma_1(c)$ whenever |c| is large enough. It can easily be seen that $\Gamma_1(c)$ surrounds the origin of (x, y)-plane and is symmetric with respect to x-axis. Let $\tau_1(c)$ denote the least period of $\Gamma_1(c)$. Then we arrive at

$$\tau_1(c) = 2 \int_{-a}^{c} \frac{dx}{\sqrt{[G(c) - Ec] - [G(x) - Ex]}},$$

where the constant a>0 is determined by

$$G(-a) + Ea = G(c) - Ec, \qquad (2.3)$$

or in other words, $\Gamma_1(c)$ intersects the x-axis at the points (c, 0) and (-a, 0). As in [1], we can prove

$$\tau_1(c) = o(1) \quad \text{as } c \to \infty. \tag{2.4}$$

Let $\Gamma_1(c)$ intersect the y-axis at the points (0, b) and (0, -b). Then we have (2.5) $b = \sqrt{G(c) - Ec}$

Denote the motion of (2.1) satisfying the initial condition $(x(\xi), y(\xi)) = (-\alpha, 0)$ which increases to ∞ as $c \rightarrow \infty$.

Denote the motion of (2.1) satisfying (2.6) by
$$x = x_1(t, \xi, c), \quad y = y_1(t, \xi, c), \quad (2.6)$$

for $t \in \left[\xi, \xi + \left(k + \frac{1}{2}\right)\tau_1(c)\right]$. Geometrically, the motion (2.6) moves clockwise along the orbit $\Gamma_1(c)$ from the point (-a, 0) to the point (c, 0) for $\left(k + \frac{1}{2}\right)$ turns.

We next consider another auxiliary equation

ther auxiliary equation
$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = -g(x) - \frac{1}{2}E. \tag{2.7}$$

In the same way as before, we get a first integral

we get a first integral (2.8)
$$y^{2} + [G(x) + Ex] = G(c) + Ec,$$
The cycle $\Gamma_{2}(c)$ has

which defines a cycle $\Gamma_2(c)$ of (2, 7) whenever c is large enough. The cycle $\Gamma_2(c)$ has a similar property as that of $\Gamma_1(c)$, and its least period is defined by

that of
$$I_1(c)$$
, and $I_2(c) = \frac{dx}{\sqrt{[G(c) + Ec] - [G(x) + Ex]}}$,

where the constant e>0 is determined by

termined by (2.9)
$$G(-e) - Ee = G(e) + Ec.$$
opend(e, 0), Moreover,

This means that $\Gamma_2(c)$ intersects the x-axis at the points (-e, 0) and (c, 0). Moreover, (2.10)we have

$$\tau_2(c) = o(1) \quad \text{as } c \to \infty. \tag{2.10}$$

Let $\Gamma_2(c)$ intersect the y-axis at the points (0, d) and (0, -d). Then we get (2.11) $d = \sqrt{G(c) + Ec}$

Denote the motion of (2, 7) satisfying the initial condition $(x(\eta), y(\eta)) = (c, 0)$ which increases to ∞ as $c \rightarrow \infty$. (2.12)by

$$x = x_2(t, \eta, c), y = y_2(t, \eta, c).$$
 (2.12)

for $t \in \left[\eta, \eta + \left(l + \frac{1}{2}\right)\tau_2(c)\right]$. Then the motion (2.12) moves clockwise along the orbit $\Gamma_2(c)$ from the point (c, 0) to the point (-e, 0) for $\left(l+\frac{1}{2}\right)$ turns.

§ 3. An auxiliary motion

For any given constant $\alpha > 0 \left(\alpha > \frac{\pi}{8}\right)$, it follows from (2.4) and (2.10) that there exists a constant $c^* > 0$, such that

$$\tau_1(c) + \tau_2(c) < \frac{\alpha}{4}$$
 whenever $c > c^*$. (3.1)

By (2.3), we can assume $a=a_0>0$ is so large that the corresponding constant $c=c_0$ is larger than c^* . Then we set $\xi=0$ and $c=c_0$ in the motion (2.6), and by (3.1), we can choose an integer $k=k_0\geqslant 0$, such that

$$t_1 = \left(k_0 + \frac{1}{2}\right) r_1(c_0) \in I_1\left(\frac{\alpha}{2}\right).$$

In this case, we denote the corresponding motion by

$$x = \varphi_0(t), y = \psi_0(t) \quad (0 \le t \le t_1),$$

with the corresponding numbers a_0 , c_0 and b_0 defined by (2.3) and (2.5).

Next, we put $\eta = t_1$ and $c = c_0$ in the motin (2.12), and by (3.1), we can take an integer $l=l_1\geqslant 0$, such that

$$t_2 = t_1 + \left(l_1 + \frac{1}{2}\right) \tau_2(c_0) \in I_2\left(\frac{\alpha}{2}\right).$$

And in this case, we rewrite (2.12) in the form

$$x = \varphi_1(t), \quad y = \psi_1(t) \quad (t_1 \leqslant t \leqslant t_2),$$

with the corresponding numbers c_0 , e_0 and d_0 defined by (2.9) and (2.11).

It follows from (2.3) and (2.9) that

$$G(-e_0)-G(-a_0)=E(a_0+e_0+2c_0)>0,$$

which implies that $e_0 > a_0$. Therefore, if we put $a = a_1 = e_0$ in (2.3), the corresponding constant $c=c_1$ is larger than c^* . Then the above-stated procedure can be repeated once more.

In general, we can successively define a sequence of motions

successively define a sequence
$$x = \varphi_n(t)$$
, $y = \psi_n(t)$, $(t_n \le t \le t_{n+1})$, $(3.2)_n$

with $t_n \in I_n\left(\frac{\alpha}{2}\right)$ $(n \ge 0)$. When n=2j, $(3.2)_n$ is a solution of the equation (2.1), with the corresponding constants a_i , c_i and b_i , determined by (2.3) and (2.5); when n=2j+1, $(3.2)_n$ is a solution of (2.7), with the corresponding constants c_j , e_j and d_j , determined by (2.9) and (2.11), and moreover, $a_{j+1}=e_j>a_j$ ($j=0, 1, 2, \cdots$).

Since $\varphi_n(t_{n+1}) = \varphi_{n+1}(t_{n+1})$ and $\psi_n(t_{n+1}) = \psi_{n+1}(t_{n+1})$, we obtain a continuous (3.3) $x=\varphi(t)$, $y=\psi(t)$ $(t\in\mathbb{R})$, motion

by combining $(3.2)_n$ $(n=0, 1, 2, \cdots)$ together and then taking a continuition as follows

 $\varphi(-t) = \varphi(t), \quad \psi(-t) = -\psi(t) \quad (t \geqslant 0).$

Hence, the motion (3.3) satisfies the equation

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = -g(x) + f(t), \tag{3.4}$$

where f(t) is an even function, and is equal to $(-1)^n \frac{E}{2}$ on the interval (t_n, t_{n+1}) (n $=0, 1, 2, \cdots$).

It may be noted that $\varphi'(t) = \psi(t)$ is continuous in $t \in \mathbb{R}$, but $\psi'(t) (= \psi'(-t))$ is discontinuous at the points $\{\pm t_n\}$, with the limits

$$\psi'(t) = \left\{ egin{array}{ll} -g(-a_j) + rac{1}{2}E, & ext{when } t = t_{2j} + 0; \ -g(c_j) + rac{1}{2}E, & ext{when } t = t_{2j+1} - 0; \ -g(c_j) - rac{1}{2}E, & ext{when } t = t_{2j+1} + 0; \ -g(-a_{j+1}) - rac{1}{2}E, & ext{when } t = t_{2j+2} - 0, \end{array}
ight.$$

 $(j=0, 1, 2, \cdots).$

Now, we are going to prove the unboundedness of the auxiliary motion (3.3), that is

Lemma 1. The functions $\varphi(t)$ and $\psi(t)$ are unbounded on R.

Proof In suffices to prove the unboundedness of the sequence $\{a_n\}$.

Now, suppose on the contrary that the sequence $\{a_n\}$ is bounded. Then the sequence $\{c_n\}$ is also bounded. Since they are increasing, their limits exist, say

$$A = \lim_{n \to \infty} a_n$$
 and $C = \lim_{n \to \infty} c_n$.

Then

$$A+C \geqslant a_0+c_0 > 0.$$
 (3.5)

On the other hand, it follows from (2.3) and (2.9) that

$$G(-a_n)-G(-a_{n+1})+Ea_n+Ea_{n+1}+2Ec_n=0$$

Setting $n \rightarrow \infty$, we conclude that

$$2E(A+C)=0,$$

which contradicts (3.5). We have thus proved the desired conclusion.

§ 4. The main theorem

By means of smoothing the auxiliary motion (3.3), we are trying to look for a continuous function p(t), with the desired property stated in the Section 1, instead of the function f(t) in (3.4). The basic technique consists of the following lemmas.

Consider the equation

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = -g(x) + B \quad (s \leqslant t \leqslant r), \tag{4.1}$$

where the constants $B \neq 0$, and s < r. Let

$$x = x(t), y = y(t) \quad (s \leqslant t \leqslant r) \tag{4.2}$$

be a continuous solution of (4.1), where we mean that s=s+0 and r=r-0. Assume

that
$$x(s) = \sigma, \ x(r) = \bar{\sigma}, \ y(s) = 0, \ y(r) = 0.$$
 (4.3)

Then we have

$$x'(s)=y(s)=0,$$

and

$$y'(s) = x''(s) = -g(\sigma) + B.$$
(4.4)

The most time constant δ , and σ

Lemma 2. For (4.2), we can find an arbitrarily small positive constant δ , and a pair of continuously differentiable functions

tiable functions
$$u=u(t), \ v=v(t) \quad (s \leqslant t \leqslant r),$$
 (4.5)

such that

(i) the identities

$$u(t) = x(t), v(t) = y(t)$$

hold on the interval $[s_1, r](s_1=s+\delta);$

(4.6) dd on the interval
$$[s_1, r](s_1 = s + \delta);$$

(ii) $u(s) = \sigma, u'(s) = v(s) = 0$ and $v'(s) = u''(s) = -g(\sigma),$

(iii) (4.5) satisfies the equation

tration
$$\frac{du}{dt} = v, \quad \frac{dv}{dt} = -g(u) + h(t)$$

$$\frac{du}{dt} = v, \quad \frac{dv}{dt} = -g(u) + h(t)$$

$$\frac{du}{dt} = v, \quad \frac{dv}{dt} = -g(u) + h(t)$$

on [s, r], where h(t) is continuous on [s, r], with the properties: (1)h(s)=0; (2)h(t)=B for all $t \in [s_i, r]$; (3) $|h(t)| \le 18|B|$ on [s, r].

Proof First, we define

ne
$$u(t) = x(t), v(t) = y(t)$$
 on $[s_i, r]$.

Then let

$$v(t) = -\frac{g(\sigma)}{\delta^2} (t-s) (t-s_1)^2 + \lambda (t-s)^2 (t-s_1)^2 + \frac{(t-s)^2}{\delta^2} \left[y(s_1) + (y'(s_1) - \frac{2}{\delta} y(s_1)) (t-s_1) \right]$$

on the interval[s, s_1], λ being an indetermined parameter. It can be verified directly

that

$$v(s) = 0, v'(s) = -g(\sigma)$$

$$v(s_1) = y(s_1), v'(s_1) = y'(s_1),$$

which guarantee the continuous differentiability of v(t) on [s, r]. Then we set and

$$u(t) = \int_{s}^{t} v(t)dt + x(s), \text{ for } t \in [s, s_1],$$

and

$$u(s_1) = \int_{s}^{s_1} v(t) dt + x(s) = x(s_1),$$
(4.8)

which imply that u(t) is continuously differentiable on [s, r]. It follows from (4.8) that

$$\lambda \int_{s}^{s_{1}} (t-s)^{2} (t-s_{1})^{2} dt = (x(s_{1})-x(s)) + \frac{g(\sigma)}{\delta^{2}} \int_{s}^{s_{1}} (t-s) (t-s_{1})^{2} dt$$
$$-\frac{1}{\delta^{2}} \int_{s}^{s_{1}} (t-s)^{2} \left[(y(s_{1})+(y'(s_{1})-\frac{2}{\delta}y(s_{1}))(t-s_{1}) \right] dt.$$

Then we obtain

$$\lambda = \frac{30}{\delta^5} \left[(x(s_1) - x(s)) + \frac{\delta^2}{12} g(\sigma) - \left(\frac{\delta}{2} y(s_1) - \frac{\delta^2}{12} y'(s_1) \right) \right], \tag{4.9}$$

and the functions v(t) and u(t) are completely defined on [s, r]. Hence, what is left now is the proof of (iii).

In what follows ξ always stands for an infinitesimal as $\delta \rightarrow 0$, i. e., $\xi = 0$ (1) as $\delta \rightarrow 0$. Using (4.9), togethes with the following estimates

(4.9), togethes with the reasonable
$$x(s_1) - x(s) = \delta x'(s) + \frac{\delta^2}{2} (x''(s) + \xi) = -\frac{\delta^2}{2} (g(\sigma) - B) + \delta^2 \xi,$$

$$-\frac{\delta}{2} y(s_1) = -\frac{\delta^2}{2} (y'(s) + \xi) = \frac{\delta^2}{2} (g(\sigma) - B) + \delta^2 \xi,$$

$$\frac{\delta^2}{12} y'(s_1) = -\frac{\delta^2}{12} (g(\sigma) - B) + \delta^2 \xi,$$

$$\lambda = \frac{5B}{2\delta^3} + \frac{1}{\delta^3} \xi,$$

we obtain

$$\lambda = \frac{32}{2\delta^3} + \frac{1}{\delta^3} \, \xi,$$

which implies

$$v(t) = \xi$$
 on $[s, s_1]$.

Then we conclude that, for $t \in [s, s_1]$,

$$u(t) = x(s) + \int_{s}^{t} v(t)dt = \sigma + \xi$$

$$g(u(t)) = g(\sigma) + \xi.$$
(4.10)

and

On the other hand, since

On the other hand, since
$$v'(t) = -\frac{g(\sigma)}{\delta^2} (t - s_1)^2 - \frac{2g(\sigma)}{\delta^2} (t - s) (t - s_1) + \frac{2(t - s)}{\delta^2} \left[y(s_1) + (y'(s_1) - \frac{2}{\delta} y(s_1)) (t - s_1) \right] + \left(y'(s_1) - \frac{2}{\delta} y(s_1) \right) \left(\frac{t - s}{\delta} \right)^2 + 2\lambda \left[(t - s) (t - s_1)^2 + (t - s)^2 (t - s_1) \right] \quad (s \le t \le s_1),$$

we have

$$v'(t) = -g(\sigma) + 4B\left(\frac{t-s}{\delta}\right) - 3B\left(\frac{t-s}{\delta}\right)^{2} + 5B\left[\left(\frac{t-s}{\delta}\right)\left(\frac{t-s_{1}}{\delta}\right)^{2} + \left(\frac{t-s}{\delta}\right)^{2}\left(\frac{t-s_{1}}{\delta}\right)\right] + \xi \text{ for } t \in [s, s_{1}].$$

$$h(t) = v'(t) + g(u(t)) \quad \text{on } [s, r].$$

$$(4.11)$$

Then h(t) is continuous on [s, r], and h(t) = B for all $t \in [s_1, r]$. Note that

h(s) =
$$v'(s) + g(u(s)) = -g(\sigma) + g(\sigma) = 0$$
.

From (4.10) and (4.11), we obtain the desired estimate

$$|h(t)| \le 4|B| + 3|B| + 10|B| + |B| = 18|B|$$

provided that $|\xi| \leq |B|$, or δ is sufficiently small. the proof of the lemma is completed.

In the same way, we can prove the following lemma.

Lemma 3. For (4.5), we can find an arbitrary small positive constant δ , and a pair of continuously differentiable functions (4.12)

ntiable functions
$$u = \bar{u}(t), \quad v = \bar{v}(t) \quad (s \le t \le r), \tag{4.12}$$

such that (i) the identities $\bar{u}(t) = u(t)$, $\bar{v}(t) = v(t)$ hold on the interval $[s, r_1]$ $(r_1 = r - \bar{\delta})$;

(ii)
$$\overline{u}(r) = \overline{\sigma}$$
, $\overline{u}'(r) = \overline{v}(r) = 0$ and $\overline{v}'(r) = \overline{u}''(r) = -g(\overline{\sigma})$;

(iii) (4.12) satisfies the equation

$$\frac{du}{dt} = v, \quad \frac{dv}{dt} = -g(u) + \bar{h}(t) \tag{4.13}$$

on [s, r], where $\bar{h}(t)$ is continuous on [s, r], with the properties: (1) $\bar{h}(r) = 0$; (2) $\bar{h}(t) = B \text{ for all } t \in [s_1, r_1]; (3) |\bar{h}(t)| \leq 18 |B| \text{ on } [s, r].$

Now we are ready to prove the main result of this note.

For any given function $g(x) \in C^1(\mathbb{R}, \mathbb{R})$ with the properties mentioned in the first section, and for any given constants $\alpha > 0$ and $\epsilon > 0$, there is a continuous and roughly periodic (with respect to $\Omega(\alpha)$) function p(t), $||p|| < \epsilon$, such that the corresponding equation (1.1) admits at least one unbounded solution.

Proof We start with the auxiliary motion (3.3). Then, applying Lemmas 2 and 3 to (3.3) on the intervals [s, r] = [t_n , t_{n+1}] (or [$-t_{n+1}$, $-t_n$]), (n=0, 1, 2, ...), we get a pair of continuously differentiable functions

$$u=u(t), v=v(t),$$
 (4.14)

on the interval [s, r], which satisfies the following conditions:

- (i) $u(s) = \varphi(s)$, $v(s) = \psi(s)$, $u(r) = \varphi(r)$, $v(r) = \psi(r)$;
- (ii) v'(s) = -g(u(s)), v'(r) = -g(u(r));
- (iii) (4.14) satisfies the equation

$$\frac{du}{dt} = v, \quad \frac{dv}{dt} = -g(u) + p(t) \tag{4.15}$$

on [s, r], where p(t) is continuous on [s, r], p(s) = p(r) = 0, $|p(t)| \le 9E$ on [s, r], and $p(t) = (-1)^n \frac{E}{2}$ on $[s+\alpha, r-\alpha]$ when $s=t_n, r=t_n, r=t_{n+1}$ (or $s=-t_{n+1}, r=-t_n$).

Hence, it follows that there is a pair of continuously differentiable functions (4.14) defined on R, which is unbounded because of (i), and satisfies the equation (4.15) with a continuous function p(t) on R. Moreover, p(t) is roughly periodic (with respect to $\Omega(\alpha)$), and $||p|| \le s$ whenever $E = \frac{1}{9} s$. We have thus proved the desired conclusion.

References

- [1] Littlewood, J. E., Unbounded solutions of $\ddot{y}+g(y)=p(t)$, Journal of the London Math. Soc.,41 (1966),
- Morris, G., Bounds on solutions of forced conservative oscillators, Bull. Austral. Math. Soc., 14(1976), [2]
- Moser, J., Stable and random motions in dynamical systems, Ann. Math. Studies, Princeton, N. J., 77