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Abstract

In this paper, the author considers the two-dimensional delay systems
#(t) = Aw(t) +Bo(@E—1), 4, BE R*<2, g € R?, r=const.>0, »)
and gives the necessary and suflcient conditions under which where exists a simple type of
positive definite Liapunov funectional '

7 ()3 O)Tp(0) + [ ¢/ @ F0®,

and a(s) (where T', E are positive definite 2 X 2 matrices, p€C ([-r, 01, B™, e staﬁds for
transpose, a(s) is continuous and a(0) =0, a(s)>0, s>0.)such that V@) < —a(|e@) -

§ 1. Introduction

Oongider the delay systems
&(8) = Aw(8) + Bo(t—1), (1.1)

where A, B are nXn constant matrices and r=const: =0. J. K. Hale in [1] digcussed

the stability of the zero solutions of (1.1) by the functional
' 0
V(9) =g OTp0)+|_ ¢ (O EpO)H,

where p€C([—r, 0], R, T, H arenXn gymmetric matrices. Obviously we have
oty =— @ ©, 98 )
p(—1)
where

1.2
—B'T B (1.2)
Particularly, it 7', B are positive definite and S is also positive, then Liapunov’ 8

o (— (TA+A'T)—E -—TB)

Theorem implies that the zero golution of (1.1) is agymptotically stable for any
r>0. Naturally, one will raise guch a question: What are the mnecessary and
sufficient conditions for the oxigtence of the positive definite matrices T, H and S
(This question was first ‘mentioned in [1]) Huang Zheng-xun and Lin Siao-biao
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pointed out lately that, if thero are T>0, H>0 such that § >0, it isn’t necessary
that there is an estimate of the rate of the selutions to zero which does nob depend on
the delay for (1.1); in addition, there are matrices 4, B, guch that the zero solution
of (1.1) is asymptotically stable for any delay, but there donob exist T'>0, H>0
such that §>0 (gee[2]).) We know, for n=1, i. e. the scalar equation '
o (1) =am (1) +bdw(t—1),
t+he necessary and sufficient condibions are @<0, |a|>|b|. But when n>1, the above
problem will become complex. In this paper, we will discuss this problem for n=2,
and will give a necessary and sufficient condition, that is |
Theorem 1. Suppose A, B are 2X2 matrices, then there are positive definite

matrices T, B such that S in (1.2) is positive definite if and only &f one of the
following conditions holds: ' :

(1) A is stable, | B| >0 and

w(4, B) fi—i'—sup{Re A (L) | A+ Be~*—MI| =0, r=0} <0,

(i1) A is stable, | B| <0, |A+B|>0, |A—B|>0 and

F(4, B)SL (tr 4)*— (tr By +2[(| A+ B A—B|)¥—|4]+|B|]>0.

HeoreA is said to be stable &f all the eigerwalues of A have negative real parts, and
| A| =det(4).
(We will point out the differences between (i) and (i) later)

§ 2. Definition and properties of strong stable domain D

3
Let R2*® be the spaco of the 2X2 real matrices with norm A4 ==“2_1 |ay| for

A=(a;). We denote >0 if T is a symmetric and positive definite matrix. For 4, B,
T, E € R, where T, E are symmetric, wo define
—(TA+AT)—E -TB

~ BT E )

Definition 1. For any stable matriv AE R, the set Dy={B:B € R?*?, there are
symmetric matrices T, B € R**® such that S(4, B, T, B) >0} s said to be the sirong
stable domain associated with A. ' |

Obviously, if 4 is stable and S(4, B, T, E)>0,then there mugst be >0, E>0.
Mherefore if B E Dy, the zero solution of (1.1) is asymptotically stable for any r=0.

S(4, B, T, E>--(

Now we will give some properties of Dj.

Lemma 1. For any stable matriz ACR2® , D, is @ nonempty, connected and open
set of R¥. '

Proof It is clear that D, is nonempty and open. To prove Dy is connected,
supi)qse BcD,, By the definition, there are symmetric matrices T, B such thab
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S(4, B, T, E)>0. We can check that for any %, o<i<l, 8(4, B, T, B)>0.
Thus, the segment {tB: 0<t<1}Da. Therefore D, is connected.

Lemma 2. Suppose 4, B are nxn matrices and A s stable. If there are v, 0& R
such that |A+Be ¥ —ivl | =0, then for any wER any &>0, there are roERY and Ao
such that
@) | A+e*Be " —hoI | =0,

2 IRe?»o(1+¢o)—ul<e, _
Proo f Suppose ¥ +0. For u€R, let F (A) = lA+e”B_e“’“"”—-'iva 1,
H(\, k)= | A+e"Be™* " — (|| A/ (2hm-+-40) +ilaII,
where k i3 a positive integer. By the hypothesis, F(A) hag the zer0 point A=
uti(@—v) and F(A)=0 sinco A is stable. Moreover F@y, HQ, k) are analytic
fanctions and H(, b)—>F () as k—>co 18 uniform for A in any compach got of € (the
complex field). Then, using Rouche’s Theorem we can. choose ko sufficiently large
and Ag such that , S '
|0 (|| +&/2)/ Chom+ lv])<e/2, [ha—hs| <e/2, H (s, ko) =0. (2.1)
Now letting ro= (2kom -+ lo])/ o], No=Ma/To+4v, We have ’
| A" Be~""— Aol | =14+ g8 Bt/ 01+ — (| | Ao/ (2kom-+ [ D +i0) I
= | A+e*Be ™ — (| o] Aa/ (ko lo])+in)I]
=H (Ag, ko) =0,
and ‘ ‘
| Re Ao(L-+70) —u] <|Reha/70] + |Ro(ha—A) |
< (|ul+e/2) v/ @hom+ |o])+8/2<e.

The lemma holds for »#0. If v=0, letting HQ, q*)-——-lA—l—e“Be"’“—?\./H, r>0,

gimilarly we can prove thab the lemma algo holds.

If 1ot s—>0 in Lemma 2, weo can obtain the following

Coollary 1. Suppose the hypothesis of Lemma 9 holds. Then for any »€ R, we
have w(A, ¢*B) —=sup {Re A(L+r) .| A4-¢*Be™ — ML | =0, r=0}>u.

Lemma 3. Suppose BE Dy, Then w(4, B)<0,

Proof For any BE Dy, by the definition of Dy, we have w(4, B)<0. So it i8
only required to prove w(4, B)#0.1f w(4, B) =0, there would be sequences

{%n=un+m}, {ra}, tn, WER, 120
such that o
| A4 Be(nt e — (up+-ivm) I| =0, =1, 2, . - (2.2)
and 1, (L+1,)—>0 a8 n—>°. Obviously {As=e"""™"} is bounded and >0, Ugra—>0, then
{w,} is also pounded. Therefore there are gubgequences of {v,} and {A.} which are
Jabeled in the same way and v € R and %, such that v.—>v, %X ag n—>co. Obviously,
|X] =1, so there oxists 0 € R such that 5 =g, In (2.2), letting n—>o0, W obtain
lA—i—Be‘“’——'ivaI =0,
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Using Corollary 1, for any ¢>1 we have w(4, tB) =w(4, ¢"B)>Ini>0. But, on

the other hand, since Dy is open and B& Dy, we can choose £,>>1 such th at t.BE Dy.

8o we have w(A, #%B)<0. This is a contradiction and the lemma, is proved.

Lemma 4. Suppose BE Ds. Then the following conclutions hold:
(i) |A+B|>0, |A—B[>0, (i) f(4, B)>0(f(4, B) is defined as Theorem 1),
Proof By BE Dy, there are T'>0, E>0 such that S(4, B, T, E)>0. This

implies _
—[T(A%B)+ (A+B)'T]>0, (2.9)

Appling Liapunov’s Theorem, we know that both A-+B and A— B are stable. There
fore| A+B| >0, }4—B|>0. (i) holds. Moreover, (2.3) implies —(TA-+A4'T)>0,

‘Therefore, there is a nongingular matrix P such that

T 1 0 0
—P(TA+A’T)P’=< ) P(TB+B’T)P'=<‘.’1 ) 2.4)
o 1 0 Cg

and |e;] <1, j=1, 2. Using (2.4), We can suppose
——2PTAP'=< - 7“) 2PTBP’=( o >,;
. \—k 1 -8 Ca

12 tas ,
: t11t22> { TO l >00

X | |
A0=—T0( 7") BO=T0<__01 s), (2.5)

S Gy

o fy % v ‘ o
Let To=(2PTP")™ =(“ 1?), Ag=(P-tYAP', By=(P%)'BP'. Obviously

Using (2.5), we obtain :
(tr 4o)?— (tr Bo)?= (f1+ fa9)®— ($1101— t2202)*>2 ] To l (1- 013),

(| Ao+ Bo| + | do—Bo| ) 2> | T [0+ | B2 =], (2.6)
l-AOI—IBOl=‘T0l(1—0102+k2'—' . |
Clearly f(4, B) =f(Q4Q™, QBQ™Y) for any monsingular matrix Q, Therefore by
(2.6) we have f(4, B)=f(4o, Bo)>0, (ii) also holds. The lemma is proved.
About the relation between A and the boundary points of D4, we have
Lemma 5. Supposs BEOD, (the set of all the boundary points of Dy). If|B|>0,

' then w(4, B)=0. If |B| <0, then one of the following equalities must be valid:

(i) |4+B|=0, (i) |A—B|=0. (i) f(4, B)=0.
(The proof of this lemma ig tedious. We will give the proof in IV).

|
§ 3. Proof of Theorem 1

Now we will prove Theorem 1 by using the above lemmag and corollary.
Tirst, if there are T'>0, H>0 such that 8(4, B, T, E)>0, we can deduce that 4
ig stable. Therefore, BE D, and Lemmas 3, 4 imply that the conditions in Theorem 1
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are necegsaTy. We are going to show that the conditions are also sufficient.

a. Suppose Condition (i) in Theorem 1 holds. :

Tf the theorem were not irue, i. e. B¢ D, considering the got{tB; 0<\¢t<<1},since
+BE€ D, for t=0 and tBED, for i=1, there would be % € (0, 1] such thab t,BE0D,.
By Lemma B we have w(A4, toB) =0. Following the proof of Lemma 3, there exist v,

g€ B such that | A+tBe™? —ivI| =0. Using Qorollary 1, we have

w(4, B)=In(1/t)=>0.
This contradicts the condition (i). Then BE D, and there are >0, E>0 guch that
S(4, B, T, E)>0. :
b. Suppose Condition (if) in Theorem 1 holds.
‘We will show that BE Dy still holds. In fact, if B&ED,, similarly there would
e 1, € (0, 1] such that {LBE aD,. Obviously, |fB| =1 | B| <0, Hence, for A and £,B,
one of Equalities (1) ,’ (ii) and (iii) in Lemma 5 must be valid. On the other hahd,

" 3f OQondition (i) in Theorem 1 holds, we can easily check tha 4| A-+#B|>0,

| A—#B|>0 and f(4, #,B) >0 for any %€ [0, 1]. This is a contradiction and the
proof is completed.
Remark 1. Theorem 1 and Lemma 4 imply that A ig stable and |B|>0, then
w(A4, B) <0BE D= A+B|>0, | A—B|>0, f(4, B)>0. But | A+B|>0,
. " |A-B|>0, f(4, B)>0Hw(4, B)<0.
-1 2

For example, letting A=< 9 j) , B
f(4, B)>0. But A-+B is not stable, So w(4, B)>0,

Remark 2. If A is stable and|B| <0, then | A+ B|>0, | A—B| >0,

f(4, B)y>0eBecD=w (4, B)<O0.
-1 2 b 0

But w(4, 'B) <0»BeD,;. For example, letting A= (_2 1), B=~( o - )
where 1< |b] <2, we can check that w(4, B)<0 (use Theorem 1 in[81, P 168, and
the fact | A+ Be~®—ivI|#0, 6, »ER). But f(4, B)<0, So B ¢ D,. |

Remark 2 shows that A being stable and w(4, B) <0 can not ensure the exigtence
of the positive definite mareices T, B and S(4, B, T, E) if |B|<0. This is the
difference between |B| >0 and|B] <0, |

‘Remark 8. If | B| =0, then w(4, B)<0&4 s stable, |A+B|>0, |4—B|>0,
f(4, B)>0cB€Da, o

2 0
=(O 2>,We have| A+B|>0, | A—B|>0,

§ 4. Proof of Lemma 5

Tere we will prove Lemma 5. For convenience of the proof, we denote T>0 if
T is symmetric and positive 80 mi-definite.
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Lemma 6. If BE Dy, then for any nonsingular matriec P € R2x@ P~iBP € Dpa».

Lemma 7. Suppose BEODs. Then there are To=>0, Ty#0, Eo=>0, such that
S§(4, B, To, Ho)=0, but S(4, B, T, E,) is not positive definite.

Loemma 8. Suppose BE@D4s and To, Ho are defined as Lemma 7. Then rank
(S(4, B, To, Be))<8.

(The proof of this lemma is similar to the following proof of Lemma 10).

Obviously, if BE2D, and Ty, Ho are defined as Lemmsa Y7, then one of the
following hypotheses holds: : :

(@) |Tol=0. (i) |To|#0 (i. e. To>0), | B0, (i) |B|=0.
Now we will discuss the relations between B and A for (1), (i), (iii) rogpectively.

Lemma 9. Suppose BE 8D, and (i) holds. Then one o f the equalities ]A+'B|H=0,
| A—B| =0 must be valid.

Proof Tirst, using Lemma 4 we can deduce | A+ B|=0, |4 —B|=0. By T'o=0,

: 10
Ty=0, |To| =0, there is a ponsingular matrix P such that PT.P’ =<0 O). In

addition, S(4, B, To, Ho)=0 implies— (ToA+ A'To) >0 and
—[To(A%B)+ (A% B) To] >0.

Letting _ .
) . byy b
A0=(P_1>.,AP,=<G11 (740 >’ Bo=(P_1),BP,=< 11 21>,
» Qa1 Qa1 , bia  Daa
we have
—2a11:!:2b11 —anibm 10 10
- Ao Bo) + (4o F Bo)’
(-—amﬂ:bm 0 ) [(0 0>< F B+ (4 Bo) (o 0>]

— —P[Ty(4F B)+ (4F B)'To] P'>0,

Qa1 Qas o1 boa
|4+B|>0, |A—B|>0 imply |asm|>[bsl. We assert that ome of |au|=|bul,
| s | = | baa| will hold. Suppose (for contradiction) that ag| > busl, | @aa] > | bas].
Since A, is stable, we have 011<0, @95<0. For >0, letting

ro-(; 5) 20T o)

: ' 0 by O
Hence a12=big=0, ‘a11|>lbiiI, i. e. Ao=<a11 ), Bo"-—‘( - >, Moreover

‘we can eagily check that there would be a sufficiently large £,>0 such that

S (4o, Bo, T(%0), B (0)) >0.
Thus BoE€Ds, and Lemma 6 implies BE Da. This contradicts the hypothesis of
BEaD,. 80 |y) =|bul| or |am|= |Baa|. The lemma is proved.
Lemma 10. Suppose BEJD, and (ii) holds. Then w(4, B)=0 if |B|>0, and
one of the following equalities must be valid 4f | B] <O0:
(1) [4+B|=0, (2) |4—B|=0, () f(4, B)=0,
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We will prove this lemma With the following goveral steps:
Prove (&) rank(S(4, B, T, Ho)) =2 and — (T0A+A'To) _E,>0, Bo>0.
Obviously |ToB| 0, 80 rank (S(4, B, To, Ho)) =2 Using Lemma 8 we have
rank(S(4, B, T, o)) =2 In addition, |TeB) #0 ond S(4, B, To, Bg)=0 imply
— (ToA+ AT o) —Ho>0, Fo>0. (2) holds.

(b) There is 2 nongingular matrix P ¢ R**® guch that

I 0 L 1\ (- @eA+AT =B O
sS4 To, B = )

- (T()A’\‘A,To) "Eo—’ToBP/—':O, ToBPI=PEoPI°
gince Tank (S (4, B, T, Hy)) =2, there are Pay, Pas, Pots P,, € R such that

‘ Py Pm)(I 0)(13'11' P'21> (PnP'n P11P'21>

S(A, B, To, B ==< ' = .

(4, 5 = 0=\ p, Puw/\0 0/\Pu )T\ PuPh  Pula

Then P 11P '11== - (TOA+ .A,To) "Eo, P 21P '21='-= Ho. Using (3;) WO know both P 11 and

P.; are nongingular. Put P=— Py Pat- P is also non_s'mgular and
I 0 I I I 0 Py Pis P11P'21><1 I )
Sc4, B, T § i =
(1 P> (4, £ 2o °><0 P’) (1 P)(PgiP'n PP J\O P

#<P11P'u o>
0 0/

(b) also holds.
(¢) For any gymmetric matrices T, B € R2%2 the matrix
(T, B)y=— T (A+BP)+ (A—\—BP’)’T] _E+PEP
ig nob positive definite.
Tn fact, if there are gymmetric matrices T, E* such thab D(T*, E*§>0, then:
Letting Do=— (T*A+A’T*) ~F*, H=- 7 A+ ATY) _p-—T*BP’, for any , we

have :
I0 I I
To+T%, & *
(I P)S(A, B, tTot+1", E°+E><O P’)
_ - (T0A+A’To)—E0]+D0 H ) 4.2)
H D(T", BY) '

Since — (T0A+AT0) —Ey>0, DT, E*)>0, we can choose t="%>0 gufficiently large
guch that the matrix in (4 .2) is positive definite. Therefore, for :

' 7, =toTo+T" By=toHot B,
we have S(4, B, T,, B)>0. Thig implies BED,, contradicting the hypothesis of
BcoD,. (o) 18 proved.

(@) Thereisa nongingular MAtrix QR?** such thab

0 v
>’ »ER, and X = QP

Q(A—\—BP’)Q‘L;(
—v 0
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is orthogonal; or

0 0 0 1
' —1= O
Q(4+BP)Q (0 G)[or(o 0)] 0€R, 040,
and
- ’ ’ P11 0 ’
X=@™ PQ=< >, |ou| =1,
La1 Doz

First, Using (¢), we know D(T, E) is nob positive definite for any symmetrie
T, E. Particularly, if we put B=0, then Liapunov’s Theorem implies that Jordan
Standard Form of A+ BP’ must be one of the following ' '

3 0 00 01
J1= ?,lv G ), J2=( ), J3=( )’
0 - 0 ¢ 00

where v, cER, ¢#0, _

(d. 1) Suppose the standard form of A+BP' is J1, and v=0. Obviously it must
be A--BP'=0. Therefore, using (4.1) we have Ho=PHP'. Notice that He>O0.
There is a nongingular @ such that Q'Q=Ho. Let X =(Q@™)'Pg. We have

Q(A+BPHQ™*=0
and _
XX'=(QY)' PEPQ =@ EQ =L
So X ig orthogonal and conclusion (d) holds.
(d. 2) Suppose the standard form of A+BP ig Jy and 90, i. e., there i3 2

o ; 0
nonsingular matrix @ such that Q(4A+BP") Q‘1=< z) To prove thatb
-0

X=@Q'PY
ig orthogonal, put
X_X, _ <1+ 81 k )
Foool+se/)

For any symmetric matrices T', B, we have

H(T, E)———-—[T( 0 ”>+<0 —:)’)T]—E+XEX'

—-o 0 )
=(@*)'D(QTQ, FEQQ™,
Since D(Q'TQ, @ EQ) is not positive definite for any T, E (by conclusion(e)), so ig
H(T, E). Notice that H(~T, —H)= —H(T, E) for any T, EC€R™ and
H(T, E) ER™.
Therefore| H (T, E)|<O0 for any symmetric matrices T, E. Particularly if we let
BE-I, T=<’°/” t”), then
t1a O
si—tigv . 0

= (84— t120) (So+1120) <O
0 I (81— £129) (S2+1120) <

|H(T, B)|=
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for any t15, This implies 8= —s,. Therefore | XX /| =1—si—F<1. ‘gimilarly, if we
put B — X-1(X*) and guitably choose T, we can deduce| X (X -1y’|{ <1. Hence We
have | XX'| =1 and s;=8;=Fk=0. Thus XX=]and X i8 orthogonal. (d) also holds.
(d. 8) Suppose the standard form of A+BP is Ja (0T Jg). Then there ig a
nongingular matrix Q such thab Q(A+BF yQt=J (ot Jg). Using the above method
we can prove thab @ PQ = X must have the form '

» 0
X—’—‘( o ), |m11\=1,
Wa1  Ta2

(d) is proved. , o
Now, uging (d) we give the proof of Lemma 10. By (d), we can SupPPose:
(1) There is 2 nongingular matrix Q, such that

0
Q(A+BP") Q= (_ 0 :;), and X=@Q PQ*is orthogonal,

, | 0

where P is defined a8 (b). Let Ay=QAQ™, B,=QBQ™*, then Ao+ BoX' =( q())>
. , | —

By (4.1), we have | B}« | P|>0. If| B| >0, then | P| >0 and 80 | X|>0. Therefore,

| cos@ sin@

there is 8 € R such that X =( . ) 'We have
. ~ \—sin6 cos f

0
\A—\—Be"“’ —gol|= |A0+Boe“"—-filel = \ —Bo X' +'(_ :;) 4+ Boe™¥ —'i,va\

v
—4 1 —¢ 1
=\sma30( )+( )\
-1 - -1
. 1
=\sin9Bo+va\°\ * =0,
-1 —

Using -Oorollam‘ry 1, we have rzb(A, B)=0. In addition, the fact w(4, B)<0 for
B ¢ D, (Lemma 3) implies w(4, B)<0 for BE&D,. Then we nave w(4, B)=0. The
conclugion of Lemma 10 holds for |B|>0. If| B| <0,then | X1 <0. Since X i orthog-

1 0
onal, there must be or’oh‘_ogonal matrix X1 guch that X (X Xy= ( 0 1>. Let Ai=
a1 O . by b i 0
X A X1 = ( " an)’ Bi=X1B0X’1=< - 12), wo have A+ B1< )—1
‘ ag @as bat b2e , 0o -1

0 0 0 -
Xy “\x = Y [or ( fvﬂ Therefore @11 = — by, @aa= bas and
- 0 —p 0 Y 0 .

(tl' ADS - (131' -B1>2 = (bn— b22> 2 (bii+ b22)2 = —4b11baa,

PR TR IR R e e

=2 (v+2D15) (v+2ba1), (4.8)
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_3, ( 1 O> +< 0 )
0 -1 —» 0
Using Lemma 4 and the hypothesis of BE9D,, we have
- | 434 By ¢ | A3 —By| = | 4o+ Bo Ao—Bo| =|4+B|:|A—B|>0.
This implies(v+2by2) (v+2bs1) =0, There‘for, appling (4.3) we obtain .
f(4, B)=f(4s, By
= ~4bysbas+2 {| v} [(v+2b1a) (’04—2521)]%—’”(5124‘7)21) —0?+2| By[}
— —{J0]  [(o-+3bss) (o-+2bsx)] 70,
B€aD, implies f(4, B)>0. Thus, f(4, B)=0. The assertion of Lemma 10 holds.
(2) There are nongingular matrices Q and X such that

- 0 C 0
AO+BOX'=( ) X=<”“ ) |on| =1,

0 O Ly Dag

| 4s] =

=.— ‘Bil +’U(bm+b21) +’l)2°

°

where 4o=QAQ~, Bo—QBQ™, X = @7)'FQ™,

Obviously, if #y=1, then |A+B|= | Ao+ Bo| =0; if @4y=—1, then | A—B|=0.
we have w(4, B)=0. Noticing BE2D4, Wo have w(4, B)=0. Lemma 10 is proved.

Using Lemmas 7, 8, 9, 10, we can obtain

Corollary 2. Suppose BE@Dy, |B | 0. Then conclutions of Lemma 5 hold.

Corollary 3. Suppose BE&D,, |B| =0, Then one of the equalitios | A+B| =0,
| A—B| =0, and (4, B) =0 must holds. '

‘We will not give the proof Corollary 3 and only point out such a fact. If
|A+B|>0, |A—B|>0 and f(4, B)>0, then we can choose #>1 guch that
| A+4B|>0, | A~1B] >0 and f(4, ¢B)>0. For By=1B, obviously thele is a soquence
{B.}, | B.] <0 such that | 4+Ba|>0, | A—B,| >0, (4, Bs)>0and B,—>B, as n—>.
Using Corollary 2, we have {B.}<Dy. So there must be To=>0, ToaéO,A Ey>0, such
that S(4, Bo, To, Ho)>0. Repeating the method used in the proof of the above
lemmas, we can prove thab hBo€ D, for any |h|<1. Then B=1/t, Bo& D, since
|1/¢] <1. Appling this fact and Lemma 4, we obtain Corollary 3.

Obviously, Lemma b ig the combination of Corollary 2 and COorollary 3.

T am heartily grateful to Associate professor Zheng zhu-xiu for hig guidance.
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