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Abstract

Yn this paper, the author improves Yoshihara’s result (J. Multivariate Anal. 8(1978),

584—588)and proves the weak convergence of empirical processes for sequences"of p-mixing

strictly stationary random variable with p(n) =0(n_%—e), 6>0.

Moreover, the author simplifies the complex proof of weak convergence of empirical
processes with random index and gets the corresponding result for a-mixing stationary
random variables.

Lot {£,} be a stationary sequence of random variables defined on a probability
space (Q, &, P) and let £, have a uniform distribution over [0, 1]. The sequence
{£,} is said to satisfy the condition of e-mixing, p-mixing or g-mixing, if the
following conditions are.satisfied regpectively:

1.) If for any A€ Fou=F{Ex k<0}, BEF =T k=>n},

| P(4B) — P(4)P(B) |<a(m){0 (@—>0);

2.) if for any F °.—measurable random variable £, any F *=_meagurable random
variable n, E|{|2<oo, H|n|?<eo,

. |Efn—BEEy|/NVarEVarn<pm0 (n—>0);

3.) if for any A€ F 2., BEFT, '

|P(4B) —P(4)P(B) | <pm)P(4), p(m){0 (—>e0),

MThe empirical processes {¥,} are defined as follows:

Ya(t, @) =~n (Falt, @) 1) (O<t<1), - (i)

where we denote by F,(t, »)the empirical digtribution function of £1(w), «+, &u(w).
Suppose that ¥ ={¥ (i, w): 0<\¢<X1} are real Gaussian processos, with EY (¢) =0and
covariance function o -

BY 7 () = B0+ 1 B0.E0a@+ 3 Ba&n, @
where g;(a) =I,(a) - . ’
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In[1—4], the weak convergence of empirical processes for sequences of stationary
random variables has been discussed. Yoghihara proved that ¥, weakly cbnverges to
Y in the case of o-mixing and g-mixing, in [8, 4], when a(n) =0(n"%2"% and
@(n) =0(n"1"%), §>0. In thiy paper we, first of all, weaken the mixing condition and
prove the same result in Theorem 1, when {£,} is p~mixing, p(n) =0(n 2% §>0.
Since p(n)<2~p(n), Theorem 1 improves the result in [4].

In [6, 7], the weak convergence of empirical processes for random number of
independent random variables has been considered, but the proof is very complex.
In Theorem 2, we give a simple proof in the case of dependent variables, that
improves the result in [6, 7] _

- Theorem 1. Let {£,} be a stationary p-miwing sequence, p(n) =0(n~Y2-9) = §>0.
If the series on the right hand side of (2) are convergent absolutely, then Y, wealkly
converges to Y.
Proof Tt follows from [4, 5] that the finite-dimensional distributions of ¥,
“converges weakly to thogse of Y. In order to prove that the {Y,} is tight, from [4], it
is suflicient to prove that the following lemma ig valid.
Lemma Let {£,} be as in Theorem 1, p(n) =0(n"*%"%) 6>0. Pui
%= Ie,1y(§) — (t—s), Bu=0, Hzf=v>0,

Sn= 2 Zk.
k=1
Then for any 8o>0, there ewist 6;>>0, 6,>0 such that

P{|8,/~N 1 | >e} <K (n~"p+ 71+, o (3)
when n 8 50 large and v<<eo/N'n . Here (and below) K is o positive constant (and can
assume different values on each of its appearance, even within the same formula).

Proof Let
r= [logg n—l], p= 2E(N-—1)r/(2N)J, m=2r—[r(N—1)/(2N)J.
We may assume that 0<<§<1/2, and take the nature number N>2/(58), where [a]
denotes the integral part of real number . Putb

=Dty =D ass (b=, o, m),

Ty=3 s, ThmSy=Tu=Th,
From the conditions of the lemma, it follows that
 Bg=(Fn) <prtan((p- Do+t p(p-1) <Kptt,

where A=1/2—0. Futhermore
B | mons| < B ( jp) K p***w(jp) =4 P< Kp**j=G-g,

-1
ETE< Khp*+h 3 B|iongs| <K (b + B s < K (g B,
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where pt~*\ k* is just the same as max (p*~*, k*). Since N >2/(56) > (1+26)/(59),
we can take & such that -
(2(N —1) (1—-29)/(N+1——20)) V ({2(N+1) —4(3N—-1)~9}/{N—-1+2(2N——1)0})
<82, (4)
Checking the proof of Lemma 9.1 in [5], we see that Lemma 2 .1 ig also true for
the & chogen above. It follows from (2.7) and Lemma 2.1 in [p] that we have
| E1T2m|2+6<(2+8)EIT,,.[“"—!—K(EleIz)iM/s.
There exist positive constants & and 8 such that (2+6) g-uts/eM < B<1. By a
discussion ag in [4], it follows from Lemma 2.1 of [b] that
Elel2+6<K(2+ 8)”[%7771' ’]"[%] (E}T(ZE%]) l2)1+6/2
[ 1~ 03]

+K 3 (2+ 8B [T(2r_ [’A‘r‘z";vl"] —t |2) 1+8/3 (5)

: . §=1
Here M is so large that (N-—1)(1/2-+ 8)/(2N)>d(1/2—6)/ M, which implies
plr 2/, Multiplying two hands of the above inequality by 9-ri+6/D) e gob
9-ra+/ D | T, | *+ ,
B O s A ed
[ 1L

(142 -1 142
kTS e age) AT X

=1

N-1 (g 1+2

% {pHH(2 —[57-] "‘) vV 5 (2 r~L— ) }1'*% . ()
Bocause of 7< o/~ 1, #/2<Kn™¥ i Ko, From (4), if M is so large, the powers
of 2 in the first term on the right hand gide of (6) is ‘

2o oLt T o (o)
D) et ()

,_-._S”ZF{Z(N-_Q (1—20) — (N +1+2(N —1)§)8}; <0,

So the first term on the right hand gide of (6) does not exceed K e v, 6 >0.
Let us congider the summation of the gecond term on the right hand side of (6).

If pi=rps (2 H-0r/ @M)I-i) A, shen the corresponding term in the summation is
Q-r(H/D) {5t o —L=1r/ @I=4 A 140/ (9 )~

_ <K ( (2+ 8) )/21+6/2>i—-12((N—1)r/(2N))A(1+6/2)—#(1—0)6/4,vi+86/2. (7)
It follows from (4) that the powers of 2 on the right hand side of (7) is

(G040

- Q1) (1 —20) = (N+1-20)8) <0.

If pt-r< (21— @m1-4)  then the corresponding term in the summation is
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2—7‘(1-1;6/2){p2h(2r—E(N—1)r/(2N)]-—i) 1+;.,v,}1+¢5/2 <2+ 8>i—1
A <K<<2+ 8) /21+06>i—izr{)u—(N—i)(1-—)«)/(2N)-(1—6)6/(4+26))(1+6/2),D.1+96/2’ (8)
where 1+a=(1+A) (1+9/2). It follows from (4) that the powers of 2 on the right
hand side of (8) is
r(1+8/2) (1/2—0— (N —1) (1/2+6)/(2N) — (1—6) 8/ (4-+25))

= (r/8N){2(N+1) —4(BN —1)§— (N —1) +2(2N ~1)§)8} <0,
Denote 4o=max{i: pi~*< (2r-1n-Lr/@MN-i)3} Therefore the second term on the right
hand snde of (6) does not exceed

9bg \¢=1 | roIW=Dr/@MI-r/M1, 9 g \i-1
e {§< 21”) + S (21”/2_) }ty,i-bea/z

é=io

ey 248 \i-1 94-g \i1 ) :
C<EfS(R) 7 (Fh) T frensie,
where 46,=09, the constant K does not depend on « and p, It follows that

) 2-1‘(1+6/2)E I T I 2+6<K( T + ,D.1+269> .

For T =8, —Tp—T!, put 0<ny—=n—2mp<2**, If ny<2p,'sinco |z|<1L, |T%]|
<ny<2p. If ny>2p, lot us write r3=[logans—1], p1=2E‘N‘1>“/ CN gy =2"/p,;, and
define TY, T, TL" =T —TH —T agabove. By the same argumentation, we have

2—r1(1+-a/2). B|TY <K (,n“"i” pA-gitoor)
Here the number of termg in T ig ng=mny — 2myp; <212, therefore ry<r. For
any given n, take this step s t1mes-(s<o~= [logan—1])s0 that n>2p (=2, +-, s—1),
ne>2p, then |TY"| <2p<en/n/r and for T $(i=2, -, s—1) we have

@

__91

. —o®
2—r¢(1+6/2)EIT$Z)‘ l‘2+6<K<n 1 'D’+T‘1+292>_

Since ny>ng >+ ->ns_1>2p>Kn’.’ (b(>0)doesn’t depend on qi), there exists a #,(>0),

which doesn’t depend on n, such that 20;<8{(5=0, 1, -, s—1). Put Tp=T3). It
follows that |

‘ s—1 .__ —
P{lsn1>sﬁ}<2zv P{ITS|>en/w/r}+P{|T8|> sn/n/r}
<2 (0"/8) 245 2 n—(1+6/2)E l T(i) I 2+6<KT3+6<n—-201,v+,v1+293>

Note that r3*%/no and ¢%+%% are bounded when n is g0 large, which implies 1nequ11ty
(8). The proof of the lemma ig completed ’

Rmark I wish to thank the referee, who has pointed out that the inequality
[T ] <2p is nob always true for any cage in [4] In fact, if n=2*14+2", the number
of termg in T, ig ny=n—2mp=2r. Then the inequality does not necessarily hold in
thig case. :
" Theorem 2. Lt {£,} be o stationary a—mizing sequence, {N,} be @ sequence of
random variables with N,/n—>w(P.), where w is a positive random variables. If Y /=Y,
then ¥y =Y. | |
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Proof Write
Vult, @)=~ (Falt, @) —1) =0 3 TO<E@) <) ~D).

If we can prove that ¥, weakly converges to ¥ in Renyi-mixing, denoted by Y=Y
(R-mixing), then i follows from Theorem 7 in [8], that Yy, =Y. A
Put

9

Vi, ) =0~/ 33 (TO0<Eale)<i)—1),

whero p—>00, ./~ n—>0. We have
| sup |[V,(t, @) =T5(, o) <2pa/N =0, @
Hence Y'=5Y". Let us prove Y=Y (R-mixing), i. e. for any Y-continuity set A

and any B €%,
P{Y,€A, By—>P{Y €A}P{E} (n>c0). (10)

Let %y= q.ﬂ' (&4, e, €p) bo a clagy of finite-dimensional sets of the statiomary

sequence {&,}. Then for any E € B,, there exists a k such that BEF (£, ++, &) Ib

follows from o—mixing that we have :
|P{Y,€ A, B} —P{Y,E A} P{E}|<a(p,—k)—>0 (n—>0).,

Bocause of this, we can prove, ag in Theorem 4.5 of [1], that for any #- —-mea_,sura,ble

integrable function g and any Y —continuity got A, we have

[ouengiP—PT €43 [gaP  (n>c0).

Particularily, if take g=1Is, BE€ZF, then (10)is obtained, i. e. Y=Y (R-mixing),
By (9), p(Y", ¥.)—0. It follows from the lemma of [9] that Y,=>Y (R-mixing).
The proof is complete.
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