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T1Fuan  (F4%) "

Abstract

Let ¥ be a non-defective 8-dimensional quadratic space over a fleld F of characteristic
2, F=F,. We prove that if there is an exceptional automorphism of either Qe(V)y or
03(V), then V= has a Cayley algebra structure for some a in F. Moreover, every

' exceptional automorphism of Of(V) has exactly one of the following forms:
. p10Dy or P20Dy, ,

where @, is an automorphism of 04(V) given by conjugation by a semilinear automorphism
of V which preserves the qﬁadra,tic structure, and @i and @y are the automorphisms
induced by triality principle. Every exceptional automorphism of Qs(V) is the restriction
of a unique exceptional automorphism of Oz(V).

A. Hahn'™ has completely determined all the autbmqrphisxns of PQg(V) and
PO(V) in characteristic not 2. We now treat the case char F=2. Throughout
this paper V is a non-defective n-dimensional quadratic space over a field # of
characteristic 2 with F = F,. The quadratic form _an(f the associated symplectic form
are respectively denoted by Q and ( , ), with (=, v) =Q(z+y)+Q(®)+Q().
0.V, OFy{), Oﬁ,(V) and Q, (V). afe, respectively, the orthogonal group, the
rotation group, the si;inor‘ subgroup and the commutator subgroup of the
orthogonal group on V. ' B '

§ 1. Preliminary Results

We assume familiarity with the theory of quadratic forms, orthogonal groups,

and the residual space method. Refer to [3, 5, 7, 11, 127
Definition 1. Let v be a non—zero vector in V, and let U be @ mon-—zero subspace of
V. We call v a. singular vector (non—singular vector, resp.) if Q(v)=0 (Q(v)+0,
 wesp.). We call U non—defective (defective, totally defective, resp.) ¢f UNU*=0 (UN
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U'+0, UCU?, Tesp. ), where U*={z €V | (w U)=0}. U is degenerate q,f U s defeotwe
and there is @ smgulaﬂ" vector in U NT*.

Convention. Let o, 0,€0,(V). The residual spaces of o and o, will always be
" denoted by R and B respectively. Weuse 4 to denote either Q,(V) or OL(V). IfA is an
automorphism of 4, and o, 0, € 4, ‘then 3 and X will be used for A(¢) and A(oy)
respectively, and the m%dual spaces of 3 and 3y will be denoted by R’ and R,
respectively.

‘When R has some geometfic property, we say thdt o hag the same property (e.
g., non—defective, defective, totally defective, degenerate, etc.). |

Lemma 1.1. Let 0 €0,(V) and o%1. Then o®=1 if and only if o is totally
defective. In pcm"twulczr, a plane rotation o s non—de fectwe 'of and only if o =;é1

Proof See 1.1 of [6] o

Lemma 1.2. E’very planc mtat@on n O' (V) 18 e@thefr non-—defectwe or degenemteo

Proof See 1.4a of [6]. ‘

Proposition 1.8, Suppose n=>6. Let A be an automorphwm of 4,and let o € 4 be
a non—defective plcme rotation. Then 2= A(o-)zs a mon—defective rotation fw'bth residual
ndex 2 or n. | s

Preof See Prop081t1on 2.8 of [2]. : :

Prop051t10n 1.4. Suppose n=>6. Let A be an automorph@sm of 4. If there is @
nornrdefectwe plane rotation o € 4 such that Tes Z—‘n then A has the standard t@p,

Prooj See Proposmons 2.8, 2.4 and Section 3 of [2]. - '

Proposition 1 S, Let A be an automorphwm of 4. If there is a degenemte plana‘

rotatwn o 6 4 such that res S<2 5
Proof See the proof of Proposmon 2. 5 and Seotmn 3 of [2].- |
Definition 2.. Suppose A s an automorphzsm of 4. We say that A 48 ewceptwmﬂ
if A does not have the type D,. :

Olearly, 4 is exceptional if and only if A~ is exceptional.

then A has the standwd iype @,.

~§2. Cayley R?fati.oné )

In order to study exceptional automorphisms -of 4, we need the concept of
anley rotations. Refer to Seotlon 1B of [8]." _ - :
“Definition 8. ¢€0, (V) is oalled a. Cayley' rotation on V if its minimal.
polynomial o'V has the Jorm 7\.2+;8?»—I—1 with B+0. We call B the residual trace of o,
and denote B=res tr(o). —
' Lemmas 2.1 . Suppose n=2. The set .of C’ayley rotamons on V s . O*(V) ea:oludmg
1. If o is a Cayley rotation on V and @ is @ nonsingular wvector, then {w, o} is a basis



No.1 . ' Zi, F. 4. AUTOMORPHISMS OF 0y(7) AND 04(7) 3

of V. Given any B in F,there are at most two anley rotatwns on ¥V fwzth residual trace:
B If o is one of them, then.c™t is the other. =~ ' -~ = =

- Lemma 2.2. Letc €0,(V) bea C’ayley rotation on V Suppose U is a o—invariant’
non—defective subspace of V. Then o |y is @ Cayley rotation on U, and res tr (oly) =
restr (o). o

‘The above two lemmas are eagy to check. We omit the proof

Proposltmn 23. 0€0,(V) is a Cayley rotation on v if and only if Fa +Fow
%S @ o—invariant non-defeotibe plane for any non—singular vector winl.

Proof -~ Assume that ¢ is.a Qayley rotation on V" with residual trace B, and & is
& non-—singular veotor By simple oalculatmn, we have (o, crm) BQ(») #0, so.
o+ Fow is a non-defective plane: Clearly, Fo —l—Fmv is o—-invariant.

Conversely, suppose Fo+Fogz is a o-invariant non-defective plane for any .

non-gingular vector # in 7. Then we can take a splitting V=my| 1w, with m=
, , 3

Fo+Fow, where Q(z,) 0 for 6=1, -, i;} We see that 1#a|,,€03% (m), 0 o|g, is

a Cayley rotation on m. Lebt B;=res ‘tr(‘(r!,,‘). Olaim B,=p, for all 1<r5,‘ j<—;"—.'

Otherwise suppose 8; % B.. Ohoose a non-gingular vector y in m, with Q(y) #Q ().
Then o4 —H/ is a non~singﬁ1ar vector, but F(v:1+y) +Fo(o-+y) is nob o-invariant.
This is a contradiction. Hence we have 31;~-..=§n;3. Thus ¢?+Bo+1=0, and o
is a Cayley rotation on V.

Proposition 2.4. «€O0, (V) s a Cayley rotamon onV wf and only if

(a) res o=n; ~

under o
(0) ol is @ Cayley rotation on Jor each i; : 4 )
(d) res tr(o|w,) =res tr(c|q,) for all 4, j. ' -
- Proof - By the.definition of Cayley rotations and Proposition 2.8.

Proposition 2.5. Suppose n=8. Any Cayley rotation o is in Os(V).

Proof By Proposition 2.4, there is a splitting V=W1iatgj_n3_Lm4 such that
omy=am, for each ¢. Take a non-singular vector , in m, By simple calculation we
 have 0 |s,=%e,100, Ta, 0(0|a,) =Q(@i+0m;)Q(2) F2= BQ<$¢)2F2 BEF?, and so 6’(0‘)——
B4EE = F2, Thus, o €OL(V). :

Proposition 2.6. Suppose n=>6. Let A be an exceptional automorphzsm of 4. I f
@ € 4 is a non—defective plane rotation; then == A(c) is @ Cayley rotation.

Proof By Proposition 1.4, res ¥=n since A is excepbional. Then(Z‘—!—i)V V.

Suppose, if possible, 2 is not a Cayley rotation. Olaim there is a non-defective
Pplane o =Fz+F3» for some » in V' such that S aw#w. In fach, take non-singular
Y €V = (Z+41)V with ys=3 a1+, Since (Z oy, #1) =Q(y1) #0, wy=Foy+F Say is a

(b) there is a splwttmg V= :wi__L __Lm:,,'mto non—defectwe plcmes i, each mvarient

OO0 S
AR
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non—defective plane. If oy is not S-invariant, oy will do. If m; is S-invariant, then
m | wi=V=C+1)V = +1) (wilwi) = F+L)ws | (Z+1)wi Swy | oy, which
implies wi=(Z+1)w}. Take non-singular y, € wi=(2+1)m; with y2%2m2+m2. Then
wa=F o+ F3 o, is a non-defective plane, and so on. If V_=ar;_l_--~J_an'g, and each m;

is S-invariant, then 3|, €O0f (). Since ¥ is not a Cayley rotation on ¥V by
hypothesis, we can assume By=res tr(Z|q,) #res. tr(Z|s,) =B: by Proposition 2.4.
‘Take non-singular 24 and 2 in oy and mg respectively such that 8:Q(z1) 4+ B=Q (22) %0,
and put w=z1+22. Then w=Fo+FZsis a non‘—_défeotive plane, and S .

Now take a plane rotation p’ €Qy(w) | 1. COlearly p’ 2+ p'. The regidual space
of o' 3 p'~1 3-1 lies in the ternary subspace Fo+F 5o+ F3° o, and so o' 5p' 37 is
a plane rotation. Put p=A"2(p"). Then A2(p’' 2 p'™* =) =pop~ic~?, being the
product of two plane rotations, has residual index at most 4.

Applymg Proposition 1.4 0 the automorphism A'i, we see that p’ 2 p/ ™t 21 i

* defective since A~ is ‘exceptional. Then p'2p'~* 27 is an involution by Lemma 1.1,
and 80 pop Tt isan involution. Thus pop~tc™ is totally defective, and the residual
index of poplo™* can not be 4 since R is non-defective. So res | pap‘?a“1=2.. By
Propositioxi 1.5 4 is a standard automorphism. This is a contradiction. |

Therefore, = must be a Cayley rotation. :

Remark. - If we replace 4 by OF (V) in Proposfmon 2.6, then, clearly, the

proof can pass through and the result is also true

§3 Composition Algebras

Definition 4. Let V be a finite-dimensional wvector v,spaoe over a field F of

characteristic 2 with a mon—de fectfié)e - quadratic form Q. We say that Q permits

- composition (or say that V is a composition algebra) if it 4s possidle to define a bilinear
product w-y (denoted by wy in brief) such that Q(ay) =Q(»)Q(y) for all », y in V.

If V is a composition algebra, we can always assume that 77 has the identity
element ¢ by modifying the product. In fact, choose v €V with Q(v) %0 and pub
u=@Q (v) "% Then Q(w) =1 and hence Q(au) =Q () =Q(uw) for all » in V. Thus the
multiplications B, and L, are in O,(V), and so they are invertible, and their
inverses are also in 0,(V). We now define a new product 2@y by 2@y=(R;'®)
«(L7ly). It is easy o verify that Q(2@y) =Q(2)Q(¥) and wW’®o=s@u?=2. We now
revert to $he original notation wy. for w@y. Thus e=u® is the identity. Clearly,

It follows by lmearlzahon from the equahty Q(a;y) Q(m)Q(y) that

| (ay, o) = (=, 2)Q), | 1o
ey, ) =Q@) (@, ¥), | @)
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SRE (wy, wy)+(wy, 2y") = (o, ’)(y, ) 3
forallo, y, o',y in V. i I
.+ Define s =7rx=x+ (¢, w) e, where 7, ig the »symme’ory determined by.e. Then wa
have (e, ) = (e, o) and Q(E) =Q (). From (8) we immediately get
(o, )+ o) =0, CH)
&'y, o) + (', 29)=0. . . o (B)
Now (my y) ', By) = 7, &) = (3, 7). Puthing y’=e, we have (fv y) (y, z) =
(%, 9). Then(wy’, y) =(ay’, ) = (3, y'z) for all w, y, ¢ in V. Since V is non—defective,
y'T=ay' for all », ¥/ in V. So a5z is an involution (antl—automorphlsm of period
two) inV, - -
For any y in (Fe)*, we have (as, y) (w yw) = (e, ¥)Q(x)=0 by equahtles ®)
and (1). Hence 27 € Fe, and 50 o7 = -Q(2)e for all o in V. Now
(2, @ (ay)) = (@, @) = Q@) (&, v) = (&, Q(@)9) = (&, (@2)y).

Since ¥V is non-defective, we obtain

a(ay) = (aa)y, ‘ ®)
and so -
a(ay) = (aa)y. M
Similarly . |
(ya)a=y(aq) B ®)

forallg,y in V.
Equalities (7) and (8) are the conditions for an alternative algebra So a
composition algebra must be alternative, We replace @ by a+y in (7) and derive
y(@)=ay, = ' ()
- and €0 we can denote yay= (ya)y =1y (ay). '
Prop051t10n 3 1. In dlternative algebras the Moufang fwlentztws
(waz)y=sla(zy)],
- y(aaz) = [(yv)ala,

| (ay) (a2) =2 (ya)e
hold for all @, y, a '

Proof See Pages 28—29 of [13].- »
Example 1 Let V=Fao+Fy be a non—defec’swe 2—d1mensmna1 quadra,’mc space

over F w1th
1 B7
V=a [ o 1 :! |
Denote V*=V ag a vector SPace Put @*(v) =a 1Q(fu) Then Q“ is a quandratm

form of V* and
=[0 1_]”
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Deéfine so=2, sy=ys=1y, yy=o+PBy. Then 'V ig a oomposfmon algebra oalled a
quadratic algebra. The identity is . ' A :
Ezample 2 Let V be a non—defective 4-dimensional quadratic space over 7. If
~_[1 B 1 B8
Vg“[o 1J Le b[ _1]
with respect to some certain basis {ws, @, s, o4}, then @* permits composition, and
V*is a composition ‘algebra called a Qua’berniOn algebra. Indeed, we can define
@10 = @iy =, Tor §=1, 2, 8, 4, ngwz—ivi'l“ Bawa, Bas= w3, - m3w2=,8w8+m4, wgw4=w3+ﬁm4,
B4y =, BaWs= Dby, Cats= 0 (Bw1+ma), Hats=Dbwa, and w,=bw. :
Ezample 3 Let ¥ be a non-defective 8—dimensional quadratio space over F. If |

reefy flunfy fasly fJuf3 8]

with respect to.some certain basis {wi, s, @5, @i, ®s, ‘®s, 7, s}, then V% is a
composition algebra called a Cayley algebra or octonion algebra. Tne multiplication

~table ig ag follows.

1 1 | | 2 o3 O ., %3 g o7 ]
ot o] Ty 3 o ‘a;4 Z5 Tg Lo e Zg
@2 o) 21+ By o tpr | @ 25+ s Bmr+23 ]
o3 3 Byt bay b (pmy+22) @ g T
a | w | me | obm | bm Gy | sitPes | b(emstn) - | bss
o | w5 ( R Com | eme | dBmta) | - em | oma
Tg x5 o5 %3 . ‘@+Bw3 R B2 cy ¢ (Boy+m0) ez
T 77 g Cbos | b (Bmstag) | cems [e(Bmety) 595& | bom
@3 3 zv7+Bw3 1 bag | brzs erg | ems | "bé(Bxl'-['-d)“ e bemy

Theorem 8.2. Let V be a finite-dimensional vector space over F with @ non—
defective quadratic form Q IfVisa composztwn algebra, then V is one of the above
three examples. S R

Proof FProoceed as in Theorem 1 of [9] or Pages 422—426 of [10]

Remark.,. N. Jacobson pointed out that there are five types of composition
algebras in. oharao’oerlstlc 2(See Page 428 of[10]) -His non—degeneraoy, however, is
different from our non-defectivendss. , :

" Proposition 3.3. Suppose W, ) qistd-Odyley algebra, and (V, @) is also @

Cayley algebra. Then there exists a giin Os(V) such that g: (V, )=, ,@) s an

isomorphism of Cayley algebms
Proof Let e be the 1dent1’ny of (V; +). Choose % in ¥ with Q(w) =1 and (e m) =
B8+#0. Then w=Fe+ I'v is a non—defective plane, and ig a subalgebre of (V, -). Take
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9 in o* with Q(y) #0. Then my is orthogonal to w. Put ' U=w | wy.. U is a non-
defective subalgebra of (V, +) .Select non-singular 2 €U". Then Uz is orthogonal to
U, and we have V= av_[_avy_l_orz_!_m: (yz), (Note that w(yz) #= (zy)z, but @ (yz)=
(wy)z.) : 3
Suppose now ¢ is the 1dent1ty of (7, ®). Smoe Q(e) Q(e’) =1, by the
transitivity theorem, there 'is a g3 €0s(V) such that gie=¢'. Put o/ =gw. Then
o' =Fe¢ +Fa is a non—defective subalgbra of (V @) Olearly, g1t (cm, )—->(m7 ® )
is an isomoérphism of quadratic algebras.
Puby’=guw. It is easily seen that #’®y’ is orthogonal o ' Denote U=ala'®
¢'. This is a non—defeemve subalgebra of (V @) With resPeeb to the bagis {e R TN

o' @y'} . o

o1 19 1, B
where b =Q(y"), and U -has the same expression with- respect to {e, =, y, ay}. So by
the transitivity theorem, there is a. ga€0s(V7) such that gee=¢/, gav=1, gat/=v,
92(2y) =a’@y’. Henoe" gs: @, )—>(U’ @) s an: 1somorphlsr.n of quatermon
algebras T R R A L e
Now leb 2/ = giz.. As above, U'®7 is orthogonal 40 U’ Wlth respeot to the two

bases {e, o, y, wy, 2, o2, U, w(yf)} and {e, g y,w@y,z w@z y@z m@(y@z)}, '
V has the samé expression - .. : Sob e

roft Suft 2]t el 2}

Therefore, by the fransitivity theorem again, there exists a g:in :Og(V) such thab
ge=¢', go=a', gy=y', g(ay) =2/ Oy, gz=2/, g(az) =’ @7/, g(yz) =¢/®O7, g(@(yz)) =
'@ (y'©2). Such a g must be an isomorphism of the two Cayley algebras.
Proposition 8.4. Suppose V is ¢ Cagley. algebra, and SE0s(V) is a Cayley
rotation. Then there is a Cayley multiplication ® for V such that Zv="Ze) @fo for all
vin V where e is'the identity of both (V,'+) and (V, ®). . Do
~ Proof Asin the proof of Propommon 3 3, there isa ba&s {e, @, i, m:z], 2, o2, U2,
‘w(yz)} such that = C :

{1 B 1 B B 1 B o
V [0-.1,]J‘bi[o 11‘@[0. ]‘Lb[ 1]’

where % can be faken as 2 ¢, Put w= — Fe+Fu. , : ,

Let my=Fy+F.5 y. Clearly 3 my=ar, and w3 2wy. Puﬁ U= :n:_l_ar; Then
U=w|wy and U'=wmz | w(yz). Choose h€U* with Q(k) =Q(z) =c. Put wo=Fh+
F 2hcU”. Then wymz. Write U?=ms v, By Wit theorem, ms=m(yz). Choose
k€ mg with Q(k) =Q (yz) =be. Now.{¢, o, v, 2y, h, Zh, k, 2k} is a basis of V. With
respect to this basis, the expression of ¥ is the same as above. By the transitivity
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theorem, there iga g in Og(V). such that ge=e, gr=g, gy=y,- g(Zy) =ay, gh=2,
g(Eh) vz, gh=yz, and ¢(2 k) =w(yz). = - ° o

" Defiine @: V x V=V by u®@v=g""(gu- gfv) It is easy 1;0 verify tha’o (V ©®) is
a anley algebra, and o= (2 e) v for allv in V.

§ 4.. Triali.ty Principle

Tn this section we assume that ¥ is a Cayley algebra with the identity e. Denote
v by ©. I'Og(V") is the group of semilinear automorphisms of V which preserve Q.
Woe have the following triality principle. '

Theorem 4. 1 Let crEZ“Os (V) Then there ewist oy and o in I'Og(V') such that

either .
O‘(my) =0 (w) os (y) for all w,yinV

g o (o) =04 (y> o (w) Jor dll 3, y in V.
Moreover, o4 and o are unique up to a scalar, and only one of the equalztzes holds.
Proof. Since I'Os(V') is generated by the symme’ﬁrles and the left multiplica-
tions, it suffices to prove the theorem in the two cases.
D Assume =1, where Q(a) #0. Take oy and o3 by o1(®) =ar and os(w) =
a Q(a) -1 zq. Then &y and gs'are in I'0g(V') . Using Moufang identities, we have
o1 (9) 03(2) = (a7) Q(a) *(za) =Q(a) ~*(ay) (a) =Q(a) a(y2)a
=@ a(@)]a=Q(a) (=) a+(a, :oy)e]a
=ay+Q(a) *(a, oy) a=7.(2y). | ‘
A 9) Assume o =1IL,, where Q(a) #0. Take o3 and o3 by ¢1(v) =axa and o3 () =
| Q(a) *ax. Then o3, o3 € I'0s(V). Using Moufang identities again, we have
' 61(2)0a(y) = (ax2)Q(a) ™ @) —Q(a) a{w[a(@)]}
= Q(2)al0(Q(a)9)] —a(ow) = Lo (w0)

The last result is easy since V is not a commutative algebra. A

We now define I'OF (V) to be the seb of all ¢ in I'Os(V) such that the ﬁrst
equality in Theorem 4.1 holds, and I"O5 (V) the set of all ¢ in I'Os (V) such that
the second equality holds. Clearly, I'og (V) NOs (V) O (V)and I'Os (V) NOs (V )=
Os (V). »

If ¢ €I0s(V), then there is an a, in F such that Q(aw) a.,Q (w) for all & in
V. We define 6 =a; 707, i. €., §(2) =a, a(w) _ . : ‘ :
. The following results (Corollaries 4.2—4. 4) are very easy to check. -
o Gorolla.ry 4.2. Ifo€I'0t(V), then o1, a5, 3ET0; V), and

' 01(@9@/) o(@)6:(9),
- oa(wy) —01(-’17)9'(9);
- 6 (ay) =62 (0)04(y) -
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for all z, y in V. :

Corollary 48. If o€ IOz V), then a4, 0o, 6€I05(V), and

‘ oy (ay) = 0'(?/)0'2@7), , L
oa(2y) =61(¥)o (@),
'6(%') =3&4(y) 61 (@)

Jor all , y in V

Corollary 4.4. Let ¢y, s, & be mappings: PT'OF (V)——>P1‘O+ (V) by g1(5) =4,

93(0) =03 and e(0) =&. Then @1, s, & are automorphisms of PI'O (V). Moreover,

Pi=pi=82=1, @1po=8@1=@s8, PsP1=EPy=@ié. Thefefore‘ @1, @2 and & generate @
group isomorphic to the symmetric group Ss. I

Corollary 45. IfocOy(V), then o1 and o3 may be chosen in O’ (V)

Proof See Corollary 4 of [4].

Corollary 4.6. ¢: s and & mduoe three automorphisms of Ok (V) They
generate a group isomorphic to Ss. :

Proof Use the fach thab the center of Oy(V) is {1}.

@1 and @, are ez_coeptional automorphisms of Os(V"). To see this, we take a vector
o with (e, #)#0 and Q(2)=1. COonsider o=77,€0:(V). By straightforward
calculation we have @q(a) =3, where 3(v) =av for all v in V. We gee that X is a
Cayley rotation since 2°-+ Bx+1=0, where B= (¢, x) #0. Thus res 3=8, and 50 g is
a exceptional automorphism of O’g (V). Proceed similarly Wi’oh Pae o

" §5. The Automorph1sms

In this section dlmV 8. We shall determine all the automorphlsms of Of (V)
and (V). '

Lemma 5.1. Suppose 2 s a anley rotation. U is a non—defectwe d-dimensional -

subspace of V,and 2U=U. Then there is a non——defeotwe plcme w in U such that

U=w+2w. ‘ '

P'roof Since Elu isa Gayley rotation on U, there is a spht’omg

' U (Fa;i-’r—FZ‘ wi)_L(Fmg—}—FE @g)

with 2, and o, non—81ngular We take mw= Fw1+F(Ew1+2m2)

Lemma 5.2." Suppose A is an ewceptional automorphism of 4. Let o and o €4
" be mon-defective plane rotations. put B=A(0), p= 'A"i (o), and 8=opoip™, 4=
A0 =3p"27%'1. Then res §=4 if and only if res 0 =4. When res =4, § is non~
defective if and only if 6’ ds non—defective. ‘

Proof Assume res §=4. Then the residual sPace of ¢ is R+pR. If res ¢’ 4,
then res 6’ =2 since O+rés 0/<4. By Proposfomn 1.4 and Lemma 1.1 ¢ is an
involution since 4 is exceptional, and so § is also an involution. Tt implies that § is
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totally defectlve But the resndual space of § containg a non—defeotlve plane B. Thig
is a contradiction. Similarly, if res§’=4, thén res=4.. : B '

Supposa now res §=4 and 4§ is non-defective. If §' is defective, then res 6”2<2
Since the residual space of §’ contains a non—defeotive plane, i. e., the residual space

-of o/, we have 621, and so reg §'*=2: Congider now A™1(63) —6?. Since A~
exceptional, 2 can not be non-defective, and so 6’2 is a degenerabe plane rotation.
TFhus, ¢ t=1, and §*=1. Therefore §? is totally defective, and the residual space of
6?3 ig a proper subSpaee of BR+pR. Then res#*=2. Applying Proposition 1.5, we get
a contradiction. Similarly, if res f=4 and ¢ is non——defec’alve, then # is non-
defective. . A :

Theorem 8.3.- Suppose 4 has an exceptional automorphism A. Then there ewists
an o in B such that V* is a Cayley algebra. .

- Proof 1) Take a non-defective plane rota’olon o€ 4. Then Z=A(c)isa Gayley
rotamon By Proposition 2.4,there is a splithing V=W; | Wa | Ws_] W, where W=
Fa,+ F2m, Q(2:) #0 for each é. Put U=W;.| W,. By Lemma 5.1, there are non—
defective planes Rt U and R,CU* with Ri=Fu+F(Swi+3Sw,) such that U=

—1-2 R; and U*=R), —1—23’
. 'I‘ake non—defeo’mve planes rotation E¢€Q2(R' )_Ll for i=1, 2. Pu’o 23-—2 21
2‘ 12 and =223 371551 Glearly R;=U and R,=U". Let oy=A7%(2,) for i=1,
2, 3 4. Then oy and o, are Cayley rotations by Proposition 2.6, and res 03 =Tesoy
=4 by Lemma 5, 2. Since 2 24=24 2y, 0104=04 01, Wo have oy1R.=R, So
Ry=R+0,RC R+ o1Rs = R,. Therefore we can put Rs —-R;—W which is non-
defective by Lemma 5.2.

2) Take non—-Smgular y in R. Pub Rs—Fy +FoyyW. Then R; is a non-
-defective plane. We have Rs% R since 3; X+ 2y. Choose a plane rotation o5€ Qs
" (Rs) L1 and put Z5=A(05). Then o501 =010%, and $0 J5 2y = 34 5. Thus, 35 By = R).

| Moreover, claim 25U =U. In fact, select a non-defective plane rotation o€ 4
with residual space RB;CW*, and pub Je=A(ce). Then Jg is a Cayley rotation.
Since 0403 =030, Jg J3=23 Jg, WO have 2¢U=U. By Lemma 5.1, there i3 a non-
defective plane R cU such that U =R+ 3¢ R7. Choose a plane rotation 3;&
Q,(R:) 1. Then 3, 24—-24 Zr, 0704=0.0G7, Where o7=A4"(37). Hence oW =W and

o W*=W?*. Put 28—23 272351 27, and og=A""(Zs). Since By=R.+3;R;=U, we
have res 0'8—4 by Lemma 5.2, Now By=Rs+0RsERs+o;W*=W", so Rg=W". But
0508 =0350%, 50 25 2g=2g X5, Ib 1mphes 2sU=U. . )

3) Consider now g5lo. The residual space of a5o is contained in R+ RB;. Since
R+#Rsand y € BN R;, we see thatb ozlo i9 a plahé roﬁatibn. By Proposition 2.6,
Zi(o*;»lo') =251 2 ig a Qayley Iofation.v Let B, 81 and. B; be the residual traces of Cayley
* rotations %, ¥; and 23 1 2 respectively. o
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4) Take u=PRws+B 5 ws+ By Jvs. Straightforward calculation shows u& (Wi |
Ws_l_Ws) _W4; and Q(u) = (B2+ﬁ1+,32+331/92)Q(ﬁ73) Since '-171631—2/5 Ry, we
can assume s @y=qa01+as (2 ost+2 @g). It is easy to_seq that ay=pS3" 1,82 and ag=
871 Then we have (8°+Bi+B5+BB1B:) Qw0 = /31Q (®3). "

Thus Q(w) =B (#1) *Q(22) Q(ws). g : ‘ :
Take o= B7w. Then Q(z) =Q(z1) 1Q (wg)Q(ws) Wlth respeet to the baSls {w1,
2@y, Do, 2wy, w3, 2 wg, Wy, sy of V, :

el Hanl SJaet ase[t 7]

where a=Q (#1), b =06"2Q(w.), and ‘¢ =a2Q (3). By Example 8, Q* permits
composition, and V* is a Cayley algebra.

Theorem 5§.4. The following statements are. eqwimlentk

1) 0 (V) has ewceptional automorphisms. ‘

2) V*is a Cayley algebra for some « in F and OF (V) =0 (V), ;

- 8) .V 4s a Cayley algebra and F is a perfect field. : w :

- Proof 1)=>2): Let 4 be an' exceptional automorphism - of Of (V). Since
DO+ (V) = 25(V), A induces an .automorphism’ of Qz(V). Take a non-defective
plane rofation ¢ in Of (V). By the remark following Proposition 2.6, 2=4(c) is a
Cayley rotation. Then 22€ Qg(V) is also a Cayley rotation, res tr(2?) = (res tr (2))=.
Bo 4| g,ry i8 an exceptional automorphism of Qg (V) By Theorem B. 3, there is an
ain F such that 7 is a Cayley algebra.

Since Of (V) can be generated by non—defective plane rofations, if we denote by
P the set of all non—defective plane rotations, we have OF (V) =A(0f (V) =A{c €
Py =LA(0) e €EPYC0:(V)COF (V') by Proposition 2.5. So OF (V) =05(V).

2)=»8): Fix a non-singular vector @ in ¥ and denote b=Q(w)+#0. For any
non—gingular y in ¥V, 7,w,E€0: (V) =0(V). It implies that Q(2)Q(y) €F?, i. e.,
Q(y) CbE2. Ity is singuléi', then Q(y) =0€bF2. So Q(y) €bF? for any y in V. Take
2 non-sigulér vector z in V. with (@, #2)%0. Then Q(2+2) =b+Q(2) + (&, z) CHF?,
and so (z, 2) €bF* For any ¢ in F, Q(cw—l-z) bc“‘—i—Q(z) +c(m, z) €bF2. Tt imlpies
o€ F?. Hence F= F?, and F i perfeot
i Since V* is a G‘ayley algebra and F F? it is easﬂy seen that ¥ isa Cayley
algebra itself. '

3) =>1) Assume Visa anley algebra and F ig perfect then - we. immediately
get OF (V) =05 (V){ and ¢; and @, induced by, triality are exceptional antomorphisms
of 0 (7). R VL
‘We.now assume that V* is a Cayley algebra Wﬂ:h the 1den’01ty ¢ for some & in F.
Note that I'Os(V'*) =I'0s(V), Os(V*) =04(F), and so on. We can replace * by V.
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Denote by O, the get of all non-defective -piane rotations in Oy(V). Put O;=
@1(Co) and Oz =@,(0y). Denote by O the set of all Cayley rotations. o

Proposition 55. 1) ¢i(0,) =04, 91(Cy) =00, ¢1(03) = 02

2) Pa (Oo) Cs, Pa (01) 01, Pa (Oz) Coe

3) 8(00) Co, €(01)=0,, &(0y)= 01

4 OiNO;=@  for i#j.
Proof Use Corollary 4.4,
Prop031t1on 5.6. Let g€I'O5(V). Then @,(0s) =0,. Momover
GETOF (V)&B,(0y) = 0:8, (Cs) =0,
| ETOF(1)0B,(05) =0s8,(0s) =Os.

Prroof Use Corollary 4.4 and Proposition 5.5.

Proposition 5.7. 0=0,U0..

Progf Clearly 04 0,=0. ‘ ‘

Oonversely, let 2€0. By Propominon 3.4, there is a Cayley multiplication:
© such that Jv=(Ze)®v for all v in V, where e i3 the identity of both (¥, -)
and (V, ®). By Proposition 8.3, there exists a g in Og(V) such that g2 (V, )=
¥V, ®) igan isomoip‘hisn1 of Cayley algebras Take ¢=7s7,&€ 0. Then by
straightforward calculation we have @yp; @;(c) =3. 8o we see, by Proposﬂnon 5.6,
that 2 isin 01 if g€0F(V); 2 isin O, if g€05 (V). o

Theorem 5.8. Suppose V* has a Cayley algebra struciure foa" some o in F. Let
@1 and @3 be the associated emceptional automorphisms of Oy(V). Let A be any
exceptional automorphism of Os(V'). Then there is a g € I'Og (V') such that A has ewactly
one of the following forms: . , _ |
| A=p100, or A=@psod,, ‘
where g is unique up o a scalar, .Moreoruea’ any such A is an exceptional automoq*ph@sm
of O:(V).

Proof By Propositions 2.6 and 5. 7 A(Oo) E0= 01U Os. Assume that 4A(0,) N}
O1#@. Choose o €U, such that A(g) €0y, Then (prod)oc €Cy. It follows from
»Proposition 1.4 that pi04 is an automorphism of standard type. Therefore, piod=
@,, and A=g;oB, for some g€ I'0s(V). If .A(Oo) NOa@, use @, and ob’naln A-
402"@

’“ Using Ploposmon 5.5, we see that A=g 0@, and A= <p2o@,, can nob occur
simultaneously. Clearly, g is unique up to a scalar. Finally, it is easy to see that
any such 4 is an exceptional automorphism of 0} ).

Define A: Aut O3(V)—S; by A(ps) = @, 2), Mo =(1,; 3) , AMe)=(2, 3),
A (D,) =1 for all g€ I'O (V). Then A can be extended to a surjective homomorphism
of groups, and A, ;. is an isomorphism onto 8. Denote its inverse by Ay.

Define p: PL'O§ (V)—> Aut Ou(V)by w(g) =D,. Then W is independent of the:
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have

choice of g, and is an injective homomorphism of groups. From Theorem 5.8, we

Theorem §.9. The subgroup {@glgeng(V)} of Aut Os(V) has index 3 or 1

in Aut O5(V) according as V* has a Cayley aléebra structure for some o in F or not.
If V* is @ Cayley algedra for"sbme' o in F, then the sequence of groups

48 split ewact.

. . - A
' 1>PI0f (V) —> Aut O5(V) 2 Sl
1

Theorem 5.10. Every exceptional automorphism of QS(V) is the restriction of

a unique excepiional automorphism of Os(V).

Proof Let A be an exceptional automorphism of .QS(V) By Proposfolon 2. 6

A(0y) ©O. Assume A(0,) NOy%@. As in the proof of Theorem 5.8, we obtain a
o €0, with (pi04) 0o € 0p.-Now gro is an isomorphism of Q5(V") onto ;105 (V)”. We
«can prove, by analogue with Proposition 1.4, that as long as ¢1o/1 sends a non-
defective plane rotation to an element whose residual index is less than 8, then

@10 A=, for some g-in I'Og(V'). Proceed similarly if A(Oo) N Oy . Fmally the
uniqueness is clear, -
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