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Abstract

Zhang Yuanda has determined the groups of order 28p? (pis an odd prime=3, 7HH,
Now this paper is to determine the structures of groups of order 23pg (p, ¢ are odd primes
and p<q).

Let G e & finite group of order |G| =2%pg, and let 0, P, and Q denote respecti-
vely the Sylow 2-, p~, and g-subgroups of G

§ 1. G has Sylow-tower

Since the Sylow 2-subgroups O possess b possibilities:
1. O=Zg(cyclic group of order 8);
II. O=Z4% Z4 (abelian group of order 8 of type [2% 21);
ITI. O=Eg(elementary abelian);
IV. O=Ds(dibedral group);
V. 0=0Qs(quarternion group).
we shall discuss G according t0 these five cases. .
G having sylow-tower implies that the Hall (p, ¢)-subgroup PR <@, thus
G =O[PQ]—the semi-direct product of PQ by 0. Tt is known that PQ=Zg, (eyclic of
order pg) when p} (g—1); and either PQ=2Z, or PQ=<a, by, at=b?=1, blab =a"
where h?=1 (mod ¢) and k=1l (mod ¢), when p| (¢—1).
1. 0=12;4
L1) pie-D. .
Now G=Zs[Zpel =<8, 75 @t =gf=1, o/ =2"; thence 78=1 (mod pg). Since (»p,
q) =1, there exists b so that kp=1 (mod ¢). We choose 71, 92, 84, Sa such thab
pi=—1, ri=ry (mod p); st=—1, s%_=_$1 (mod ¢). Now p8=1 (mod pg) hag the
following possible solutions: ¢E¢§+k,(s%—a"%) (mod pg), 4, j=0, 1,2, 8, 4,5, 6, 7.
Tt has 4 soltuions, 4, j=0, 4, when 22 (¢—1), (p—1); 8 solutions, i=0, 2, 4, 6,
j=0.4, when 2%4(¢—1), 2’| (p—1): 16 solutions, 0<I<T, j=0.4, when 2°}(g—1);

Manuscript received Novenber 17, 1982, Revised April 12, 1983.



696 : CHIN. ANN. OF MATH. Vol. 5 Ser. B

28| (p—1); 8 solutions 3=0.4, j=0,2, 4,6, when 22| (¢—1), 2%} (p—1);16 solutions,
8, §=0,2, 4,6, when 22| (g—1), ( p—1); 32 solutions, 0<i<, j=0, 2, '4, 6, when
22| (¢—1), 2°| (p—1); 16 solutions, §=0.4, 0<J<<T, when 2| (¢—1), 224 (p—1); 82
solutions, 4=0, 2, 4, 6, 0<j<T, when 22| (¢—1), 2°| (p—1); 64 solutions, 0<i, j<T7
when 2%| (¢—1), (p—1).

If 4=1, 3, B, 7, by means of =1 (mod 8) we find that
[¢%+kp(S%—¢%)]‘E¢2+kp(s%’—frg), [fi'i—\—kp(s%-—m’i‘)]“zf‘f—l—kp(sg—rr?),
[0‘?’1—!—7010(31—rﬁ)]‘?——ﬁ—i—kp(s’i" —ry), [x1+ Ep(FD 1= +14hp(syFL) (mod pq).
Thus replacing y by ¢, we find that the group structures of G have 22 types, say

G =<w, ¥y, o=9"=1, but

@) W=w; () o= (iit) Hmgt-  (iv) oY =" (v) o= gritepd=T;
(vi) o¥= G-, (yil) af= N (viii) Y == g TR, (ix) o¥= pPE=DHL
(x) o =P =Y (x1) o = e, (xil) o . grrtRpGE=rD,  (xiil) gV = g HRED,
(xiv) ¥ =PI (XV) ¥ =g Feee D, (xvi) oY = g?e D=1, (xvil) @ =g TR,
(XViii) ¥ = g TG —rDd, (xix) o = gl tkotss—Ta), (XX) ol = wrﬁkp(s%—-ﬁ);
(XXi) gV = w?‘a-l‘kp(-‘!g—ra); (XXi_i) ¥ = wra+kp(s;_—1‘n) .

Now we shall show that the 22 types mentioned above are non-igomorphie with
one another in the following: : -

On the contrary, if we pub Gi=4w, W, pPd=1=15, o = a6t and Ga=<a, b,
M =1="0%, =gt Hret=r® and (4, §) # (¢, §), then Gy~@, means that there oxists
an isomophic mapping & from G4 onto G, hence Jetting o (@) =1, o (y) =b, we have

a1, b1E€Gs and in fact a;=a*, by =ab” such thab (A, pg) =1, 2, ») =1, congequently

o= wr§+kpcsg—r'g) implies wr1§+kpcsg—r‘,> =l = (ﬁ) @b @b = wz.[r‘,’+1¢p(s£’—r§')]”=a[;§'+kp(3§'—f‘a')l”,

shug rb-+kp(sh—rk) = [rs+kp (s —r§l” (mod p9), which is equivalent %0 rh=rh”
(mod p) and sh=s4?(mod ¢) . It follows that §=4"v (mod 8) and j=j'v (mod 8). But
(3, §) is one of the forms (0, 0), (4, 0), ©, 4), 4,4, @ 0, 2,4, (4 0), (1,
8, 0, 2), 4 2, 2 2, @, 6,12, &6, oL, & 1), 2,1, 61,
@1, @ 3), 1,5, & 7y, so is (¢, j). Thus the congruences i=ily, j=jv
(mod 8) hold if and only if é=14', j= §, contradiction to (4, )=, .

1. 2) pl(g—D-

Now G=Zs[Zy] OF Zo(Z, 2. I G = 5[ Zyg), then the group gtructures of G
aro the same ag we have discussed in I. 1). Therefore we now need only to consider
Q=23 Z;[Z41], 1. ©. G={<a, b, &, gl=br=ct=1, a*=a" =1(modq), h=t1(modq),
o €<a, by, b°EXa, b>. Since G has Sylow-tower, hence P<OP, 'consequently we
cannob help to have gt =af, b°=>b°. Thus o™ = (a)¥ = (a°) ¥ — P =g implies

rhe =k (mod g)=>h*=h (mod ¢)
Co(r, 0 =1)=>s=1 (mod p)=>b"=b.
Again g—=a”=a" impliei r*=1 (mod q)-
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There are ab mosh 8 solutions: r=sh (modq), 0<i<<7. It has 2 solutions, i=0, 4,
when 2.(¢g—1); 4 solutions, i =0, 2, 4, 6, when 22| (¢—1); 1t has 8 solutions, 0<<¢
<7, when 2°| (¢g—1). Thus replacing ¢ by ¢ ag I. 1), we find that the group
gtructures of G have 4 types, say G=<a, b, ¢, gl=b?=c®=1=1[b, o], at=a",
(xxiil) a°=a; (xxiv) d=at (xxV) &°=a% (xxvi) a’=a". |
Their centers are ¢, cyclic of order 8; <¢®, cyclic of order 4; {¢*), cyclic of
order 2; and 1, identity for (xxiif); (=xiv); (xxv); (xxvi) respectively. So no two of
thege groups are isomorphic.
If we sot =@, y=>be. Then G =<, ), P*=y"=1 and (xxiii) @'=a" (xxiv)
o =a (XXV) o =ity (xxVi)a! =2, '
II. O=Z4X 2y
I. 1) pilg—1- . o
Now G-= (Zax Za) [Zpl =<8, b, o, =pt=c=1=[b, cl, a=d’,a°=a*, 8o that
A=1 (modpg) and =1 (mod pg). (D
There are at most 64 solutions for the system of congruences @
r=r+hp(si—ri), 0<i, j<8, s=x1,=% (1—2kp) (modpq).

=1, & (1—2kp) , o
' d ’ hen 2%\ —1),2 —1)3
s=+1, & (1—2kp) (mod pg), when 2°$(g—1), 2 1);

Tt has 32 sets of solutions, {wz—ari—l—kp (st =)
s=+1, +({1—2kp)
224 (g—1), 2°|( p—1); It hag 32 sets of solutions,
r=rb+hp(si—r)
{ s=+1, +(1—2kp)
when 22| (g—1), 24( p—1); It has 64 sots of solutions,
r=rh+hp(st—ri)
{ s=+1, +(1—2kp)
when 2°| (¢—1), (p—1).

If ¢ is odd, then ¢*=1 (mod 4), and therefore[ri-+ Iap(si—a*’i)]"=“¢1+kp(si’ —ry),
[il—l—kp(si—'Fl)]‘E +1 + kp(ssF1) (modpg). On the other hand, (1—2kp)*=1,
(L—2%kp) [ra+hy(s i— ry)]=ri+kp (sit2—ry) =r1—hp (si+ry) (mod pg), and

[+ hp(sl—ri) 1= (=D hpl(—1) = (=D (mod pg).
Thus replacing b by ¥, be, or blo, and ¢ by b%c, we find that the group structures of ¢
have 19 types, say G-=<a, b, ¢, a=bt=c2=1=[b, ¢, but

(1) a*=a’=g, Qe Zgpg X 4, 7 (@) =0

(ii) a’=a, @ —=at, with Z(G) ={by=2Zy

(i) @*=a7, a°=0, with Z (@) =<0, oy~ Hy;

(iv) @*=a'", a’=a, with Z (@) =<a?, b?, &) = Hup

(v) @d=d™", a’=a, with Z(@)=<a?, b?, &= B

Tt has 16 sets of solutions, {¢

(modpg), 0<i<3, j=0,-2, when
(mod pg), $=0, 2, j=0, 1, 2, 8,

(mod pg), 0<, j<3. .
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( vi) P=at g°=a"", with 7(@) =02l
(vii) =0, o0 —=ar-, with Z (&) ={at, by2Zug
(viit) o*=a, @ —g@1 with Z (@) = {aPbye=Zisg
(ix ) P=a"t, a=a"", with Z(@) =022
( x) d=a, 0= -2 with Z(G) ={b?2Zs;
(i) @ =a A o’ =a, with Z (G) ={aPey=Zag
( xii) Pt gP=a7, with Z (@) =1
(xiil) @ — g gd=g, with Z(@) =Le>=2Zs;
(xiv) @ gD gf=g, With Z (@) =<a%) e Zogs
(xv) a’= g g0 =g, With Z(@)=1;
(xvi) =@t g =a, With Z(G) YA
(xvii) P=antee ot =a, With Z(Q) =<0y
(xviii) gp=gn-aEr | gd=q; With Z(Q) =<{o>=2Zx
(xix) a’= g g0 =gt~ with Z(@) =1, . '

" Looking at the centers, we must shou that the 7 types (vi), (ix), (x), (xii),
(xvi), (xvid), (xviii) are non-isomorphic with one another, and alse thab the 3
types (xii), (xv), (xix) are also non-isomorphic with one another.

By counting the number of elements of order 2 and 4 in each group mentioned
in the last paragraph, we obtain the following two tables:

Table 1

type

oxder (vi) (ix) ) \ iy | @ | e ‘ (xvii)

Number of elements

2 apg-+1 \ 9p+1 2g+1 9p+1 2g+1 \ opg-+1 \ apg+-1
s | sgro | 2@y | WED | W ga | 4w | We
Table 2
type .
order o (xti) \ (xv) \ , (xix)
Nnmber of elements '
2 pg+p+d pg+p+a . pg+ptq
e
4 2(pg+p+1) 2(pg+g+1) 2(2pg+1)

Thus it remains only t0 ghow that (xvii) is not isomorphic to (xviii) from the

tables 1 and 2.

Lot Gi=<2, ¥, 2, =gt =2=1=1[y, 21, o =gl gf =g for the type
(xvii) and Gy=<a, b, ), #1= pt=c?=1=1[b, cl, =a-et | g?=a for the type
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(xviii). If, otherwise, G422, then 1ot @y, by, 01 be respectively the images of w, y, 2
of G4 into G, we must have ay=0a% (a, pg) =1, b_1==a/’b7c", (y, 4)=1, congequently

a Ep(S1—T1)+r1 a?_l = c—-éb—yaab'ycs — a’w[ﬁ.-kp(srh‘x)]" =y (ry~kp(satrol? Which imp]_les that ri= (rl'Y '

(mod p) and sy=(—1)7st (mod q), so that y=1(mod 4) and s;=—s; (modg), i. e.
;=0 (modg). It is impossible. Therefore the 19 groups (i)—(xix) are distinct from,
one another.

II. 2) * p|(g—1). .

Now either G= (ZaX Zs) [Zy] OF G=(Zsx Za)[Z,[Z,)]. If G = (Zsx% Z2) [Zgg),
then G has at most 19 types (1)—(xix) as we have discussed in II. 1). Thus we need
only %o consider G = (Zs ¥ Z)[Z,[Z], i e. ,

G=<a, b, ¢, &), = =c*=d?=1=[¢, d], Q?=d", =1 (mod @),
he=1(mod ¢), and it i easy t0 know that a’=a', a*=a’, b= b, b%="0" just as we have
done in I. 2) Consequently rt=1 (modg), ¥ =1 (modp), =1 (modq),A v?=1
(mod p). Hence o e=at =a¥ = (@)= gt = gt=>kt=h (modq) =>u= 1 (modp),

gimilarly v=1 (modp), thus [b, c1=1=1b, @]. Therefore only = and s are to be -

determined, where o .
' ri=1=s (modg). (2

There are at most 8 sets of golutions for the gystem of congruences (2):

r=+1, &5 (modg), = +1  (modg).
It has 4 sets of solutions, 7= +1, s=41 (mod ) when 2%} (g—1); it has 3 sots of
golutions, r==x1;, 18 s= +1 (modg) when 22| (¢—1). Since ,
0 =<5 % {dy =<0% % {dy = edy % L@y =<c%dy % dy =<o> X &°d)
= (¥ % LPdy = Ledy % {*dy = LPdy % {6°dp,
hence by suitably choosing ¢ and d we find that the groups have 4 types, i. e.
G=<a, b, 0, &, b=t =d?=1=[b, ¢]=T1b, d]=[o, @], b=a,

but , _

(xx) o =a=at, with Z(G)=<e, Y2 Zy % Zgy

(xxi) @’'=gq, ot =g, with Z(&) = {oye=2Zig

(xxii) @"=07, at=a, with Z(&) ={c?, dy~Hg

(xxiii) a°=a%, at=a, with Z(@) ={dy=2Z,. (Now it ig necessary that ¢=1
(mod 4).)

III. O=UFEs.

TL.1) phg—1)- |

Now G =Es[Zpl =<a, b, 6 ay, M=b=c?=d?=1=1[b, cl= [, dl=I[e, dl,
R =a', ¢°=0, & —at so that rP=¢’=t"=1 (mod pg). Consequently r, s, 1= +1,
+ (1—2kp) (mod pq) which gives us 64 sets (v, s, ¢); bub in view of b, ¢, d situated
gymmetrically in G and by suitably choosing b, ¢, d, we find that the associated
group struotures have only b types, i. e.
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G=<a, b, ¢, &, P=b2=?=d2=1=[b, c]=10, d]=1[c, @]
butb , '
(i) R=at=at=a, Z(@) =G 27y % Hg;
(i) a*=a’=a, dt=at, Z(G)=<b, o=Has
(iii) @*=a’=a, a’= gt~ with Z (&) =<', b, cy2Zy ¥ By
(iv) a*=a’=a, @t =L, withZ (G) =<, b, cye=Zigx Hy
(v) a*=a, a’=07", a'= a2 with Z (@) =<by=2Za.
urL.2) pl-b |
Now the group structures excopb those mentioned in III. 1) are of the forms
such as
G=FEs[Z,Z11=Xa, b, 2, ¥, 2, d=br=a’=yt=2=1=1[o, ¥l
=[w, 71=1[y, 4], &"=7", .
with more Telations a*=a’, &’ =2", @=d, b*=b¥, bY=b", b*=0b" henceforth
= = =a=a"
implies u=1 (mod p), similarly v=1=w (modp),i.e. [z, b] =y, b1=1[z, b1=1.
Congequently it only needs to determine 7, s, ¢ 80 that rP=s=*=1 (mod q), thus
r,s t==x1 (mod ¢) which give us 8 ot (r, s, ¢), therefore in view of @, ¥, 2
gituating symmetrically in G and : :
Fg= - % {y> X &y =Lm) % ey % {2y = ey X Yy % OR
wo have only 2 distimct types G of groups, say
(vi) G=<a, b, %, 9, 2y, aP= p=gt=y?=2=1=1g, b]=[y, D1=[z, B1=1[2 v}
[, =1y, 71 =[a, @] =T, y1=T0, 2], @ =dt, with Z (&) =<8, y, 2>==Es
(vii) G=<a, b, @, ¥, 2, d=bp=at=yt=2=1=[, bl= [y, b1=1[z, b1="1[o, 41
=[w, 21=1y, 21=1g, ©] =g, yl, =2, a=a~t, with Z (@) =<, yyeeHy,
IV. O0=Dg
v.1) phe-1)-
Now G =Ds[Z4] =<a, o, g, et =at=y"=1, W=t o®=a’, @’=a% of course,
pt=1=s* (modpg). However, = =a" = (@) =a" implies
p=rs®  (modpg)=rr’=s" (mod pq), _
congequently r=:=x1, & (1—2kp); s=x1, (1—2kp) (modpg) which gives us 16
gots of (r, s) by formimg o1 combinations of r and s. But :
0= Do, 4> =<a, =@, BY=<a", TP =42, o)
—(a?, ayd =<, dYr=30", OV
ghows us that the 16 sots of (r, s) only determine 10 types of G, i. e.
G=<a, ©, Y, g =nt=19"=1, o=, '
butb '
(i) a*=a'=a, with Z (@) =<a2> =L o
(i) a°=a, a'=g~*, with Z(G) =Ly lig;
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(1) o =a~t=a?, with Z(@) =L@y ez lia

(iv ) &= gl =t~ with Z (@ ={a'a*y2Lap;

(v ) ad=a g =Y, with Z (@& = {aPa®y = Liog;

(vi) o= at, at=a"", with Z(Q) =<e”>2Zs

(vii) @= 12k Y=g, With Z (@) —<{ata”y 2o

(viii) o= g ¥ =a, with (@)= {a¥ye2lis

(ix ) F—=a?t, a¥=a, With 7(&) ={are®y2Liag;

(=) =gt a'=a, with Z (@) =<&*>=2Zs.
Thence the b types i), (D), (vi), (viii), (x) have the contereZ (iv) and (vil)
have the ceritereeZay 2180 (v) and (ix) pave the same conter Za,. But by counting
the number of elements of order 2 in each group, we obtain the following table:

Table 3

type .
//// __

order | (i) \ (i) \ (vi) \ (viii) \ () \ (iv) \(vii)-\ ) (ix)

Number of olements
\ \ \ \ 4p+1 \ 2p+38

2 4m+1\ 2pg+3 2(p+q)+1\2p(<1+1)+1 2q(p+1)+1| 4g+1 2q+3

Thus the 10 types (i)—(x) are digtinct from one another.

Iv.2) ol (g—1)-
Now, excepb for those mentioned in IV. 1)the remaining group giructures are of

the forms such a8
G =Dl Z, %4l —<{a, b, ©, V> w=br=at=y"=1 ad=a",
=0t a*=0, o =a*, b*="0" bY=1".
Thus we have ¢ = (a%)” —gt®=g™, which implies h*=h (raod q)=u=1 (modp) .
Similarly v=1 (mod p). Thenoe [», b1=1=19, b]. Again o™= g#=q¥*=a' implies
=1 (mod ¢), therefore the undetermined 7, 8 must satisty
P=l=s (modgq),
which gives us 4 sots of (r, 8); dotermined by 7= 41, s==x1 (modg), thus the
associated group structures are G=<a, b, %, yp, a?=b"= gt=1f=1=1[2, b1=1y, bl,
but V ' '
( xi) of=a=a’, with 04(Q) =<2, %, yye2Zg % Ds, where @=<a;
(xii) a*=a, @'= o1, with Oe(Q) =<2, o> Zg
( xiii) =g t=a’, with 0a(Q) =<9, o, wy) 2 Zg % Ba,
V. 0=Qs |
v.1) phe—D-
Now G =Qs[Z el =<2 % y, i=at=1, 8*=9" =01 a=0d, a?=q*. Hence

pt=l=gt, r'=s (mod pg) . Bub ¢?= [y, #] implies a"“=a“°”=a"”'“3=a"v’“’””=as"’”=a,
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then r?=1 (modpg), and therefore r®=1=s> (mod pg). This implies
r=41, +({1—2kp), s=x1, = (1—2kp) (modpg).
Thus we obtain 16 sets of (r, s). However, in view of the fact that @ and y are
situated symmetrically in Qs and Qs=<o, y>=Lwy, yp=<v, sy>=<y, @Yy, We
obtain, by suitably choosing @, y, B types of groups, say
G={a, o, 1), a"1=0a'=1, a®=40, ol =071,
but

(i) a*=a=d", with Z(G) = aw®y et gyg;

(i) a*=a'=a’, with Z(G) = N YN VACIACHEICIACN

(i) o*=a, a¥=a'"", with Z (@) =<a'%") =2y

(iv) @*=a, a=a®*"", with Z (&) = ooy Zog

(v) &= o, oV =g, with Z(G) =<{o*) =2, Z(G/Z(@)) =1,
V.2). pl(g—1).

Now G=Qs[Z,q] or G=Qs[Z,[Z,]]. Thence we have b types (i)—(v) when
G=Qs[Z,q], and besides these when G=@Qs [Z,[Z,]], we have also G=<a, b, =, ¥,
at=bP=at=1, y*=27, d=at, o'=07, a°=0d', a'=0', b"”——b“ b?=>0". But

rh“ (ar) . .'v'b — a‘bw — (Z

implies =1 (modp), similarly v=1 (modp), thus [w, b]=1=[y, bl. Again

aras — am’y =¥ = a¥

1mp11es r?=1 (modgq), similarly s* =1 (modg). Consequently, we have 4 sets of
solutions of (r, s), which come from r=zxI1, s=zxl1 (modg), and therefore they
give only two types of groups, i. e.
G=<a, b, v, yp, at=b"=a*=1=[g, b]=1[y, b], 2=y’ a®=a", a'=27",
but
(vi) a®=a=0a", @=Qsx Z,[Z,];
(vii) @*=a¢~*=a’, which ig evidently not the direct product of Qs and Z,[Z,],
Summarizing all the results discussed in § 1 above, we obtain the following
lemmas (all groups, Gt Considered with order 2° pq, p<g-0dd primes, are assumed 1o
have Sylow towers). ' |
Lemma 1. If the Sylow 2-subgroups are cyclic(é. e. Zs), then the groups ‘have
4 (gand p=Tor3 (mod8) and p}(¢— 1) [({)—(iv)in case I,
6} types when { ¢ and p=7 or 8 (mod8) and pl(g— 1) [E)—(v), (vxiii), (xiv)in
case 11; _
o g=3or 7, p=b (mod8) and p}(g—1) [()—(vi) n case I],
or have 8} types when { g=38or T, p=b (mod 8) and p|(¢—1) [({E)—(vi), (xxiii),
(xxiv) in case 1];

P
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o g=3orT, p=1 (mod8) and pp(g—1) [(1)—(vili)dn cast 11,
or have 10} types when g=38orT, p=1 (mod8) and pl(g—1) [(i)-—(viii),(xxiii) y
(xxiv) b case 13 '
g=b, p=T 0T 3 (mo0d8) and p(g—1) [@)—3Ev), (ix), (%) .
or have 6} types when i casel],
9 g=b, p=T 0r 3. (m0d8)and p|(g—1) [@)—@Ev), (ix), (),
(xxiii)——-(xxv) in case 113
g=p=5 (mod8 and p}(g—1) [@)—i), (ix)—(xii) in
case 11, ' .
g=p=5 (mod8)and p| (g—DIO—D; (ix)—(xii),
(Xxiii)——(xxv) in case 113
14 g=0, p=1 (modS)Iand pi(g—1) [({)—(xiv) in case 11,
or have 171[ tyypes when q=b, p=1 (mod 8) and pl(g—1) [(i)——(xiv), (xxiii)—
' (xxv) U Case I1; .
=1, p=Tor3 (mod 8) and ph(g—1) [)—@Ev), (ix),(X),
or s 8 } ypes when (xv), (xvi) in case 1, ‘ .
12 g=1, p=T0r 3 (mod8) and p|(¢—1) [(1)———(1V),(ix),(x),
(xv), (xvi), (xxiil —(xxvi) I Case 11; o

& =1, p=b (mod8)and pi(g—1) [O—D (ix)—(xiD),

(XV)———(xviii) im cose 11,
y=1, p=5 (mod8) and pl (@D [(@D)— (D), (@)— D,
(xv)é—(x‘viii), (xxiii)——(xxvi) in case 11
‘ g=p=1 (mod 8) and ph(g—1) [(i)f-(xxii) in case 11,
or have fypes when . < .
26 g=p=1 (mod 8) and p|(¢—1) [(1)~(XXV1) in case 11,
Temma 2. If the sylow 2-subgroups are abelian of type(4, 2) (4. e. Za % Zy), then
the groups have:

18

10 g, p=3, or 7 (mod8) and p‘ls(q—-l) [i. e. () —(x) on case 111,
13} types when § 4 p=3 oI 7 (mod8) and p| (g—D . e H—(x), (xx)——(xxii) in
. case 1113
i3 g=3orT, p=1 or B (mod 8) and gp*(q—i) [(i)——(xiii)fim case I],.
or 16} types when g=3or7, p=1orb (mod 8) and p| (g—1) [(i)——(xiii), (xx)—
(xxii) én case 111
g=1orb, p=3or T (mod 8) and p}(g—1) [@)—®), (xiv)—
0¢13} Jypes whon (xvi) in case 111;
17) g=1orb, p=3orT (mod. 8) and p|(g—1) [H—E), (xiv)—
(xvi), (xx)——-(xxiii); in case 1113 -
19 - (g=lor b, p':-:i orB (mod8) and pp(g—1) \'_(i)———(xix) im case 111,
or 23} types when g=1o0r b, p=1 or B (mod8) and p| (¢—1) [(i)——(xxiii)fz'm case
111, '
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Lenima 8.  If the sylow 2-subg¢oups are dlementary abelian (0. 6. ZaX Za X Zs),
then the groups have ' '

5 types when p}(g—1) for any p, q [i. e. (1)—(v) in case III]
or T types when p|(g—1) for any p, ¢ [(H— —(vii) én case II1],

Lemma 4. If the sylow 2~subgroups are dihedral (rz, e. Dg), then the groups have

10 sypes when ph(g—1) for any p, ¢ [i. e. ()—(x) in cass IV];
or 13 types when p| (g—1) for any p, gli. e. (D)—(xiii) én case IV],

Lemma 5. If the sylow 2-subgroups are gquaternion (i. ¢. Qs), then the groups
hawe _

B types when p(g—1) for any p, g[i. e. (i)—(v) n case V]
or 7 types when p| (¢—1) for any p, ¢li. e. ()— -(vii) 4n case V],

Combining lemmas 1—5, we have

Theorem 1. If G is of order|G|=2%q (p, g—odd primes) and G has Sylow-
tower, then when pt(g—1), G has; '

(1) 84 types under p, g=3or 7 (mod8),

(2) 39 types under g=38 or 7, p=b (mod 8),

(8) 41 types under g=38 or 7, p=1 (mod 8),

(4) 39 types under ¢=5, p=3 or 7 (mod8),

(5) 49 types under g=p=5 (mod8),

(6) B3 types under ¢=B, p=1 (mod38),

(1) 41 types under g=1, p=3 or 7 (mod 8),

(8) B3 types rnder g=1, p=5 (mod 8),

(9) 61 types under g=1=p (mod8);
while when p| (g—1), G has respectively 46, 51, 53, 53, 68, 67, 56, 68, 76 types under
D, @, @), @, ), ©, O, ©), ©). |

§$2. G has no Sylow—-tower but is soluble

Since |G| =2%pg (p<g), and G has no Sylow-tower, hence
(28 —1) (22 —1)(2—1) =21
must be divisible by p or ¢. Thus we need to congider the following three possibilities:
@) p=1T; (IT) p=38; (III) p=>b butb q="1, ‘

(I p=1.

Let 0, P, @ be a Sylow basis of G- Since Q<1PQ, Q@<0Q ('.0Q is 2-nilpotent),
hence Q<G thus in view of the fact that G has no Sylow-tower, OP must contain P
as a non-normal subgroup, then the structure of OP is unique, i, e,

- OP=P[Ls] =<, a, b, ¢,
g =a?=b=0?=1=[a, b]=1[a, c]=1[D, c], &"=¢, b*=a, ¢"=be.
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Oongequently, G=0P[Q]=<y, #, @, b, ¢> with more relations yi=1, " =9, =1,
Y=y ¥'= t, But gt =y~ =y =y =1 (mod g);
Y =g =y =y T =S (mod g);
and
qpist= ,ywbo == tiSge=1 (mod )
thence :
r=s=i=1 (modq),
+thig shows [@, ¥1=1[0, 9] =[e, yl=1. Again @ induces an automophism of Q, with
order dividing 7 ¢, then y? =yut, where wl=1, ueFEl (mod g), 0<<4<<6.
" I£'74(g—1). then @ induces the identity automorphism in @, and we have only
one type, say \
@G=%mef@wwwﬂz
i mgiai=bi=?=1=T[a, b1 =[a, I =[b, =12, y1= 19, dl
~ [y, b1=1y, ], &°=¢, b*=a, ¢®=Dbo. Z(@) 22y .
It 7| (g—1), =9, 0<<i<6. Thus wo need only to congider the cases 1<4<6.
Let G={y, @, @, b, ¢, -
'yq=w7=a2=bz————02——=1= [a, b1 =1[a, c1= b, ¢]=1[a, ¥l
=[b, y1="Te, y1, a=o, b*=a, ¢*=bo, Y=yt
and
Gy =<y, 1, 1, O3, 15 y:‘{==w1=a%=b%=c%==1= (@, bi]="[as, ¢1]
— [bs, 011 ="las, y11=1[03, ys] = les, 9], a'=0s b =ay, of'=Dbicy, YT =Y.
Now we go 1o seek the necessary and suﬂicieht condition that G==G.
GGy iff G=4<y, ¥, o, b, ¢» with
P=br=d?=yt=0=1= [, ¥1=1[d, ¢1= v, ¢1=1d, ¥
—1v, y1=1¢, ¥1, @ =d, V¥ =d, ¢7=b'd, v =1, _
Hence from 0<d, Q<1@, we have y =y, @, Q=1 « —a*brePy’s’ for some
$(1<t<<6), @ — g, b =a"b e, o =aibic, But O=1Is can be regarded as a

“linear space over Zs, thence let

a a ay MO V1 _
o=l 0 o= p |, ou=| b1} A=\ Aa pa 7va cGL(8, 2),
¢ d 64 As Ms Vs
0 0 1
41 o 1leqres, 2),
o 1 1

we can write o =Aa, of = da, of = Aay. From GGy wo have o o — Aol = AAa, bub, in
fact, we have also o7 = Ao = Ao = AL, thus Ada=ALa. And

ajrub =qjud =g = ("= (y’)“’—*—ym'o* ’
therefore st=j (mod 7). But the fact that @, b, ¢ are linearly independent implies
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A 4A=4 and it shows that 4’ and 4 have the same characteristic polynomlal
a3-+-A2-+1 in the field Z,. This holds iff t=2, 4, for |AH — 4| =A+A+1 when ¢= -8, B,
or 6. Thence 4¢=j (mod7) reduces to 2i=j or 4i=j (mod 7); congequently, in

view of <—) ( ) 1, we obtain (——) ( > This proves that Ge=Gy, iff ¢ and j are

at the same time the quadratic residues or non-regidues (mod 7). Thus we have three

- groups, i. e. (i) and

G=<w, 9, a, b, 0, Y= =a*=b*=c*=1=[g, b]=I[a, c]=[b, c]=1a, ]
~ Db, 1=[, 41, a*=c, b=0, *=bs

but
(if) gP=y™, (i) y"=yu (Note Z(G) =1),
(II) p=38..
Now |G| =2%:3.g, and we consider two cases: Q<G+ and Q< G
(IL. 1) @<IG-

Now -we can assert P]|OP. This says that the subgroup OP of order 28.8 of @&
has no normal subgroup of order 8, consequently the structures of OP have only 3
possibilities;™ | '

(1) OP=2Z;[Eg] =<w, a, b, oy, B*=a?=b*=c’=1=g, b]= [a cl=1[b, cl,

a®=>b, b®=ab, c°=0;

(2) OP=2Z,[Z;[Es]]=<2, a, b, 6y, B?=a?=b=c*=1=[a, b], a"=b, b =ab,

a°=b, b'=a, o’ =" .
 (8) OP=2Z5[Qs] =<=, @, b, a*=a*=1, b?=0’, a®=a%, a°=b, b*=ab,

In the case (1), we have G=0P[Q] =<y, , g, b, ¢) With more relations y?=1,

W=y, o=y, PP=y, y° =y Henco g =g =y®=y"=r=s (modg), and
Y= (y7) P =y =g =y r=s=1 (modg),

i. 0. [a, y1=10, :ll] =1, Again #*=1=v® (inodg) has at most 6 solutions: say

t=1
when 3| (¢—1), where uf=1 (mod¢) and u;%1 (modg). However, in view of the

=1 =1
{u (mod gq), {t;_ 1 (mod ¢) when31~(q—1);an{qul,ui,u%,tEil (mod ¢)

fact that @ and b are sitnated symmetrically, and, replacing & by o®, we obtain 4
types of ¢, say
G=<s, 4, a, b, 6y, P¥=yl=a*=b*=c"=1=[a, b]=[g, ] = [o, c]
=[a, y1=1[b, yl, a®=b, b*=ab, o"=¢,

but

(1) g=y, 1=y, with G=0PxQ, Z(&) ={eyd~Zaq

(i) y’=yt, v*=y, with PQ=PxQ, Z(&)=1;

(iii) o°=y, y*=y", with Z(G)=<ep2Zy;

(iv) y°=y%, y*=y*, with Z(G) =1, but PQ is not the direct product P and Q.
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Tn $he case (2), we have G=<y, ©, @, b, O with more relations y?=1, =",
ot =v, =9 y° =y, Similarly, we have r=s=1 (modg), thus [, y1="[0, y1=1.
Again ¢ =y™ =y =y = s—sy=1 (modg), hence y’——%y. But #=1 (modg)
implies t= 1 (mod ¢), which correspond to 2 groups, say

G={w, y, @, b, O, p=gt=a?=b=0"=1= [a, b]1=1[g, y1= 1o, vl
~[w, y1, a®=b, b*=ab, @=b, b=a, &=
but |

(v) y°=y, with Z(6)= {ypezZy;

(vi) =y with Z(G@) =1.

Tn the case (8), G=<Yy, @, @, by, ot=1, v*=9% =y, =9 and the relatinos
of ©, a, b are mentioned in (3). Bub =y = y‘””=y“s_=ys”=yb“=y’“b= s and,
gimilarly, y™=y™, hence r=s=1 (modg),ie.le, yl=1[b,y1=1. Andwuf=1 (modgq)
has at most three solustions: u=1; ug, i (mod q), where ui=1 (mod ¢g) and
wyEl (modgq), u=1 (mod g) when. g\ (g—1); u=1, u, u? (modg) when 3| (¢g—1).
Hence we have two types (replacing @, @, b by °, a®, a®b respectively we find that
u=u? will reduce t0 u=1uy), Say :

G={_w, y, @, b, P=yi=a*=1=1lg, yl=1b, yl, b2=qa?, a®="b, b®=ab, =a"?,
but

(vii ) y*=y, with Z(&) =LaPyp=Zas

(viil) y?=y*, with Z(6)= (@P>e=Ta.,

(I1. 2) Q41G. v
- Ab firgt, we shall show that there is a mormal subgroﬁp A of G such thab
|G: 4| =3. Bince Q<1 PQ implies P<Ns(Q), then @<Oy () [3], (Lemma 2 .6). But
QY G=>Q <Oy () <0Q. Suppose, on the contrary, that Op (@) <0Q, then
|0, (G| <2%¢ (¢>8) implies @ char in Oy(F)<G. It contradicts to the condition
Q<G Hence it must be Oy (&) —0Q=A(gay). Thence A<G and |G:A] =3,

Now QUG=>Q44, and for ¢>3, it must be that g="1, therefore the structure of
A of order 22-7 is unique' ag in (D), i. e. '

A=<y, a, b, 07, y =a?=b*=c’=[g, b] =[a, ¢l
=[b, c] =1,‘ay=c, bY=a, ¢=bc.

 Again, by sylow’s theorem, Q<(PQ, we have G=Pl4]=4, », ¢, b, ¢> with all

rolations among ¥, @, b, ¢ a8 mentioned above and the other relations, #°=1, ¥* =1,

of = Ao, where a=| b |, ACGL(8, 2) asin (I), hence A*=H (the identity matrix
_ c 0 01 .
of GL(3, 2)). Let 4=| 1 0 0 |EGL(3, 2), then of = Ao and A= H. But

0 1 1
Ada= doP = of® =o' = Adra=> 4 = A744;
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and #®=1, y®=y" implies r¥=1 (modT), hence r=1, 2, 4 (mod 7). Since
: GL(8, 2) =SL(8, 2)=PSL(38, 2)*
is simple and is of order 2°+3+7, hence it has 8 Sylow 7-subgroups. Oonsequently, we
have |GL(3,2):N| =8, where N=Ngre.9 ({4>)is the normalizer of {4) in GL(8,2),
i.e. |[N| =387, '
010
MTake A;=| 1 1 0 |EGL(3, 2), then A3=H, and A7tAdy= £, hence A;EN,
0 0 1 ‘
and N =<4, A.; also AEN=>4~= A4{(j=1, 2), thus A~*A4 =4 implies A7 A4ij= 2,
i e, A =/4. Qonsequently j=0and ¢=0 when r=1 (mod7); j=1 when r=2
(mod T); j —9 when r=4 (mod7). Thus the group type when r=1 (modT7) is

(ix) G=<z, v, a, b, 0, B=y=a?=b0=c*=1=[a, b]= [a, ¢]=1[b, c1=[=, ¥l

= [o, a]=[», b]=1[w, cl, a’=¢, b=a, ¢="be, with Z(&) =Lwyezls,

When r=2o0r 4 (mod7), A=A, or=2443, roplacing © by y™* @ or (y~*z)?
respectively, we odtain another type of G

(x) G=<w, 9, 3, b, ¢, B=y =a?=b"=c"=1=[q, b]=[a, ¢c1=10b, c1=I[w, cl,
@=0, B=a, ¢=>be, y*=4°, a°=D, b®=ab, with Z(G)=1

(IIT) p=5, but ¢="7. -

Now |G| =2%5+7, by Sylow’s theorem we have PQ=Px@Q and P<{OP, hence
P<G=0PQ. Thus, in view of the fact that @ hag no Sylow-tower, it follows AR (04,
(order 28+7), congequently '

0Q=<y, a, b, ¢, Y=1=a?=b"=c"= la, b]=1[a, ¢c1=10, cl,
a'=c¢, b¥=a, ¢'="bc" '
Thus O=<a, b, ¢ is elementary abelian and 0<10Q. Therefore from P<{G we have
OP<1G-. Now we can agsert that OG- .

On the contrary, if 0@ were true, then 0XIOP, and since |OP | =23+B, hence
OP is of the nnique structure™, i. e. OP=<s, g, b, o), *=1=[a, s]1=1[b, w],
o°=2"1, Thence Z(OP)=<a, by, |G/Z(0OP)|=2+5°T, and

|G PQ+Z(OP) | =2=PQ-Z(0P)<d,
therefore sylow’s theorem shows thab Q<PQ-Z(OP), thus Q cher in PQ-Z (OP),
which implies Q<{@. Ir shows that G has Sylow-tower &, P@Q, @, and 1, and it is not
allowable. '

Hence 0<dG=30<{0P=0P=0xP =G=0QxP, Oonsequently, from the fact
that QX10Q, 0<10Q, and O is elementary abelian, it follows that, 0Q=2Zr [Es], and
hence G=2Z:[Es] X Zs, i. e. :

(i) G=Z;[Bs] X Zs=<y, %, & b, ¢, Y ="=a?=b*=c"=1= la, b]=1[a, c]
=[b, ¢]=[a, v]1=1[b, z]=[e, ] =1[y, =], a?=o0, b¥=a, ¢'=be,

Summarizing all mentioned in § 2, we obtain the following lemmas (all groups.
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G congidered are of orders 23 pg(p<q), and have no Sylow. towers, but are soluble;
shence we heve p=3, T, OF p=Db and g="T):

Lemma 1. G has only one typo for p="1 and T¥(g—1), @ e- (i) in (I); has 3
types, ©. e. (1), (it), (iii) én (1) when p="1 and T (g—1).

Lemma 2. When p=3, the group G has B types (1), (i), V), (vi), (vii) in
(I1) for 3\ (¢g—1); for 3| (Q——l}, G has 8 or 10 iypes(i)——(viii) or (i)—(x) in (1))
qocording as ¢+ or qg="T respeotively. A :

Lemma 3. When p=5, q=", the group G has only one type, 4. o (4) in (III).

Combining Lemmas 1—3, we have

Theorem 2. If G is of order |G| =2°pg (P<g, odd primes) and G has no Sylow-
tower but is soluble, then when p}(g—1), G has only one type for p="T or for p=58 and
q="T, and five types for p=38; buit when p| (g—1), G has 3 types for p=T, 8 types for
p=38 and ¢+T, or 10 types for p=3 and q¢="1. :

§3. Gis non-soluble

At first, we state Brauer’s theorem ([6], Theorem 2): If a group @ of order 2™pq
is gimple, then G is only U,~PSL(2, ) or PSL(2, '7), Thus the group G of order
o*pq is PSL (2, 7) if @ is simple. In view of |G| =2%g, if @ ig non-simple, we know
eagily thab there is a non-trivial normal subgroup N of G, such that N or G/N is
gimple and igomorphic to Us a8 @ is non-goluble. Thus when Nc=lis, then |G| =120,
g0 that GexS&; or Zs % Uz when G /N W5, then lN[ =2, 80 that N=2(@), and it
sollows that Ge<SL (2, B) £ G=G'=[@, G] or Gy x 1y if GG =10, G].

Summarizing all mentioned above, we obtain the following

Theorem 3. If G is of order |G| =2°pg (p<¢, odd primes), and G 4 non-soluble,
then p=38, g=5 or 7. And for ¢=5, @ hat three types, ©. ¢ Za* s, Ss, SL(2, B); for
g=", G has only one type, % ¢ PSL (2.7).

Oombining Theorem- 1—8, we have
Theorem. If G is of order |G —2¥pg (p<L g —0dd primes), then when pi(g—1), |
G has ‘

(1) 84 types under p g=3 or T (mod 8) bui p+3,T;

(2) 89 types under g=3 (mod4), p=b (mod 8) but ¢+ T;

(8) 39 types under g=5, p=3 or 7 (mod8) but p#3;

(4) 41 types under g=3 or T, p=1 (mod 8);

(B) 49 types under g =p=p (mod8);

(6) B3 types under q=b, p=1 (mod 8);
(7) 41 types under g=1, p=3or 7 (mod8) but p#3 or T
(8) B3 iypes under g=1, p=b (mod 8);
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9) 61 types under g=1=p (mod8), -
While when p| (g—1), G has respectively 46, 51, 53, b3, 63, 67, b6, 68, 76 iypcs
under (1), ), 3), @, ), (), (N, (8, ©).
W hen 84.(q—1), the group G of order 2°+3q has
(1)’ 87 types under g=3 (mod 4);
(8)" 42 types under ¢g=5 (mod8) bmt ¢+#b and 45 types under ¢=5(¢.
|G| =2°:3:5);
(1) 44 types under g= =1 (mod8).
W hile when 3] (¢g—1), G has b4 types under (1)’ but g+T; and 57 types under
q="7; 61 types under ¢=b (mod 8), 64 types under (7)’,
When T4(g—1), the group G of order 2°+T+q has
(1) 35 types under =3 (mod 4);
(8)" 40 types under g=5 (mod 8)s
()" 42 types under g=1 (mod8),
W hile when 'T| (g—1), G has respectively 49, B6, B9 types under (1)", 8)", (N".
And ﬁrnally, the group G of order 2°+5+7T has 40 types.
S1m11ar1y, we can derive all the structures of groups G of order rPpg(r, », 9-
prime),
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