EXISTENCE CONDITIONS OF A SPECIAL TYPE OF LIAPUNOV FUNCTIONAL FOR TWO-DIMENSIONAL DELAY SYSTEM

HUANG WENZHANG (黄文璋)

(Anhui University)

Abstract

In this paper, the author considers the two-dimensional delay systems $\dot{x}(t) = Ax(t) + Bx(t-r)$, A, $B \in R^{2\times 2}$, $x \in R^2$, $r = \text{const.} \gg 0$, (*) and gives the necessary and sufficient conditions under which where exists a simple type of positive definite Liapunov functional

$$V(\varphi) \stackrel{\text{def.}}{==} \varphi'(0) T\varphi(0) + \int_{-r}^{0} \varphi'(\theta) E\varphi(\theta) d\theta,$$

and $\alpha(s)$ (where T, E are positive definite 2×2 matrices, $\varphi \in C([-r, 0], R^n)$, "a" stands for transpose, $\alpha(s)$ is continuous and $\alpha(0) = 0$, $\alpha(s) > 0$, s > 0.) such that $V_{(*)}(\varphi) \le -\alpha(|\varphi(0)|)$.

§ 1. Introduction

Consider the delay systems

$$\dot{x}(t) = Ax(t) + Bx(t-r),$$
 (1.1)

where A, B are $n \times n$ constant matrices and r = const. > 0. J. K. Hale in [1] discussed the stability of the zero solutions of (1.1) by the functional

$$V(\varphi) = \varphi'(0)T\varphi(0) + \int_{-r}^{0} \varphi'(\theta)E\varphi(\theta)d\theta,$$

where $\varphi \in C([-r, 0], R^n)$, T, E are $n \times n$ symmetric matrices. Obviously we have

$$\dot{V}_{(1,1)}(\varphi) = -\left(\varphi'(0), \ \varphi'(-r)\right) S\left(\frac{\varphi(0)}{\varphi(-r)}\right),$$

where

$$S = \begin{pmatrix} -(TA + A'T) - E & -TB \\ -B'T & E \end{pmatrix}. \tag{1.2}$$

Particularly, if T, E are positive definite and S is also positive, then Liapunov's Theorem implies that the zero solution of (1.1) is asymptotically stable for any $r \ge 0$. Naturally, one will raise such a question: What are the necessary and sufficient conditions for the existence of the positive definite matrices T, E and S? (This question was first mentioned in [1]) Huang Zheng-xun and Lin Siao-biao

Manuscript received November 20, 1982. Revised May 5, 1983.

pointed out lately that, if there are T>0, E>0 such that S>0, it isn't necessary that there is an estimate of the rate of the selutions to zero which does not depend on the delay for (1.1); in addition, there are matrices A, B, such that the zero solution of (1.1) is asymptotically stable for any delay, but there do not exist T>0, E>0 such that S>0 (see [2]).) We know, for n=1, i. e. the scalar equation

$$\dot{x}(t) = ax(t) + bx(t-r),$$

the necessary and sufficient conditions are a<0, |a|>|b|. But when n>1, the above problem will become complex. In this paper, we will discuss this problem for n=2, and will give a necessary and sufficient condition, that is

Theorem 1. Suppose A, B are 2×2 matrices, then there are positive definite matrices T, E such that S in (1.2) is positive definite if and only if one of the following conditions holds:

(i) A is stable, |B| > 0 and

$$w(A, B) \stackrel{\text{def.}}{=} \sup\{\text{Re } \lambda \ (1+r): |A+Be^{-\lambda r}-\lambda I| = 0, \ r \geqslant 0\} < 0.$$

(ii) A is stable, $|B| \leqslant 0$, |A+B| > 0, |A-B| > 0 and

$$f(A, B) \stackrel{\text{def.}}{=} (\operatorname{tr} A)^2 - (\operatorname{tr} B)^2 + 2[(|A+B| \cdot |A-B|)^{\frac{1}{2}} - |A| + |B|] > 0.$$

Here A is said to be stable if all the eigenvalues of A have negative real parts, and $|A| = \det(A)$.

(We will point out the differences between (i) and (ii) later)

§ 2. Definition and properties of strong stable domain D_A

Let $R^{2\times 2}$ be the space of the 2×2 real matrices with norm $||A|| = \sum_{i,j=1}^{2} |a_{ij}|$ for $A = (a_{ij})$. We denote T > 0 if T is a symmetric and positive definite matrix. For $A, B, T, E \in \mathbb{R}^{2\times 2}$, where T, E are symmetric, we define

$$S(A, B, T, E) = \begin{pmatrix} -(TA + A'T) - E & -TB \\ -B'T & E \end{pmatrix}$$

Definition 1. For any stable matrix $A \in \mathbb{R}^{2\times 2}$, the set $D_A = \{B: B \in \mathbb{R}^{2\times 2}, \text{ there are symmetric matrices } T, E \in \mathbb{R}^{2\times 2} \text{ such that } S(A, B, T, E) > 0\}$ is said to be the strong stable domain associated with A.

Obviously, if A is stable and S(A, B, T, E) > 0, then there must be T > 0, E > 0. Therefore if $B \in D_A$, the zero solution of (1.1) is asymptotically stable for any $r \ge 0$. Now we will give some properties of D_A .

Lemma 1. For any stable matrix $A \in R^{2 \times 2}$, D_A is a nonempty, connected and open set of $R^{2 \times 2}$.

Proof It is clear that D_A is nonempty and open. To prove D_A is connected, suppose $B \in D_A$, By the definition, there are symmetric matrices T, E such that

No. 4

S(A, B, T, E) > 0. We can check that for any t, $0 \le t \le 1$, S(A, tB, T, E) > 0. Thus, the segment $\{tB: 0 \le t \le 1\} \subset D_A$. Therefore D_A is connected.

Lemma 2. Suppose A, B are $n \times n$ matrices and A is stable. If there are $v, \theta \in R$ such that $|A+Be^{-i\theta}-ivI|=0$, then for any $u\in R$ any $\varepsilon>0$, there are $r_0\in R^+$ and λ_0 such that

(1)
$$|A + e^u B e^{-\lambda_0 r_0} - \lambda_0 I| = 0,$$

(2)
$$|\operatorname{Re} \lambda_0 (1+r_0) - u| < \varepsilon.$$
(2)
$$\operatorname{Re} \lambda_0 (1+r_0) - u| < \varepsilon.$$

Proof Suppose $v \neq 0$. For $u \in R$, let $F(\lambda) = |A + e^{u}Be^{-\lambda - iv} - ivI|$, $H(\lambda, k) = |A + e^{u}Be^{-\lambda - iv} - (|v|\lambda/(2k\pi + iv) + i|v|)I|$

where k is a positive integer. By the hypothesis, $F(\lambda)$ has the zero point λ_1 $u+i(\theta-v)$ and $F(\lambda)\not\equiv 0$ since A is stable. Moreover $F(\lambda)$, $H(\lambda,k)$ are analytic functions and $H(\lambda, k) \rightarrow F(\lambda)$ as $k \rightarrow \infty$ is uniform for λ in any compact set of C (the complex field). Then, using Rouche's Theorem we can choose k_0 sufficiently large and λ_2 such that

and
$$\lambda_2$$
 such that
$$|v|(|u|+\varepsilon/2)/(2k_0\pi+|v|)<\varepsilon/2, |\lambda_2-\lambda_1|<\varepsilon/2, H(\lambda_2,k_0)=0. \tag{2.1}$$

$$|v|(|u|+\varepsilon/2)/(2k_0\pi+|v|)<|v|, \lambda_0=\lambda_2/r_0+iv, \text{ we have}$$
Now letting $r_0=(2k_0\pi+|v|)/|v|, \lambda_0=\lambda_2/r_0+iv, \psi_0=(|v|+\lambda_0/(2k_0\pi+|v|)+iv)I$

Letting
$$r_0 = (2k_0\pi + |v|)/|v|$$
, $\lambda_0 = \lambda_2/r_0 + iv$, we have
$$|A + e^u B e^{-\lambda_0 r_0} - \lambda_0 I| = |A + e^u B e^{-\lambda_2 - i(2k_0\pi/|v| + 1)v} - (|v||\lambda_2/(2k_0\pi + |v|) + iv)I|$$

$$= |A + e^u B e^{-\lambda_2 - iv} - (|v||\lambda_2/(2k_0\pi + |v|) + iv)I|$$

$$= H(\lambda_2, k_0) = 0,$$

and

$$|\operatorname{Re} \lambda_0(1+r_0)-u| \leq |\operatorname{Re} \lambda_2/r_0| + |\operatorname{Re}(\lambda_2-\lambda_1)| < (|u|+\varepsilon/2)|v|/(2k_0\pi+|v|)+\varepsilon/2<\varepsilon.$$

The lemma holds for $v \neq 0$. If v = 0, letting $H(\lambda, r) = |A + e^u B e^{-\lambda} - \lambda/r|$, r > 0, similarly we can prove that the lemma also holds.

If let $\varepsilon \rightarrow 0$ in Lemma 2, we can obtain the following

Coollary 1. Suppose the hypothesis of Lemma 2 holds. Then for any $u \in R$, we have $w(A, e^{u}B) = \sup \{ \text{Re } \lambda(1+r) : |A+e^{u}Be^{-\lambda r} - \lambda I| = 0, r \ge 0 \} \ge u.$

Lemma 3. Suppose $B \in D_A$, Then w(A, B) < 0.

Proof For any $B \in D_A$, by the definition of D_A , we have $w(A, B) \leq 0$. So it is only required to prove $w(A, B) \neq 0$. If w(A, B) = 0, there would be sequences

$$\{\lambda_n=u_n+iv_n\}, \{r_n\}, u_n, v_n\in R, r_n\geqslant 0$$

such that

$$|A + Be^{-(u_n + iv_n)r_n} - (u_n + iv_n)I| = 0, \ n = 1, 2, \cdots$$
(2.2)

and $u_n(1+r_n)\to 0$ as $n\to\infty$. Obviously $\{\tilde{\lambda}_n=e^{-iv_nr_n}\}$ is bounded and $u_n\to 0$, $u_nr_n\to 0$, then $\{v_n\}$ is also bounded. Therefore there are subsequences of $\{v_n\}$ and $\{\widetilde{\lambda}_n\}$ which are labeled in the same way and $v \in R$ and $\tilde{\lambda}$, such that $v_n \rightarrow v$, $\tilde{\lambda}_n \rightarrow \tilde{\lambda}$ as $n \rightarrow \infty$. Obviously, $|\tilde{\lambda}|=1$, so there exists $\theta \in R$ such that $\tilde{\lambda}=e^{-i\theta}$. In (2.2), letting $n\to\infty$, we obtain

$$|A + Be^{-i\theta} - ivI| = 0.$$

Using Corollary 1, for any t>1 we have $w(A, tB) = w(A, e^{\ln t}B) \geqslant \ln t > 0$. But, on the other hand, since D_A is open and $B \in D_A$, we can choose $t_0 > 1$ such that $t_0 B \in D_A$. So we have $w(A, t_0 B) \leqslant 0$. This is a contradiction and the lemma is proved.

Lemma 4. Suppose $B \in D_A$. Then the following conclutions hold:

(i) |A+B|>0, |A-B|>0, (ii) f(A, B)>0 (f(A, B) is defined as Theorem 1). Proof By $B\in D_A$, there are T>0, E>0 such that S(A, B, T, E)>0. This

implies
$$-\lceil T(A\pm B) + (A\pm B)'T \rceil > 0. \tag{2.3}$$

Appling Liapunov's Theorem, we know that both A+B and A-B are stable. There fore |A+B|>0, |A-B|>0. (i) holds. Moreover, (2.3) implies -(TA+A'T)>0, Therefore, there is a nonsingular matrix P such that

$$-P(TA+A'T)P' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad P(TB+B'T)P' = \begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix}, \tag{2.4}$$

and $|c_j| < 1$, j=1, 2. Using (2.4), we can suppose

$$-2PTAP' = \begin{pmatrix} 1 & k \\ -k & 1 \end{pmatrix}, \quad 2PTBP' = \begin{pmatrix} c_1 & s \\ -s & c_2 \end{pmatrix}.$$

Let $T_0 = (2PTP')^{-1} = \begin{pmatrix} t_{11} & t_{12} \\ t_{12} & t_{22} \end{pmatrix}$, $A_0 = (P^{-1})'AP'$, $B_0 = (P^{-1})'BP'$. Obviously

$$t_{11}t_{22} > |T_0| > 0.$$

$$A_0 = -T_0 \begin{pmatrix} 1 & k \\ -k & 1 \end{pmatrix}, \quad B_0 = T_0 \begin{pmatrix} c_1 & s \\ -s & c_2 \end{pmatrix}.$$
 (2.5)

Using (2.5), we obtain

$$(\operatorname{tr} A_{0})^{2} - (\operatorname{tr} B_{0})^{2} = (t_{11} + t_{22})^{2} - (t_{11}c_{1} - t_{22}c_{2})^{2} > 2 |T_{0}| (1 - c_{1}c_{2}),$$

$$(|A_{0} + B_{0}| \cdot |A_{0} - B_{0}|)^{\frac{1}{2}} > |T|_{0} \cdot |k^{2} - s^{2}|,$$

$$|A_{0}| - |B_{0}| = |T_{0}| (1 - c_{1}c_{2} + k^{2} - s^{2}).$$

$$(2.6)$$

Clearly $f(A, B) = f(QAQ^{-1}, QBQ^{-1})$ for any nonsingular matrix Q, Therefore by (2.6) we have $f(A, B) = f(A_0, B_0) > 0$. (ii) also holds. The lemma is proved.

About the relation between A and the boundary points of D_A , we have

Lemma 5. Suppose $B \in \partial D_A$ (the set of all the boundary points of D_A). If |B| > 0, then w(A, B) = 0. If $|B| \leq 0$, then one of the following equalities must be valid:

(i)
$$|A+B|=0$$
, (ii) $|A-B|=0$. (iii) $f(A, B)=0$.

(The proof of this lemma is tedious. We will give the proof in IV).

§ 3. Proof of Theorem 1

Now we will prove Theorem 1 by using the above lemmas and corollary.

First, if there are T>0, E>0 such that S(A, B, T, E)>0, we can deduce that A is stable. Therefore, $B \in D_A$ and Lemmas 3, 4 imply that the conditions in Theorem 1

are necessary. We are going to show that the conditions are also sufficient.

a. Suppose Condition (i) in Theorem 1 holds.

If the theorem were not true, i. e. $B \notin D_A$, considering the set $\{tB; 0 \le t \le 1\}$, since $tB \in D_A$ for t=0 and $tB \notin D_A$ for t=1, there would be $t_0 \in (0, 1]$ such that $t_0B \in \partial D_A$. By Lemma 5 we have $w(A, t_0B) = 0$. Following the proof of Lemma 3, there exist v, $\theta \in R$ such that $|A+t_0Be^{-i\theta}-ivI|=0$. Using Corollary 1, we have

$$w(A, B) > \ln(1/t_0) > 0.$$

This contradicts the condition (i). Then $B \in D_A$ and there are T > 0, E > 0 such that S(A, B, T, E) > 0.

b. Suppose Condition (ii) in Theorem 1 holds.

We will show that $B \in \mathcal{D}_{A}$ still holds. In fact, if $B \notin \mathcal{D}_{A}$, similarly there would be $t_0 \in (0, 1]$ such that $t_0 B \in \partial D_A$. Obviously, $|t_0 B| = t_0^2 |B| \leq 0$, Hence, for A and $t_0 B$, one of Equalities (i), (ii) and (iii) in Lemma 5 must be valid. On the other hahd, if Condition (ii) in Theorem 1 holds, we can easily check that $t|A+t_0B|>0$, $|A-t_0B|>0$ and $f(A, t_0B)>0$ for any $t_0\in[0, 1]$. This is a contradiction and the proof is completed.

Remark 1. Theorem 1 and Lemma 4 imply that A is stable and |B| > 0, then $w(A, B) < 0 \Leftrightarrow B \in D_A \Rightarrow |A+B| > 0, |A-B| > 0, f(A, B) > 0. \text{ But } |A+B| > 0,$ $|A-B| > 0, f(A, B) > 0 \Rightarrow w(A, B) < 0.$

For example, letting $A = \begin{pmatrix} -1 & 2 \\ -2 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$, we have |A+B| > 0, |A-B| > 0,

f(A, B) > 0. But A + B is not stable, So w(A, B) > 0.

Remark 2. If A is stable and |B| < 0, then |A+B| > 0, |A-B| > 0, $f(A, B) > 0 \Leftrightarrow B \in D_A \Rightarrow w(A, B) < 0.$

But $w(A, B) < 0 \Rightarrow B \in D_A$. For example, letting $A = \begin{pmatrix} -1 & 2 \\ -2 & -1 \end{pmatrix}$, $B = \begin{pmatrix} b & 0 \\ 0 & -b \end{pmatrix}$ where 1 < |b| < 2, we can check that w(A, B) < 0 (use Theorem 1 in [3], p. 168, and

the fact $|A+Be^{-i\theta}-ivI|\neq 0$, θ , $v\in R$). But f(A,B)<0, So $B\notin D_A$. Remark 2 shows that A being stable and w(A,B) < 0 can not ensure the existence of the positive definite mareices T, E and S(A, B, T, E) if |B| < 0. This is the difference between |B| > 0 and |B| < 0.

Remark 3. If |B| = 0, then $w(A, B) < 0 \Leftrightarrow A$ is stable, |A+B| > 0, |A-B| > 0, $f(A, B) > 0 \Leftrightarrow B \in D_A$

§ 4. Proof of Lemma 5

Here we will prove Lemma 5. For convenience of the proof, we denote $T{\geqslant}0$ if T is symmetric and positive se mi-definite.

Lemma 6. If $B \in D_A$, then for any nonsingular matrix $P \in \mathbb{R}^{2 \times 2}$, $P^{-1}BP \in D_{P^{-1}AP}$.

Lemma 7. Suppose $B \in \partial D_A$. Then there are $T_0 \geqslant 0$, $T_0 \neq 0$, $E_0 \geqslant 0$, such that $S(A, B, T_0, E_0) \geqslant 0$, but $S(A, B, T_0, E_0)$ is not positive definite.

Lemma 8. Suppose $B \in \partial D_A$ and T_0 , E_0 are defined as Lemma 7. Then rank $(S(A, B, T_0, E_0)) < 3$.

(The proof of this lemma is similar to the following proof of Lemma 10).

Obviously, if $B \in \partial D_A$ and T_0 , E_0 are defined as Lemma 7, then one of the following hypotheses holds:

(i) $|T_0| = 0$. (ii) $|T_0| \neq 0$ (i. e. $T_0 > 0$), $|B| \neq 0$. (iii) |B| = 0.

Now we will discuss the relations between B and A for (i), (ii), (iii) respectively.

Lemma 9. Suppose $B \in \partial D_A$ and (i) holds. Then one of the equalities |A+B|=0, |A-B|=0 must be valid.

Proof First, using Lemma 4 we can deduce $|A+B| \ge 0$, $|A-B| \ge 0$. By $T_0 \ge 0$, $T_0 \ne 0$, $|T_0| = 0$, there is a nonsingular matrix P such that $PT_0P' = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. In addition, $S(A, B, T_0, E_0) \ge 0$ implies $-(T_0A + A'T_0) \ge 0$ and $-\lceil T_0(A \pm B) + (A \pm B)'T_0 \rceil \ge 0$.

Letting

$$A_0 = (P^{-1})'AP' = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{21} \end{pmatrix}, \quad B_0 = (P^{-1})'BP' = \begin{pmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{pmatrix},$$

we have

$$\begin{pmatrix} -2a_{11} \pm 2b_{11} & -a_{11} \pm b_{12} \\ -a_{12} \pm b_{12} & 0 \end{pmatrix} = -\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} (A_0 \mp B_0) + (A_0 \mp B_0)' \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix}$$
$$= -P[T_0(A \mp B) + (A \mp B)'T_0]P' \geqslant 0.$$

Hence $a_{12}=b_{12}=0$, $|a_{11}| \ge |b_{11}|$, i. e. $A_0=\begin{pmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{pmatrix}$, $B_0=\begin{pmatrix} b_{11} & 0 \\ b_{21} & b_{22} \end{pmatrix}$. Moreover $|A+B| \ge 0$, $|A-B| \ge 0$ imply $|a_{22}| \ge |b_{22}|$. We assert that one of $|a_{11}| = |b_{11}|$, $|a_{22}| = |b_{22}|$ will hold. Suppose (for contradiction) that $|a_{11}| > |b_{11}|$, $|a_{22}| > |b_{22}|$. Since A_0 is stable, we have $a_{11} < 0$, $a_{22} < 0$. For t > 0, letting

$$T(t) = \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix}, \quad E(t) = \begin{pmatrix} -ta_{11} & 0 \\ 0 & a_{22} \end{pmatrix},$$

we can easily check that there would be a sufficiently large $t_0>0$ such that

$$S(A_0, B_0, T(t_0), E(t_0)) > 0.$$

Thus $B_0 \in D_{A_0}$ and Lemma 6 implies $B \in D_A$. This contradicts the hypothesis of $B \in \partial D_A$. So $|a_{11}| = |b_{11}|$ or $|a_{22}| = |b_{22}|$. The lemma is proved.

Lemma 10. Suppose $B \in \partial D_A$ and (ii) holds. Then w(A, B) = 0 if |B| > 0, and one of the following equalities must be valid if |B| < 0:

(1)
$$|A+B|=0$$
, (2) $|A-B|=0$, (3) $f(A, B)=0$.

We will prove this lemma with the following several steps:

Prove (a) $\operatorname{rank}(S(A, B, T_0, E_0)) = 2 \operatorname{and} - (T_0A + A'T_0) - E_0 > 0$, $E_0 > 0$.

Obviously $|T_0B| \neq 0$, so rank $(S(A, B, T_0, E_0)) \geqslant 2$. Using Lemma 8 we have $\operatorname{rank}(S(A,\,B,\,T_0,\,E_0))=2.$ In addition, $|T_0B|\neq 0$ and $S(A,\,B,\,T_0,\,E_0)\geqslant 0$ imply $-(T_0A+A'T_0)-E_0>0$, $E_0>0$. (a) holds.

(b) There is a nonsingular matrix $P \in \mathbb{R}^{2\times 2}$ such that

There is a nonsingular matrix
$$P \in \mathbb{R}^{2 \times 2}$$
 such that
$$\begin{pmatrix} I & 0 \\ I & P \end{pmatrix} S(A, B, T_0, E_0) \begin{pmatrix} I & I \\ 0 & P' \end{pmatrix} = \begin{pmatrix} -(T_0 A + A'T_0) - E_0 & 0 \\ 0 & 0 \end{pmatrix}, (4.1)$$

i. 0.

$$-(T_0A+A'T_0)-E_0-T_0BP'=0$$
, $T_0BP'=PE_0P'$.

Since rank $(S(A, B, T_0, E_0)) = 2$, there are P_{11} , P_{12} , P_{21} , $P_{22} \in \mathbb{R}^{2\times 2}$ such that

Since rank(
$$S(A, B, T_0, E_0)$$
) = 2, there are P_{11} , P_{12} , P_{21} , P_{22} , P_{21} , P_{22} and P_{12} ($P_{11} P_{12} P_{12}$

Then $P_{11}P'_{11} = -(T_0A + A'T_0) - E_0$, $P_{21}P'_{21} = E_0$. Using (a) we know both P_{11} and P_{21} are nonsingular. Put $P = -P_{11}P_{21}^{-1}$. P is also nonsingular and

nonsingular. Put
$$P = -P_{11}P_{21}^{-1}$$
. P is also nonsingular and nonsingular. Put $P = -P_{11}P_{21}^{-1}$. P is also nonsingular and $\begin{pmatrix} I & 0 \\ I & P \end{pmatrix} S(A, B, T_0, E_0) \begin{pmatrix} I & I \\ 0 & P' \end{pmatrix} = \begin{pmatrix} I & 0 \\ I & P \end{pmatrix} \begin{pmatrix} P_{11}P'_{11} & P_{11}P'_{21} \\ P_{21}P'_{11} & P_{21}P'_{21} \end{pmatrix} \begin{pmatrix} I & I \\ 0 & P' \end{pmatrix} = \begin{pmatrix} P_{11}P'_{11} & 0 \\ 0 & 0 \end{pmatrix}$.

- (b) also holds.
- (c) For any symmetric matrices T, $E \in \mathbb{R}^{2\times 2}$, the matrix

y symmetric matrices
$$T$$
, $E \in R^{-1}$, the last $D(T, E) = -[T(A+BP')+(A+BP')'T]-E+PEP'$

In fact, if there are symmetric matrices T^* , E^* such that $D(T^*, E^*) > 0$, then is not positive definite. Letting $D_0 = -(T^*A + A'T^*) - E^*$, $H = -(T^*A + A'T^*) - E - T^*BP'$, for any t, we have

$$\begin{pmatrix}
I & 0 \\
I & P
\end{pmatrix} S(A, B, tT_0 + T^*, tE_0 + E^*) \begin{pmatrix}
I & I \\
0 & P'
\end{pmatrix}$$

$$= \begin{pmatrix}
t[-(T_0A + A'T_0) - E_0] + D_0 & H' \\
H' & D(T^*, E^*)
\end{pmatrix}. \tag{4.2}$$

$$= \begin{pmatrix}
T^* & T^* > 0 \text{ we can choose } t = t_0 > 0 \text{ sufficiently large}$$

Since $-(T_0A+AT_0)-E_0>0$, $D(T^*, E^*)>0$, we can choose $t=t_0>0$ sufficiently large such that the matrix in (4.2) is positive definite. Therefore, for

$$T_1 = t_0 T_0 + T^*, E_1 = t_0 E_0 + E^*,$$

we have $S(A, B, T_1, E_1) > 0$. This implies $B \in D_A$, contradicting the hypothesis of $B \in \partial D_A$. (c) is proved.

(d) There is a nonsingular matrix $QR^{2\times 2}$ such that

e is a nonsingular matrix
$$QR^{-1}$$
 such that QR^{-1} is a nonsingular matrix QR^{-1} such that QR^{-1} is a nonsingular matrix QR^{-1} such that QR^{-1} is a nonsingular matrix QR^{-1} such that QR^{-1} is QR^{-1} and QR^{-1} and QR^{-1} and QR^{-1} is QR^{-1} and $QR^{$

is orthogonal; or

$$Q(A+BP')Q^{-1}=\begin{pmatrix}0&0\\0&c\end{pmatrix}\left[\mathrm{or}\begin{pmatrix}0&1\\0&0\end{pmatrix}\right],\ c\in R,\ c\neq 0,$$

and

$$X = (Q^{-1})'PQ' = \begin{pmatrix} x_{11} & 0 \\ x_{21} & x_{22} \end{pmatrix}, |x_{11}| = 1.$$

First, Using (c), we know D(T, E) is not positive definite for any symmetric T, E. Particularly, if we put E=0, then Liapunov's Theorem implies that Jordan Standard Form of A+BP' must be one of the following

$$J_1 = \begin{pmatrix} iv & 0 \\ 0 & -iv \end{pmatrix}, \quad J_2 = \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix}, \quad J_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

where $v, c \in R, c \neq 0$.

(d. 1) Suppose the standard form of A+BP' is J_1 , and v=0. Obviously it must be A+BP'=0. Therefore, using (4.1) we have $E_0=PE_0P'$. Notice that $E_0>0$. There is a nonsingular Q such that $Q'Q=E_0$. Let $X=(Q^{-1})'PQ'$. We have

$$Q(A+BP')Q^{-1}=0$$

and

$$XX' = (Q^{-1})'PE_0P'Q^{-1} = (Q^{-1})'E_0Q^{-1} = I.$$

So X is orthogonal and conclusion (d) holds.

(d. 2) Suppose the standard form of A+BP' is J_1 and $v\neq 0$, i. e., there is a nonsingular matrix Q such that $Q(A+BP')Q^{-1}=\begin{pmatrix} 0 & v \\ -v & 0 \end{pmatrix}$. To prove that

$$X = (Q^{-1})'PQ'$$

is orthogonal, put

$$XX' = \begin{pmatrix} 1+s_1 & k \\ k & 1+s_2 \end{pmatrix}.$$

For any symmetric matrices T, E, we have

$$\begin{split} H(T, E) &= - \left[T \begin{pmatrix} 0 & v \\ -v & 0 \end{pmatrix} + \begin{pmatrix} 0 & -v \\ v & 0 \end{pmatrix} T \right] - E + XEX' \\ &= (Q^{-1})'D(Q'TQ, Q'EQ)Q^{-1}. \end{split}$$

Since D(Q'TQ, Q'EQ) is not positive definite for any T, E (by conclusion(c)), so is H(T, E). Notice that H(-T, -E) = -H(T, E) for any T, $E \in \mathbb{R}^{2 \times 2}$ and $H(T, E) \in \mathbb{R}^{2 \times 2}$.

Therefore $|H(T, E)| \le 0$ for any symmetric matrices T, E. Particularly if we let E = I, $T = \begin{pmatrix} k/v & t_{12} \\ t_{12} & 0 \end{pmatrix}$, then

$$|H(T, E)| = \begin{vmatrix} s_1 - t_{12}v & 0 \\ 0 & s_2 + t_{12}v \end{vmatrix} = (s_1 - t_{12}v)(s_2 + t_{12}v) \leqslant 0$$

for any t_{12} , This implies $s_1 = -s_2$. Therefore $|XX'| = 1 - s_1^2 - k^2 \le 1$. Similarly, if we put $E = X^{-1}(X^{-1})'$ and suitably choose T, we can deduce $|X^{-1}(X^{-1})'| \leq 1$. Hence we have |XX'|=1 and $s_1=s_2=k=0$. Thus XX=I and X is orthogonal. (d) also holds.

(d. 3) Suppose the standard form of A+BP' is J_2 (or J_3). Then there is a nonsingular matrix Q such that $Q(A+BP')Q^{-1}=J_2$ (or J_3). Using the above method we can prove that $(Q^{-1})'$ PQ' = X must have the form

$$X = \begin{pmatrix} x_{11} & 0 \\ x_{21} & x_{22} \end{pmatrix}, \quad |x_{11}| = 1.$$

(d) is proved.

Now, using (d) we give the proof of Lemma 10. By (d), we can suppose:

(1) There is a nonsingular matrix Q, such that

There is a nonsingular matrix
$$Q$$
, such as
$$Q(A+BP')Q^{-1} = \begin{pmatrix} 0 & v \\ -v & 0 \end{pmatrix}, \text{ and } X = (Q^{-1})'PQ^{-1} \text{ is orthogonal},$$

where P is defined as (b). Let $A_0 = QAQ^{-1}$, $B_0 = QBQ^{-1}$, then $A_0 + B_0X' = \begin{pmatrix} 0 & v \\ -v & 0 \end{pmatrix}$.

By (4.1), we have $|B| \cdot |P| > 0$. If |B| > 0, then |P| > 0 and so |X| > 0. Therefore,

there is $\theta \in R$ such that $X = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$. We have

$$|A + Be^{-i\theta} - ivI| = |A_0 + B_0e^{-i\theta} - ivI| = \begin{vmatrix} -B_0X' + \begin{pmatrix} 0 & v \\ -v & 0 \end{vmatrix} + B_0e^{-i\theta} - ivI \end{vmatrix}$$

$$= \begin{vmatrix} \sin\theta B_0\begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} + v\begin{pmatrix} -i & 1 \\ -1 & i \end{vmatrix}$$

$$= |\sin\theta B_0 + vI| \cdot \begin{vmatrix} -i & 1 \\ -1 & -i \end{vmatrix} = 0.$$

Using Corollary 1, we have $w(A, B) \ge 0$. In addition, the fact $w(A, \overline{B}) < 0$ for $\overline{B} \in D_A(\text{Lemma 3}) \text{ implies } w(A, B) \leq 0 \text{ for } B \in \partial D_A. \text{ Then we have } w(A, B) = 0. \text{ Then } w \in A$ conclusion of Lemma 10 holds for |B| > 0. If |B| < 0, then |X| < 0. Since X is orthog-

onal, there must be orthogonal matrix X_1 such that $X_1XX_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Let $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

$$X_{1}A_{0}X_{1} = \begin{pmatrix} a_{21} & a_{22} \end{pmatrix}'$$

$$X_{1}\begin{pmatrix} 0 & v \\ -v & 0 \end{pmatrix} X_{1}' = \begin{pmatrix} 0 & v \\ -v & 0 \end{pmatrix} \begin{bmatrix} \text{or} \begin{pmatrix} 0 & -v \\ v & 0 \end{bmatrix} \end{bmatrix}. \text{ Therefore } a_{11} = -b_{11}, \ a_{22} = b_{22} \text{ and } a_{22} = b_{22} \text{ and } a_{22} = b_{23}$$

$$(b_{11} - b_{23})^{2} - (b_{11} + b_{22})^{2} = -4b_{11}b_{22},$$

$$(\operatorname{tr} A_{1})^{2} - (\operatorname{tr} B_{1})^{2} = (b_{11} - b_{22})^{2} - (b_{11} + b_{22})^{2} = -4b_{11}b_{22},$$

$$|A_{1}+B_{1}| \cdot |A_{1}-B_{1}| = \begin{vmatrix} B_{1}\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & v \\ -v & 0 \end{vmatrix} \begin{vmatrix} B_{1}\begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & v \\ -v & 0 \end{vmatrix}$$

$$= v^{2}(v+2b_{12})(v+2b_{21}),$$

$$(4.3)$$

$$|A_1| = \begin{vmatrix} -B_1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & v \\ -v & 0 \end{vmatrix} = -|B_1| + v(b_{12} + b_{21}) + v^2.$$

Using Lemma 4 and the hypothesis of $B \in \partial D_A$, we have

$$|A_1+B_1| \cdot |A_1-B_1| = |A_0+B_0| \cdot |A_0-B_0| = |A+B| \cdot |A-B| \ge 0.$$

This implies $(v+2b_{12})(v+2b_{21}) \ge 0$. Therefor, appling (4.3) we obtain

$$f(A, B) = f(A_1, B_1)$$

$$= -4b_{11}b_{22} + 2\{|v| [(v+2b_{12}) (v+2b_{21})]^{\frac{1}{2}} - v(b_{12}+b_{21}) - v^2 + 2|B_1|\}$$

$$= -\{|v| - [(v+2b_{12}) (v+2b_{21})]^{\frac{1}{2}}\}^2 \le 0.$$

 $B \in \partial D_A$ implies $f(A, B) \geqslant 0$. Thus, f(A, B) = 0. The assertion of Lemma 10 holds.

(2) There are nonsingular matrices Q and X such that

$$A_0+B_0X'=\begin{pmatrix}0&C_{12}\\0&C_{22}\end{pmatrix},\quad X=\begin{pmatrix}x_{11}&0\\x_{21}&x_{22}\end{pmatrix},\quad |x_{11}|=1,$$

where $A_0 = QAQ^{-1}$, $B_0 = QBQ^{-1}$, $X = (Q^{-1})'PQ^{-1}$.

Obviously, if $x_{11}=1$, then $|A+B|=|A_0+B_0|=0$; if $x_{11}=-1$, then |A-B|=0. we have $w(A, B) \geqslant 0$. Noticing $B \in \partial D_A$, we have w(A, B)=0. Lemma 10 is proved.

Using Lemmas 7, 8, 9, 10, we can obtain

Corollary 2. Suppose $B \in \partial D_A$, $|B| \neq 0$. Then conclutions of Lemma 5 hold.

Corollary 3. Suppose $B \in \partial D_A$, |B| = 0, Then one of the equalities |A+B| = 0, |A-B| = 0, and f(A, B) = 0 must holds.

We will not give the proof Corollary 3 and only point out such a fact. If |A+B|>0, |A-B|>0 and f(A, B)>0, then we can choose t>1 such that |A+tB|>0, |A-tB|>0 and f(A, tB)>0. For $B_0=tB$, obviously there is a sequence $\{B_n\}$, $|B_n|<0$ such that $|A+B_n|>0$, $|A-B_n|>0$, $f(A, B_n)>0$ and $B_n\to B_0$ as $n\to\infty$. Using Corollary 2, we have $\{B_n\}\subset D_A$. So there must be $T_0\geqslant 0$, $T_0\neq 0$, $E_0\geqslant 0$, such that $S(A, B_0, T_0, E_0)\geqslant 0$. Repeating the method used in the proof of the above lemmas, we can prove that $hB_0\in D_A$ for any |h|<1. Then B=1/t, $B_0\in D_A$ since |1/t|<1. Appling this fact and Lemma 4, we obtain Corollary 3.

Obviously, Lemma 5 is the combination of Corollary 2 and Corollary 3.

I am heartily grateful to Associate professor Zheng zhu-xiu for his guidance.

References

^[1] Hale, J. K., Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.

^[2] Huang Zhenxun & Lin Xiaobiao, A Problem of Stability for Delay Systems, Math. Annul, 1 (1982).

^[3] Qin Yuanxun, Liu Younqing & Wang Lian, Stability of the Dynamical Systems with Delay, Science Press, Beijng, 1963.

^[4] Tahtmaxep, Φ . P., Theory of Matrix, Advanced Educational Press, Beijng. 1955.