THE AUTOMORPHISMS OF NON-DEFECTIVE ORTHOGONAL GROUPS $\Omega_8(V)$ AND $O_8(V)$ IN CHARACTERISTIC 2*

LI FUAN (李福安)**

Abstract

Let V be a non-defective 8-dimensional quadratic space over a field F of characteristic 2, $F \neq \mathbf{F}_2$. We prove that if there is an exceptional automorphism of either $\Omega_8(V)$ or $O'_8(V)$, then V^{α} has a Cayley algebra structure for some α in F. Moreover, every exceptional automorphism of $O'_8(V)$ has exactly one of the following forms:

$$\varphi_1 \circ \Phi_g$$
 or $\varphi_2 \circ \Phi_g$,

where Φ_{σ} is an automorphism of $O'_8(V)$ given by conjugation by a semilinear automorphism of V which preserves the quadratic structure, and φ_1 and φ_2 are the automorphisms induced by triality principle. Every exceptional automorphism of $\Omega_8(V)$ is the restriction of a unique exceptional automorphism of $O'_8(V)$.

A. Hahn^[8] has completely determined all the automorphisms of $P\Omega_8(V)$ and $PO'_8(V)$ in characteristic not 2. We now treat the case char F=2. Throughout this paper V is a non-defective n-dimensional quadratic space over a field F of characteristic 2 with $F \neq \mathbf{F}_2$. The quadratic form and the associated symplectic form are respectively denoted by Q and $(\ ,\)$, with (x,y)=Q(x+y)+Q(x)+Q(y). $O_n(V)$, $O'_n(V)$ and $O'_n(V)$ are, respectively, the orthogonal group, the rotation group, the spinor subgroup and the commutator subgroup of the orthogonal group on V.

§ 1. Preliminary Results

We assume familiarity with the theory of quadratic forms, orthogonal groups, and the residual space method. Refer to [3, 5, 7, 11, 12].

Definition 1. Let v be a non-zero vector in V, and let U be a non-zero subspace of V. We call v a singular vector (non-singular vector, resp.) if Q(v) = 0 ($Q(v) \neq 0$, resp.). We call U non-defective (defective, totally defective, resp.) if $U \cap U^* = 0$ ($U \cap V^* = 0$).

Manuscript received April 20, 1982.

^{*} The author is now a Visiting Research Ascsolate in Michigan State University, USA.

^{**} Institute of Mathematics, Academia Sinica, Beijing, China.

 $U^* \neq 0$, $U \subseteq U^*$, resp.), where $U^* = \{x \in V \mid (x, U) = 0\}$. U is degenerate if U is defective and there is a singular vector in $U \cap U^*$.

Convention. Let σ , $\sigma_i \in O_n(V)$. The residual spaces of σ and σ_i will always be denoted by R and R_i respectively. We use Δ to denote either $\Omega_n(V)$ or $O'_n(V)$. If Λ is an automorphism of Δ , and σ , $\sigma_i \in \Delta$, then Σ and Σ_i will be used for $\Lambda(\sigma)$ and $\Lambda(\sigma_i)$ respectively, and the residual spaces of Σ and Σ_i will be denoted by R' and R'_i , respectively.

When R has some geometric property, we say that σ has the same property (e.g., non-defective, defective, totally defective, degenerate, etc.).

Lemma 1.1. Let $\sigma \in O_n(V)$ and $\sigma \neq 1$. Then $\sigma^2 = 1$ if and only if σ is totally defective. In particular, a plane rotation σ is non-defective if and only if $\sigma^2 \neq 1$.

Proof See 1.1 of [6].

Lemma 1.2. Every plane rotation in $O'_n(V)$ is either non-defective or degenerate. Proof See 1.4a of [6].

Proposition 1.3. Suppose $n \ge 6$. Let Λ be an automorphism of Δ , and let $\sigma \in \Delta$ be a non-defective plane rotation. Then $\Sigma = \Lambda(\sigma)$ is a non-defective rotation with residual index 2 or n.

Proof See Proposition 2.3 of [2].

Proposition 1.4. Suppose $n \ge 6$. Let Λ be an automorphism of Δ . If there is a non-defective plane rotation $\sigma \in \Delta$ such that res $\Sigma \ne n$, then Λ has the standard ty $\mathfrak{p} : \Phi_g$.

Proof See Propositions 2.3, 2.4 and Section 3 of [2].

Proposition 1.5. Let Λ be an automorphism of Δ . If there is a degenerate plane rotation $\sigma \in \Delta$ such that res $\Sigma < \frac{n}{2}$, then Λ has the standard type Φ_g .

Proof See the proof of Proposition 2.5 and Section 3 of [2].

Definition 2. Suppose Λ is an automorphism of Δ . We say that Λ is exceptional if Λ does not have the type Φ_a .

Clearly, Λ is exceptional if and only if Λ^{-1} is exceptional.

§ 2. Cayley Rotations

In order to study exceptional automorphisms of Δ , we need the concept of Cayley rotations. Refer to Section 1B of [8].

Definition 3. $\sigma \in O_n(V)$ is called a Cayley rotation on V if its minimal polynomial on V has the form $\lambda^2 + \beta \lambda + 1$ with $\beta \neq 0$. We call β the residual trace of σ , and denote $\beta = \operatorname{res} \operatorname{tr}(\sigma)$.

Lemma 2.1 Suppose n=2. The set of Cayley rotations on V is $O_2^+(V)$ excluding 1. If σ is a Cayley rotation on V and x is a nonsingular vector, then $\{x, \sigma x\}$ is a basis

of V. Given any β in \dot{F} , there are at most two Cayley rotations on V with residual trace β . If σ is one of them, then σ^{-1} is the other.

Lemma 2.2. Let $\sigma \in O_n(V)$ be a Cayley rotation on V. Suppose U is a σ -invariant non-defective subspace of V. Then $\sigma|_U$ is a Cayley rotation on U, and res $\operatorname{tr}(\sigma|_U) = \operatorname{restr}(\sigma)$.

The above two lemmas are easy to check. We omit the proof.

Proposition 2.3. $\sigma \in O_n(V)$ is a Cayley rotation on V if and only if $Fx+F\sigma x$ is a σ -invariant non-defective plane for any non-singular vector x in V.

Proof Assume that σ is a Cayley rotation on V with residual trace β , and x is a non-singular vector. By simple calculation, we have $(x, \sigma x) = \beta Q(x) \neq 0$, so $Fx + F\sigma x$ is a non-defective plane. Clearly, $Fx + F\sigma x$ is σ -invariant.

Conversely, suppose $Fx+F\sigma x$ is a σ -invariant non-defective plane for any non-singular vector x in V. Then we can take a splitting $V=\pi_1 \perp \cdots \perp \pi_n$ with $\pi_i=Fx_i+F\sigma x_i$ where $Q(x_i)\neq 0$ for $i=1,\cdots,\frac{n}{2}$. We see that $1\neq \sigma|_{\pi_i}\in O_2^+(\pi_i)$, so $\sigma|_{\pi_i}$ is a Cayley rotation on π_i . Let $\beta_i=\operatorname{res} \operatorname{tr}(\sigma|_{\pi_i})$. Claim $\beta_i=\beta_i$ for all $1\leqslant i,j\leqslant \frac{n}{2}$. Otherwise suppose $\beta_1\neq\beta_2$. Choose a non-singular vector y in π_2 with $Q(y)\neq Q(x_1)$. Then x_1+y is a non-singular vector, but $F(x_1+y)+F\sigma(x_1+y)$ is not σ -invariant. This is a contradiction. Hence we have $\beta_1=\cdots=\beta_{\frac{n}{2}}=\beta$. Thus $\sigma^2+\beta\sigma+1=0$, and σ is a Cayley rotation on V.

Proposition 2.4. $\sigma \in O_n(V)$ is a Cayley rotation on V if and only if

- (a) res $\sigma = n$;
- (b) there is a splitting $V = \pi_1 \perp \cdots \perp \pi_n$ into non-defective planes π_i , each invariant under σ ;
 - (c) $\sigma|_{\pi_i}$ is a Cayley rotation on π_i for each i;
 - (d) res $\operatorname{tr}(\sigma|_{\pi_i}) = \operatorname{res} \operatorname{tr}(\sigma|_{\pi_j})$ for all i, j.

Proof By the definition of Cayley rotations and Proposition 2.3.

Proposition 2.5. Suppose n=8. Any Cayley rotation σ is in $O_8(V)$.

Proof By Proposition 2.4, there is a splitting $V = \pi_1 \perp \pi_2 \perp \pi_3 \perp \pi_4$ such that $\sigma \pi_i = \pi_i$ for each i. Take a non-singular vector x_i in π_i . By simple calculation we have $\sigma|_{\pi_i} = \tau_{x_i + \sigma x_i}, \tau_{x_i}, \theta(\sigma|_{\pi_i}) = Q(x_i + \sigma x_i)Q(x_i)\dot{F}^2 = \beta Q(x_i)^2\dot{F}^2 = \beta \dot{F}^2$, and so $\theta(\sigma) = \beta^4\dot{F}^2 = \dot{F}^2$. Thus, $\sigma \in O_8'(V)$.

Proposition 2.6. Suppose $n \ge 6$. Let Λ be an exceptional automorphism of Δ . If $\sigma \in \Lambda$ is a non-defective plane rotation, then $\Sigma = \Lambda(\sigma)$ is $\sigma \in \Lambda(\sigma)$ can be a Cayley rotation.

Proof By Proposition 1.4, res $\Sigma = n$ since Λ is exceptional. Then $(\Sigma + 1)V = V$. Suppose, if possible, Σ is not a Cayley rotation. Claim there is a non-defective plane $\pi = Fx + F\Sigma x$ for some x in V such that $\Sigma \pi \neq \pi$. In fact, take non-singular $y_1 \in V = (\Sigma + 1)V$ with $y_1 = \Sigma x_1 + x_1$. Since $(\Sigma x_1, x_1) = Q(y_1) \neq 0$, $\pi_1 = Fx_1 + F\Sigma x_1$ is a

non-defective plane. If π_1 is not Σ -invariant, π_1 will do. If π_1 is Σ -invariant, then $\pi_1 \perp \pi_1^* = V = (\Sigma + 1) \ V = (\Sigma + 1) \ (\pi_1 \perp \pi_1^*) = (\Sigma + 1) \pi_1 \perp (\Sigma + 1) \pi_1^* \subseteq \pi_1 \perp \pi_1^*$, which implies $\pi_1^* = (\Sigma + 1)\pi_1^*$. Take non-singular $y_2 \in \pi_1^* = (\Sigma + 1)\pi_1^*$ with $y_2 = \Sigma x_2 + x_2$. Then $\pi_2 = Fx_2 + F\Sigma x_2$ is a non-defective plane, and so on. If $V = \pi_1 \perp \cdots \perp \pi_n$, and each π_i is Σ -invariant, then $\Sigma \mid_{\pi_i} \in O_2^+$ (π_i). Since Σ is not a Cayley rotation on V by hypothesis, we can assume $\beta_1 = \text{res tr}(\Sigma \mid_{\pi_1}) \neq \text{res tr}(\Sigma \mid_{\pi_1}) = \beta_2$ by Proposition 2.4. Take non-singular z_1 and z_2 in π_1 and π_2 respectively such that $\beta_1 Q(z_1) + \beta_2 Q(z_2) \neq 0$, and put $x = z_1 + z_2$. Then $\pi = Fx + F\Sigma x$ is a non-defective plane, and $\Sigma \pi \neq \pi$.

Now take a plane rotation $\rho' \in \Omega_2(\pi) \perp 1$. Clearly $\rho' \geq \neq \geq \rho'$. The residual space of $\rho' \geq \rho'^{-1} \geq^{-1}$ lies in the ternary subspace $Fx + F \geq x + F \geq^2 x$, and so $\rho' \geq \rho'^{-1} \geq^{-1}$ is a plane rotation. Put $\rho = \Lambda^{-1}(\rho')$. Then $\Lambda^{-1}(\rho' \geq \rho'^{-1} \geq^{-1}) = \rho \sigma \rho^{-1} \sigma^{-1}$, being the product of two plane rotations, has residual index at most 4.

Applying Proposition 1.4 to the automorphism Λ^{-1} , we see that $\rho' \sum \rho'^{-1} \sum^{-1}$ is defective since Λ^{-1} is exceptional. Then $\rho' \sum \rho'^{-1} \sum^{-1}$ is an involution by Lemma 1.1, and so $\rho \sigma \rho^{-1} \sigma^{-1}$ is an involution. Thus $\rho \sigma \rho^{-1} \sigma^{-1}$ is totally defective, and the residual index of $\rho \sigma \rho^{-1} \sigma^{-1}$ can not be 4 since R is non-defective. So res $\rho \sigma \rho^{-1} \sigma^{-1} = 2$. By Proposition 1.5 Λ is a standard automorphism. This is a contradiction.

Therefore, Σ must be a Cayley rotation.

Remark. If we replace Δ by $O_n^+(V)$ in Proposition 2.6, then, clearly, the proof can pass through, and the result is also true.

§ 3. Composition Algebras

Definition 4. Let V be a finite-dimensional vector space over a field F of characteristic 2 with a non-defective quadratic form Q. We say that Q permits composition (or say that V is a composition algebra) if it is possible to define a bilinear product $x \cdot y$ (denoted by xy in brief) such that Q(xy) = Q(x)Q(y) for all x, y in V.

If V is a composition algebra, we can always assume that V has the identity element e by modifying the product. In fact, choose $v \in V$ with $Q(v) \neq 0$ and put $u = Q(v)^{-1}v^2$. Then Q(u) = 1 and hence Q(xu) = Q(x) = Q(ux) for all x in V. Thus the multiplications R_u and L_u are in $O_n(V)$, and so they are invertible, and their inverses are also in $O_n(V)$. We now define a new product $x \odot y$ by $x \odot y = (R_u^{-1}x) \circ (L_u^{-1}y)$. It is easy to verify that $Q(x \odot y) = Q(x)Q(y)$ and $u^2 \odot x = x \odot u^2 = x$. We now revert to the original notation xy for $x \odot y$. Thus $e = u^2$ is the identity. Clearly, Q(e) = 1.

It follows by linearization from the equality Q(xy) = Q(x)Q(y) that

$$(xy, x'y) = (x, x')Q(y),$$
 (1)

$$(xy, xy') = Q(x)(y, y'),$$
 (2)

$$(xy', x'y) + (xy, x'y') = (x, x')(y, y')$$
 (3)

for all x, y, x', y' in V.

Define $\bar{x} = \tau_e x = x + (e, x)e$, where τ_e is the symmetry determined by e. Then we have $(e, \bar{x}) = (e, x)$ and $Q(\bar{x}) = Q(x)$. From (3) we immediately get

$$(xy', y) + (y', \bar{x}y) = 0,$$
 (4)

$$(x'y, x) + (x', x\bar{y}) = 0.$$
 (5)

Now $(xy', y) = (y', \overline{x}y) = (y'\overline{y}, \overline{x}) = (\overline{y}, \overline{y}'\overline{x})$. Putting y' = e, we have $(x, y) = (\overline{y}, \overline{x}) = (\overline{x}, \overline{y})$. Then $(\overline{x}y', \overline{y}) = (xy', y) = (\overline{y}, \overline{y}'\overline{x})$ for all x, y, y' in V. Since V is non-defective, $\overline{y}'\overline{x} = \overline{x}\overline{y}'$ for all x, y' in V. So $x \mapsto \overline{x}$ is an involution (anti-automorphism of period two) in V.

For any y in $(Fe)^*$, we have $(x\bar{x}, y) = (x, yx) = (e, y)Q(x) = 0$ by equalities (5) and (1). Hence $x\bar{x} \in Fe$, and so $x\bar{x} = Q(x)e$ for all x in V. Now

$$(x, \overline{a}(ay)) = (ax, ay) = Q(a)(x, y) = (x, Q(a)y) = (x, (\overline{a}a)y).$$

Since V is non-defective, we obtain

$$\bar{a}(ay) = (\bar{a}a)y, \tag{6}$$

and so

$$a(ay) = (aa)y. (7)$$

Similarly

$$(ya)a = y(aa) \tag{8}$$

for all a, y in V.

Equalities (7) and (8) are the conditions for an alternative algebra. So a composition algebra must be alternative. We replace a by a+y in (7) and derive

$$y(ay) = (ya)y, (9)$$

and so we can denote yay = (ya)y = y(ay).

Proposition 3.1. In alternative algebras the Moufang identities

$$(xax)y = x[a(xy)],$$

$$y(xax) = [(yx)a]x,$$

$$(xy)(ax) = x(ya)x$$

hold for all x, y, a.

Proof See Pages 28—29 of [13].

Example 1 Let V = Fx + Fy be a non-defective 2-dimensional quadratic space over F with

$$V \cong \alpha \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix}$$
.

Denote $V^{\alpha} = V$ as a vector space. Put $Q^{\alpha}(v) = \alpha^{-1}Q(v)$. Then Q^{α} is a quadratic form of V^{α} and

$$V^{\alpha}\cong \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix}$$
.

Define xx=x, xy=yx=y, $yy=x+\beta y$. Then V^{α} is a composition algebra called a quadratic algebra. The identity is x.

Example 2 Let V be a non-defective 4-dimensional quadratic space over F. If

$$V \cong \alpha \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp \alpha b \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix}$$

with respect to some certain basis $\{x_1, x_2, x_3, x_4\}$, then Q^a permits composition, and V^a is a composition algebra called a quaternion algebra. Indeed, we can define $x_1x_i=x_ix_1=x_i$ for $i=1, 2, 3, 4, x_2x_2=x_1+\beta x_2, x_2x_3=x_4, x_3x_2=\beta x_3+x_4, x_2x_4=x_3+\beta x_4, x_4x_2=x_3, x_3x_3=bx_1, x_3x_4=b(\beta x_1+x_2), x_4x_3=bx_2, \text{ and } x_4x_4=bx_1.$

Example 3 Let V be a non-defective 8-dimensional quadratic space over F. If

$$V \cong \alpha \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp \alpha b \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp \alpha c \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp \alpha b c \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix}$$

with respect to some certain basis $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$, then V^{α} is a composition algebra called a Cayley algebra or octonion algebra. The multiplication table is as follows.

		-						
	1	x_2	x_3	x_4	x_5	x_6	x_7	<i>x</i> ₈
x_1	x_1	x_2	x_3	x_4	x_5	x_6	x_7	<i>x</i> ₈
x_2	x_2	$x_1 + \beta x_2$	x_4	$x_3 + \beta x_4$	x_6	$x_5 + \beta x_6$	$\beta x_7 + x_3$	x_7
x_3	x_3	$\beta x_3 + x_4$	bx_1	$b(\beta x_1+x_2)$	x_7	<i>x</i> ₈	bx_5	bx_6
x_4	x_4	x ₃ ·	bx_2	bx_1	x ₈	$x_7 + \beta x_8$	$b(\beta x_5 + x_6)$	bx_5
x_5 .	x_5	$\beta x_5 + x_6$	x_7	x_8	cx_1	$c(\beta x_1 + x_2)$	cx_{8}	cx ₄
x_6	x_6	x_5	x ₃	$x_7 + \beta x_3$	cx_2	cx_1	$c\left(\beta x_3 + x_4\right)$	cx_3
x_7	x_7	<i>x</i> ₈	bx_5	$b\left(\beta x_5+x_6\right)$	cx_3	$c(\beta x_3 + x_4)$	bcx_1	bcx_2
x ₈ .	x_{δ}	$x_7 + \beta x_3$	bx_6	bx_{5}	cx4	cx_3	$bc(\beta x_1+x_2)$	bcx_1

Theorem 3.2. Let V be a finite-dimensional vector space over F with a non-defective quadratic form Q. If V is a composition algebra, then V is one of the above three examples.

Proof Proceed as in Theorem 1 of [9] or Pages 422—426 of [10].

Remark. N. Jacobson pointed out that there are five types of composition algebras in characteristic 2(See Page 428 of [10]) ·His non-degeneracy, however, is different from our non-defectiveness.

Proposition 3.3. Suppose (V, \cdot) is a Cayley algebra, and (V, \odot) is also a Cayley algebra. Then there exists a g in $O_8(V)$ such that $g: (V, \cdot) \rightarrow (V, \odot)$ is an isomorphism of Cayley algebras.

Proof Let e be the identity of (V, \cdot) . Choose x in V with Q(x) = 1 and $(e, x) = \beta \neq 0$. Then $\pi = Fe + Fx$ is a non-defective plane, and is a subalgebre of (V, \cdot) . Take

y in π^* with $Q(y) \neq 0$. Then πy is orthogonal to π . Put $U = \pi \perp \pi y$. U is a non-defective subalgebra of (V, \cdot) . Select non-singular $z \in U^*$. Then Uz is orthogonal to U, and we have $V = \pi \perp \pi y \perp \pi z \perp \pi (yz)$. (Note that $x(yz) \neq (xy)z$, but $\pi(yz) = (\pi y)z$.)

Suppose now e' is the identity of (V, \odot) . Since Q(e) = Q(e') = 1, by the transitivity theorem, there is a $g_1 \in O_8(V)$ such that $g_1e = e'$. Put $x' = g_1x$. Then $\pi' = Fe' + Fx'$ is a non-defective subalgbra of (V, \odot) . Clearly, $g_1: (\pi, \bullet) \to (\pi', \odot)$ is an isomorphism of quadratic algebras.

Put $y' = g_1 y$. It is easily seen that $\pi' \odot y'$ is orthogonal to π' . Denote $U' = \pi' \perp \pi' \odot y'$. This is a non-defective subalgebra of (V, \odot) . With respect to the basis $\{e', x', y', x' \odot y'\}$

$$U'\cong \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp b \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix},$$

where b = Q(y'), and U has the same expression with respect to $\{e, x, y, xy\}$. So by the transitivity theorem, there is a $g_2 \in O_8(V)$ such that $g_2e = e'$, $g_2x = x'$, $g_2y = y'$, $g_2(xy) = x' \odot y'$. Hence g_2 : $(U, \cdot) \rightarrow (U', \odot)$ is an isomorphism of quaternion algebras.

Now let $z' = g_2 z$. As above, $U' \odot z'$ is orthogonal to U'. With respect to the two bases $\{e, x, y, xy, z, xz, yz, x(yz)\}$ and $\{e', x', y', x' \odot y', z', x' \odot z', y' \odot z', x' \odot (y' \odot z')\}$, V has the same expression

$$V \cong \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp b \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp c \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp bc \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix}.$$

Therefore, by the transitivity theorem again, there exists a g in $O_8(V)$ such that ge=e', gx=x', gy=y', $g(xy)=x'\odot y'$, gz=z', $g(xz)=x'\odot z'$, $g(yz)=y'\odot z'$, $g(x(yz))=x'\odot (y'\odot z')$. Such a g must be an isomorphism of the two Cayley algebras.

Proposition 3.4. Suppose V is a Cayley algebra, and $\Sigma \in O_8(V)$ is a Cayley rotation. Then there is a Cayley multiplication \odot for V such that $\Sigma v = (\Sigma e) \odot v$ for all v in V, where e is the identity of both (V, \bullet) and (V, \odot) .

Proof As in the proof of Proposition 3.3, there is a basis $\{e, x, y, xy, z, xz, yz, x(yz)\}$ such that

$$V \cong \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp b \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp c \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp bc \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix},$$

where x can be taken as Σe , Put $\pi = Fe + Fx$.

Let $\pi_1 = Fy + F \sum y$. Clearly $\sum \pi_1 = \pi_1$, and $\pi_1 \cong \pi y$. Put $U = \pi \perp \pi_1$. Then $U \cong \pi \perp \pi y$ and $U^* \cong \pi z \perp \pi (yz)$. Choose $h \in U^*$ with Q(h) = Q(z) = c. Put $\pi_2 = Fh + F \sum h \subset U^*$. Then $\pi_2 \cong \pi z$. Write $U^* = \pi_2 \perp \pi_3$. By Witt theorem, $\pi_3 \cong \pi (yz)$. Choose $k \in \pi_3$ with Q(k) = Q(yz) = bc. Now $\{e, x, y, \sum y, h, \sum h, k, \sum k\}$ is a basis of V. With respect to this basis, the expression of V is the same as above. By the transitivity

theorem, there is a g in $O_8(V)$ such that ge=e, gx=x, gy=y, $g(\Sigma y)=xy$, gh=z, $g(\Sigma h)=xz$, gk=yz, and $g(\Sigma k)=x(yz)$.

Define $\odot: V \times V \to V$ by $u \odot v = g^{-1}(gu \cdot gv)$. It is easy to verify that (V, \odot) is a Cayley algebra, and $\Sigma v = (\Sigma e) \odot v$ for all v in V.

§ 4. Triality Principle

In this section we assume that V is a Cayley algebra with the identity e. Denote τ_{ex} by \overline{x} . $\Gamma O_8(V)$ is the group of semilinear automorphisms of V which preserve Q. We have the following triality principle.

Theorem 4.1. Let $\sigma \in \Gamma O_8(V)$. Then there exist σ_1 and σ_2 in $\Gamma O_8(V)$ such that either

$$\sigma(xy) = \sigma_1(x)\sigma_2(y)$$
 for all x , y in V

or

$$\sigma(xy) = \sigma_1(y) \sigma_2(x)$$
 for all x , y in V .

Moreover, σ_1 and σ_2 are unique up to a scalar, and only one of the equalities holds. Proof Since $\Gamma O_8(V)$ is generated by the symmetries and the left multiplications, it suffices to prove the theorem in the two cases.

1) Assume $\sigma = \tau_a$, where $Q(a) \neq 0$. Take σ_1 and σ_2 by $\sigma_1(x) = a\overline{x}$ and $\sigma_2(x) = Q(a)^{-1} xa$. Then σ_1 and σ_2 are in $\Gamma O_8(V)$. Using Moufang identities, we have

$$\begin{split} \sigma_{1}(y)\,\sigma_{2}(x) &= (a\overline{y})\,Q(a)^{-1}(\overline{x}a) = Q(a)^{-1}(a\overline{y})\,(\overline{x}a) = Q(a)^{-1}a\,(\overline{y}\overline{x})\,a\\ &= Q(a)^{-1}\big[a\,(\overline{x}y)\big]\,a = Q(a)^{-1}\big[(xy)\overline{a} + (a,\,xy)\,e\big]\,a\\ &= xy + Q(a)^{-1}(a,\,xy)\,a = \tau_{a}(xy)\,. \end{split}$$

2) Assume $\sigma = L_a$, where $Q(a) \neq 0$. Take σ_1 and σ_2 by $\sigma_1(x) =$ axa and $\sigma_2(x) = Q(a)^{-1}\overline{a}x$. Then $\sigma_1, \sigma_2 \in \Gamma O_8(V)$. Using Moufang identities again, we have

$$\begin{split} \sigma_1(x)\,\sigma_2(y) &= (\mathrm{axa})\,Q(a)^{-1}(\bar{a}y) = Q(a)^{-1}a\{x[a(\bar{a}y)]\} \\ &= Q(a)^{-1}a[x(Q(a)y)] = a(xy) = L_a(xy). \end{split}$$

The last result is easy since V is not a commutative algebra.

We now define $\Gamma O_8^+(V)$ to be the set of all σ in $\Gamma O_8(V)$ such that the first equality in Theorem 4.1 holds, and $\Gamma O_8^-(V)$ the set of all σ in $\Gamma O_8(V)$ such that the second equality holds. Clearly, $\Gamma O_8^+(V) \cap O_8(V) = O_8^+(V)$ and $\Gamma O_8^-(V) \cap O_8(V) = O_8^-(V)$.

If $\sigma \in \Gamma O_8(V)$, then there is an α_σ in \dot{F} such that $Q(\sigma x) = \alpha_\sigma Q(x)$ for all x in V. We define $\hat{\sigma} = \alpha_\sigma^{-1} \tau_e \sigma \tau_e$, i. e., $\hat{\sigma}(x) = \alpha_\sigma^{-1} \overline{\sigma(x)}$.

The following results (Corollaries 4.2—4.4) are very easy to check.

Corollary 4.2. If
$$\sigma \in \Gamma O_8^+(V)$$
, then σ_1 , σ_2 , $\hat{\sigma} \in \Gamma O_8^+(V)$, and

$$\sigma_1(xy) = \sigma(x)\hat{\sigma}_2(y),$$
 $\sigma_2(xy) = \hat{\sigma}_1(x)\sigma(y),$
 $\hat{\sigma}(xy) = \hat{\sigma}_2(x)\hat{\sigma}_1(y)$

for all x, y in V.

Corollary 4.3. If $\sigma \in \Gamma O_8^-(V)$, then σ_1 , σ_2 , $\hat{\sigma} \in \Gamma O_8^-(V)$, and

$$\sigma_1(xy) = \sigma(y)\hat{\sigma}_2(x),$$

$$\sigma_2(xy) = \hat{\sigma}_1(y)\,\sigma(x),$$

$$\hat{\sigma}(xy) = \hat{\sigma}_2(y)\hat{\sigma}_1(x)$$

for all x, y in V.

Corollary 4.4. Let φ_1 , φ_2 , ε be mappings: $P\Gamma O_8^+(V) \to P\Gamma O_8^+(V)$ by $\varphi_1(\overline{\sigma}) = \overline{\sigma}_1$, $\varphi_2(\overline{\sigma}) = \overline{\sigma}_2$ and $\varepsilon(\overline{\sigma}) = \overline{\sigma}$. Then φ_1 , φ_2 , ε are automorphisms of $P\Gamma O_8^+(V)$. Moreover, $\varphi_1^2 = \varphi_2^2 = \varepsilon^2 = 1$, $\varphi_1 \varphi_2 = \varepsilon \varphi_1 = \varphi_2 \varepsilon$, $\varphi_2 \varphi_1 = \varepsilon \varphi_2 = \varphi_1 \varepsilon$. Therefore φ_1 , φ_2 and ε generate a group isomorphic to the symmetric group S_3 .

Corollary 4.5. If $\sigma \in O_8(V)$, then σ_1 and σ_2 may be chosen in $O_8(V)$.

Proof See Corollary 4 of [4].

Corollary 4.6. φ_1 , φ_2 and ε induce three automorphisms of $O'_{\mathbb{S}}(V)$. They generate a group isomorphic to S_3 .

Proof Use the fact that the center of $O'_8(V)$ is $\{1\}$.

 φ_1 and φ_2 are exceptional automorphisms of $O_8'(V)$. To see this, we take a vector x with $(e, x) \neq 0$ and Q(x) = 1. Consider $\sigma = \tau_x \tau_e \in O_8'(V)$. By straightforward calculation we have $\varphi_1(\sigma) = \Sigma$, where $\Sigma(v) = xv$ for all v in V. We see that Σ is a Cayley rotation since $x^2 + \beta x + 1 = 0$, where $\beta = (e, x) \neq 0$. Thus res $\Sigma = 8$, and so φ_1 is a exceptional automorphism of $O_8'(V)$. Proceed similarly with φ_2 .

§ 5. The Automorphisms

In this section dimV=8. We shall determine all the automorphisms of $O_8(V)$ and $\Omega_8(V)$.

Lemma 5.1. Suppose Σ is a Cayley rotation. U is a non-defective 4-dimensional subspace of V, and $\Sigma U = U$. Then there is a non-defective plane π in U such that $U = \pi + \Sigma \pi$.

Proof Since $\Sigma|_{\overline{v}}$ is a Cayley rotation on U, there is a splitting

$$U = (Fx_1 + F\sum x_1) \perp (Fx_2 + F\sum x_2)$$

with x_1 and x_2 non-singular. We take $\pi = Fx_1 + F(\Sigma x_1 + \Sigma x_2)$.

Lemma 5.2. Suppose Λ is an exceptional automorphism of Λ . Let σ and $\rho' \in \Lambda$ be non-defective plane rotations. put $\Sigma = \Lambda(\sigma)$, $\rho = \Lambda^{-1}(\rho')$, and $\theta = \sigma \rho \sigma^{-1} \rho^{-1}$, $\theta' = \Lambda(\theta) = \Sigma \rho' \Sigma^{-1} \rho'^{-1}$. Then res $\theta = 4$ if and only if res $\theta' = 4$. When res $\theta = 4$, θ is non-defective if and only if θ' is non-defective.

Proof Assume res $\theta=4$. Then the residual space of θ is $R+\rho R$. If res $\theta'\neq 4$, then res $\theta'=2$ since $0\neq \text{res }\theta'\leqslant 4$. By Proposition 1.4 and Lemma 1.1 θ' is an involution since Λ is exceptional, and so θ is also an involution. It implies that θ is

totally defective. But the residual space of θ contains a non-defective plane R. This is a contradiction. Similarly, if res $\theta'=4$, then res $\theta=4$.

Suppose now res $\theta=4$ and θ is non-defective. If θ' is defective, then res $\theta'^2 \leq 2$. Since the residual space of θ' contains a non-defective plane, i. e., the residual space of ρ' , we have $\theta'^2 \neq 1$, and so res $\theta'^2=2$. Consider now $\Lambda^{-1}(\theta'^2)=\theta^2$. Since Λ^{-1} is exceptional, θ'^2 can not be non-defective, and so θ'^2 is a degenerate plane rotation. Thus, $\theta'^4=1$, and $\theta^4=1$. Therefore θ^2 is totally defective, and the residual space of θ^2 is a proper subspace of $R+\rho R$. Then res $\theta^2=2$. Applying Proposition 1.5, we get a contradiction. Similarly, if res $\theta=4$ and θ' is non-defective, then θ is non-defective.

Theorem 5.3. Suppose Δ has an exceptional automorphism Λ . Then there exists an α in \dot{F} such that V^{α} is a Cayley algebra.

Proof 1) Take a non-defective plane rotation $\sigma \in \Delta$. Then $\Sigma = \Lambda(\sigma)$ is a Cayley rotation. By Proposition 2.4, there is a splitting $V = W_1 \perp W_2 \perp W_3 \perp W_4$ where $W_i = Fx_i + F\Sigma x_i$, $Q(x_i) \neq 0$ for each i. Put $U = W_1 \perp W_2$. By Lemma 5.1, there are non-defective planes $R'_1 \subset U$ and $R'_2 \subset U^*$ with $R'_1 = Fx_1 + F(\Sigma x_1 + \Sigma x_2)$ such that $U = R'_1 + \Sigma R'_1$ and $U^* = R'_2 + \Sigma R'_2$.

Take non-defective planes rotation $\Sigma_i \in \Omega_2(R_i') \perp 1$ for i=1, 2. Put $\Sigma_3 = \Sigma \Sigma_1 \cdot \Sigma^{-1} \Sigma_1^{-1}$ and $\Sigma_4 = \Sigma \Sigma_2 \Sigma^{-1} \Sigma_2^{-1}$. Clearly $R_3' = U$ and $R_4' = U^*$. Let $\sigma_i = \Lambda^{-1}(\Sigma_i)$ for i=1, 2, 3, 4. Then σ_1 and σ_2 are Cayley rotations by Proposition 2.6, and res $\sigma_3 = \text{res}\sigma_4$ = 4 by Lemma 5.2. Since $\Sigma_1 \Sigma_4 = \Sigma_4 \Sigma_1$, $\sigma_1 \sigma_4 = \sigma_4 \sigma_1$, we have $\sigma_1 R_4 = R_4$. So $R_3 = R + \sigma_1 R \subseteq R + \sigma_1 R_4 = R_4$. Therefore we can put $R_3 = R_4 = W$, which is non-defective by Lemma 5.2.

2) Take non-singular y in R. Put $R_5 = Fy + F\sigma_1 y \subset W$. Then R_5 is a non-defective plane. We have $R_5 \neq R$ since $\Sigma_1 \Sigma \neq \Sigma \Sigma_1$. Choose a plane rotation $\sigma_5 \in \Omega_3$ $(R_5) \perp 1$ and put $\Sigma_5 = \Lambda(\sigma_5)$. Then $\sigma_5 \sigma_1 = \sigma_1 \sigma_5$, and so $\Sigma_5 \Sigma_1 = \Sigma_1 \Sigma_5$. Thus, $\Sigma_5 R_1' = R_1'$.

Moreover, claim $\Sigma_5 U = U$. In fact, select a non-defective plane rotation $\sigma_6 \in \Delta$ with residual space $R_6 \subset W^*$, and put $\Sigma_6 = \Lambda(\sigma_6)$. Then Σ_6 is a Cayley rotation. Since $\sigma_6 \sigma_3 = \sigma_3 \sigma_6$, $\Sigma_6 \Sigma_3 = \Sigma_3 \Sigma_6$, we have $\Sigma_6 U = U$. By Lemma 5.1, there is a non-defective plane $R_7' \subset U$ such that $U = R_7' + \Sigma_6 R_7'$. Choose a plane rotation $\Sigma_7 \in \Omega_2(R_7') \perp 1$. Then $\Sigma_7 \Sigma_4 = \Sigma_4 \Sigma_7$, $\sigma_7 \sigma_4 = \sigma_4 \sigma_7$, where $\sigma_7 = \Lambda^{-1}(\Sigma_7)$. Hence $\sigma_7 W = W$ and $\sigma_7 W^* = W^*$. Put $\Sigma_8 = \Sigma_6 \Sigma_7 \Sigma_6^{-1} \Sigma_7^{-1}$, and $\sigma_8 = \Lambda^{-1}(\Sigma_8)$. Since $R_8' = R_7' + \Sigma_6 R_7' = U$, we have res $\sigma_8 = 4$ by Lemma 5.2. Now $R_8 = R_6 + \sigma_7 R_6 \subseteq R_6 + \sigma_7 W^* = W^*$, so $R_8 = W^*$. But $\sigma_5 \sigma_8 = \sigma_8 \sigma_5$, so $\Sigma_5 \Sigma_8 = \Sigma_8 \Sigma_5$. It implies $\Sigma_5 U = U$.

3) Consider now $\sigma_5^{-1}\sigma$. The residual space of $\sigma_5^{-1}\sigma$ is contained in $R+R_5$. Since $R \neq R_5$ and $y \in R \cap R_5$, we see that $\sigma_5^{-1}\sigma$ is a plane rotation. By Proposition 2.6, $\Lambda(\sigma_5^{-1}\sigma) = \Sigma_5^{-1} \Sigma$ is a Cayley rotation. Let β , β_1 and β_2 be the residual traces of Cayley rotations Σ , Σ_5 and $\Sigma_5^{-1}\Sigma$ respectively.

4) Take $u = \beta_2 x_3 + \beta \Sigma_5 x_3 + \beta_1 \Sigma x_3$. Straightforward calculation shows $u \in (W_1 \perp W_2 \perp W_3)^* = W_4$, and $Q(u) = (\beta^2 + \beta_1^2 + \beta_2^2 + \beta \beta_1 \beta_2) Q(x_3)$. Since $x_1 \in R_1' = \Sigma_5 R_1'$, we can assume $\Sigma_5 x_1 = \alpha_1 x_1 + \alpha_2 (\Sigma x_1 + \Sigma x_2)$. It is easy to see that $\alpha_1 = \beta^{-1} \beta_2$ and $\alpha_2 = \beta^{-1} \beta_1$. Then we have $(\beta^2 + \beta_1^2 + \beta_2^2 + \beta \beta_1 \beta_2) Q(x_1) = \beta_1^2 Q(x_2)$.

Thus $Q(u) = \beta_1^2 Q(x_1)^{-1} Q(x_2) Q(x_3)$.

Take $x'_4 = \beta_1^{-1}u$. Then $Q(x'_4) = Q(x_1)^{-1}Q(x_2)Q(x_3)$. With respect to the basis $\{x_1, \ \Sigma x_1, \ x_2, \ \Sigma x_2, \ x_3, \ \Sigma x_3, \ x'_4, \ \Sigma x'_4\}$ of V,

$$V \cong \alpha \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp \alpha b \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp \alpha c \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \perp \alpha b c \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix},$$

where $\alpha = Q(x_1)$, $b = \alpha^{-1}Q(x_2)$, and $c = \alpha^{-1}Q(x_3)$. By Example 3, Q^{α} permits composition, and V^{α} is a Cayley algebra.

Theorem 5.4. The following statements are equivalent:

- 1) $O_8^+(V)$ has exceptional automorphisms.
- 2) V^a is a Cayley algebra for some α in \dot{F} and $O_8^+(V) = O_8'(V)$,
- 3) V is a Cayley algebra and F is a perfect field.

Proof 1) \Rightarrow 2): Let Λ be an exceptional automorphism of $O_8^+(V)$. Since $DO_8^+(V) = \Omega_8(V)$, Λ induces an automorphism of $\Omega_8(V)$. Take a non-defective plane rotation σ in $O_8^+(V)$. By the remark following Proposition 2.6, $\Sigma = \Lambda(\sigma)$ is a Cayley rotation. Then $\Sigma^2 \in \Omega_8(V)$ is also a Cayley rotation, res $\operatorname{tr}(\Sigma^2) = (\operatorname{res}\operatorname{tr}(\Sigma))^2$. So $\Lambda|_{\Omega_8(V)}$ is an exceptional automorphism of $\Omega_8(V)$. By Theorem 5.3, there is an α in \dot{F} such that V^{α} is a Cayley algebra.

Since $O_8^+(V)$ can be generated by non-defective plane rotations, if we denote by $\mathscr P$ the set of all non-defective plane rotations, we have $O_8^+(V) = \Lambda(O_8^+(V)) = \Lambda \langle \sigma \in \mathscr P \rangle = \langle \Lambda(\sigma) | \sigma \in \mathscr P \rangle \subseteq O_8'(V) \subseteq O_8^+(V)$ by Proposition 2.5. So $O_8^+(V) = O_8'(V)$.

2) \Rightarrow 3): Fix a non-singular vector x in V and denote $b=Q(x)\neq 0$. For any non-singular y in V, $\tau_x\tau_y\in O_s^+(V)=O_s'(V)$. It implies that $Q(x)Q(y)\in \dot{F}^2$, i. e., $Q(y)\in b\dot{F}^2$. If y is singular, then $Q(y)=0\in bF^2$. So $Q(y)\in bF^2$ for any y in V. Take a non-sigular vector z in V with $(x,z)\neq 0$. Then $Q(x+z)=b+Q(z)+(x,z)\in bF^2$, and so $(x,z)\in bF^2$. For any c in F, $Q(cx+z)=bc^2+Q(z)+c(x,z)\in bF^2$. It imlpies $c\in F^2$. Hence $F=F^2$, and F is perfect.

Since V^{α} is a Cayley algebra and $F = F^2$, it is easily seen that V is a Cayley algebra itself.

3) \Rightarrow 1): Assume V is a Cayley algebra and F is perfect, then we immediately get $O_8^+(V) = O_8'(V)$, and φ_1 and φ_2 induced by triality are exceptional automorphisms of $O_8^+(V)$.

We now assume that V^{α} is a Cayley algebra with the identity e for some α in \dot{F} . Note that $\Gamma O_8(V^{\alpha}) = \Gamma O_8(V)$, $O_8(V^{\alpha}) = O_8(V)$, and so on. We can replace V^{α} by V. Denote by C_0 the set of all non-defective plane rotations in $C_8(V)$. Put $C_1 = \varphi_1(C_0)$ and $C_2 = \varphi_2(C_0)$. Denote by C the set of all Cayley rotations.

Proposition 5.5. 1) $\varphi_1(C_0) = C_1$, $\varphi_1(C_1) = C_0$, $\varphi_1(C_2) = C_2$.

- 2) $\varphi_2(C_0) = C_2$, $\varphi_2(C_1) = C_1$, $\varphi_2(C_2) = C_{0\bullet}$
- 3) $\varepsilon(C_0) = C_0$, $\varepsilon(C_1) = C_2$, $\varepsilon(C_2) = C_1$.
- 4) $C_i \cap C_j = \emptyset$ for $i \neq j$.

Proof Use Corollary 4.4.

Proposition 5.6. Let $g \in \Gamma O_8(V)$. Then $\Phi_g(C_0) = C_0$. Moreover $g \in \Gamma O_8^+(V) \Leftrightarrow \Phi_g(C_1) = C_1 \Leftrightarrow \Phi_g(C_2) = C_2$.

$$g \in \Gamma O_8^-(V) \Leftrightarrow \Phi_g(C_1) = C_2 \Leftrightarrow \Phi_g(C_2) = C_1.$$

Proof Use Corollary 4.4 and Proposition 5.5.

Proposition 5.7. $C = C_1 \cup C_2$.

Proof Clearly $C_1 \cup C_2 \subseteq C$.

Conversely, let $\Sigma \in \mathcal{O}$. By Proposition 3.4, there is a Cayley multiplication \odot such that $\Sigma v = (\Sigma e) \odot v$ for all v in V, where e is the identity of both (V, \cdot) and (V, \odot) . By Proposition 3.3, there exists a g in $O_8(V)$ such that $g: (V, \cdot) \rightarrow (V, \odot)$ is an isomorphism of Cayley algebras. Take $\sigma = \tau_{\Sigma e} \tau_e \in \mathcal{O}_0$. Then by straightforward calculation we have $\Phi_{\varrho} \varphi_1 \Phi_{\varrho}^{-1}(\sigma) = \Sigma$. So we see, by Proposition 5.6, that Σ is in O_1 if $g \in O_8^+(V)$; Σ is in O_2 if $g \in O_8^-(V)$.

Theorem 5.8. Suppose V^{α} has a Cayley algebra structure for some α in \dot{F} . Let φ_1 and φ_2 be the associated exceptional automorphisms of $O'_8(V)$. Let Λ be any exceptional automorphism of $O'_8(V)$. Then there is a $g \in \Gamma O_8(V)$ such that Λ has exactly one of the following forms:

$$\Lambda = \varphi_1 \circ \Phi_g$$
 or $\Lambda = \varphi_2 \circ \Phi_g$,

where g is unique up to a scalar. Moreover, any such Λ is an exceptional automorphism of $O_8'(V)$.

Proof By Propositions 2.6 and 5.7, $\Lambda(C_0) \subseteq C = C_1 \cup C_2$. Assume that $\Lambda(C_0) \cap C_1 \neq \emptyset$. Choose $\sigma \in C_0$ such that $\Lambda(\sigma) \in C_1$. Then $(\varphi_1 \circ \Lambda) \sigma \in C_0$. It follows from Proposition 1.4 that $\varphi_1 \circ \Lambda$ is an automorphism of standard type. Therefore, $\varphi_1 \circ \Lambda = \Phi_g$, and $\Lambda = \varphi_1 \circ \Phi_g$ for some $g \in \Gamma O_8(V)$. If $\Lambda(C_0) \cap C_2 \neq \emptyset$, use φ_2 and obtain $\Lambda = \varphi_2 \circ \Phi_g$.

Using Proposition 5.5, we see that $\Lambda = \varphi_1 \circ \Phi_{g_1}$ and $\Lambda = \varphi_2 \circ \Phi_{g_2}$ can not occur simultaneously. Clearly, g is unique up to a scalar. Finally, it is easy to see that any such Λ is an exceptional automorphism of $O_8'(V)$.

Define λ : Aut $O'_8(V) \to S_3$ by $\lambda(\varphi_1) = (1, 2)$, $\lambda(\varphi_2) = (1, 3)$, $\lambda(\varepsilon) = (2, 3)$, $\lambda(\Phi_g) = 1$ for all $g \in FO_8^+(V)$. Then λ can be extended to a surjective homomorphism of groups, and $\lambda|_{\langle \varphi_1, \varphi_2, \varepsilon \rangle}$ is an isomorphism onto S_3 . Denote its inverse by λ_1 .

Define $\mu: P\Gamma O_8^+(V) \to \operatorname{Aut} O_8'(V)$ by $\mu(\overline{g}) = \Phi_g$. Then μ is independent of the

choice of g, and is an injective homomorphism of groups. From Theorem 5.8, we have

Theorem 5.9. The subgroup $\{\Phi_g | g \in \Gamma O_8(V)\}$ of Aut $O'_8(V)$ has index 3 or 1 in Aut $O'_8(V)$ according as V^{α} has a Cayley algebra structure for some α in \dot{F} or not. If V^{α} is a Cayley algebra for some α in \dot{F} , then the sequence of groups

$$1 {\rightarrow} P \Gamma O_8^+(V) \stackrel{\mu}{\longrightarrow} \text{Aut } O_8'(V) \stackrel{\lambda}{\longleftrightarrow} S_3 {\rightarrow} 1$$

is split exact.

Theorem 5.10. Every exceptional automorphism of $\Omega_8(V)$ is the restriction of a unique exceptional automorphism of $O'_8(V)$.

Proof Let Λ be an exceptional automorphism of $\Omega_8(V)$. By Proposition 2.6, $\Lambda(C_0) \sqsubseteq C$. Assume $\Lambda(C_0) \cap C_1 \neq \emptyset$. As in the proof of Theorem 5.8, we obtain a $\sigma \in C_0$ with $(\varphi_1 \circ \Lambda) \sigma \in C_0$. Now $\varphi_1 \circ \Lambda$ is an isomorphism of $\Omega_8(V)$ onto $\varphi_1 \Omega_8(V)$. We can prove, by analogue with Proposition 1.4, that as long as $\varphi_1 \circ \Lambda$ sends a non-defective plane rotation to an element whose residual index is less than 8, then $\varphi_1 \circ \Lambda = \Phi_g$ for some g in $\Gamma O_8(V)$. Proceed similarly if $\Lambda(C_0) \cap C_2 \neq \emptyset$. Finally, the uniqueness is clear.

The author is grateful to Prof. C. Tsai, Michigan State University, USA, for his help in calculation of composition algebras.

References

- [1] Hua, L. K. and Wan, Z. X., Classical Groups, 1963 (In Chinese).
- [2] Li Fuan, The Automorphisms of Non-defective Orthogonal Groups in Characteristic 2, Chin. Ann. of Math., 6B: 3(1985), 363-373.
- [3] Artin E., Geometric Algebra, Interscience Publishers, New York-London, 1957.
- [4] F. van der Blij and Springer, T. A., Octaves and Triality, Nieuw Arch. Wisk., 3 VIII(1960), 158—169.
- [5] Chevalley, C., The Algebraic Theory of Spinors, New York, 1954.
- [6] Connors, E. A., Automorphisms of Orthogonal Groups in Characteristic 2, J. Number Theory, 5 (1973), 477—501.
- [7] Dieudonné, J., On the Automorphisms of the Classical Groups, Memoirs of the American Mathematical Society, New York, 1951.
- [8] Hahn, A., Cayley Algebras and the Automorphisms of $PO'_8(V)$ and $P\Omega_8(V)$, Amer. J. Math., 98 (1976), 953—987
- [9] Jacobson, N., Composition Algebras and Their Automorphisms, Rend. Circ. Mat. Palermo, 7(1958), 55-80.
- [10] Jacobson, N., Basic Algebra I, W. H. Freeman and Company, San Francisco, 1974.
- [11] O'Meara, O. T., Introduction to Quadratic Forms, Berlin-Göttingen-Heidelberg, 1963.
- [12] O'Meara, O. T., The Automorphisms of the Orthogonal Groups $\Omega_n(V)$ over Fields, Amer. J. Math., 90 (1968), 1260—1306.
- [13] Schafer, R. D., An Introduction to Nonassociative Algebras, Academic Press, New York-London, 1966.
- [14] Wonenburger, M. J., The Automorphisms of the Group of Similitudes and Some Related Groups, Amer. J. Math., 84 (1962), 600—614.
- [15] Wonenburger, M. J., The Automorphisms of $PO_8^+(Q)$ and $PS_8^+(Q)$, Amer. J. Math., 84(1962), 635—641
- [16] Wonenburger, M. J., Triality Principle for Semisimilarities, J. Alg., 1(1964), 335-341.