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NUMBERS OF CONJUGATE CLASSES OF
SYMMETRIC AND ALTERNATING GROUPS
N B WANG EfANq.» (igg_;;;_)* o

- ~Abstract - -

Let d(n) be the excess of the number of even conjugate classes of 8, over that of odd
conjugate classes of §,, and g(n) the number of splitting classes of §,. In this paper a
recurrence formula for d(n) and one for g(n) are given. As a recurrence formula for the

_number p(n) of conjugate classes of 85 is knownt™, one can make use of p(n), d(n) and
q(m) to calculate the numbers of even (0odd) conjugate classes of 8, and that of conjugate
classes of A4,. By meansof a graphical method the author proves the identity d(n)=q(n)

when #>2, which seems to have been obtained first by Sylvester® by use of generating
functions. '

Let o be a permutation on n lefters. The ordered lengths @i, as, =+, as (a;=>a541)
of the disjoint cyclic factors of o form a partition (ai,' @, **, @) of n. We know
that in the symmetrio group on n letters S,, two permutations are conjugate if and
only if the corresponding parbitions are equal. Hence, there i3 .a one—to—one
correspondence between conjugate classes of S, and partitions of n, and the number
of conjugate classes of 8, is equal to the number of partitions of n. An n-partition &«
is said to be odd if it corresponds o an odd permutation class, otherwise even. The
number of odd (even) conjugate classes is equal %o the number of odd (even)
 n-partitions. . '

A recursion formula for the number of n-partitions p(n) can be found in [1].
In the first part of the present paper we give 2 recursion formula for d(n), the
excess of the number of even n—partitions over the number of odd n—partitions.
From p(n) and d(n), we can find the number of the even and odd coniugate classes
of S, immediately. '

In order o discuss the number of conjugate classes of the alternating group A,,
we have to calculate the number of splitting clagses of 8,. In the second part of the
present paper, we give a recursion formula for the number of splitting clasges g¢(n).

In the last part, we use a graphical method to prove the identity d(n) =g(n)
when n=2, which seems to have been mentioned first by Sylvester'®), From this
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1dent1ty, we deduce that the number of even conjugate classes of §,(n>2) is always
greater than the number of odd conjugate classas Finally, as a conqequenoe of this
1dent1ty, we prove again another Sylvester s theorem '

§ 1. Numbers bf Odd and Even Conjugate Clasées of S

Let a be a partltlon of fl By s(oa) we denote the number of parts of a. By the
weight w(a) of @, we mean the smallest parﬁ of a. 1t ig easy to see that is an even
partition iff n and s(a) have the same odewty ‘

We call an n—partition of Welght kan (n, k) —partmon . |

Let (a3, as, «+-, a;) be an n—partltlon =2 Then I ’ o

p= (wl) Qgy ***y @s_1): i
is an (n—ay, as_l)—partltlon B is called the shortemng of o, and o is ealled the
extending of 8. Every n—partition o with s(«)>2 i¢ an extending of an (n— 'w(oc))—
Partition, and different partitions give differ en’ﬁ extendmgs There are some
important properties of ex’ﬁendlng and shortemng

1. If B is the shortening of a, then w(B)=w(a). i
2. An (n—k)-partition 8 can be extented o an n—partfslon iff fw(B) =>k.
3. Let o be a partltlon with mo:r.e “than one part then o and its sbhortening
have-the same odevity iff w(a). is odd. |
By d(n, k) we denote the excess of the number of even n—partltlons with weight
greater than or equal to & over the num ber of odd n—partltlons Wlth Welght greater
than or equal to k. Then d(n, 1) is the exoess of the number of even n—par’ﬁltlons
over the number of odd n-—partltlons and we write d (n)= d(n 1). Because there is
only one n—partition with one'part: (n), and the odevities of (n) and n are opposite,
we have the following recurrence formula:
C d(n, 1) =d(n— 1, 1) d(n—2 2)+d(n 3,8)—- }
‘ + (=D d(n—Fk, )+ +(—1)"d(1, n—1) + (= 1),
J d(n, 2)———d(n 2,2)+d(n—8, 8)—- .
-+ (=) d(n—F, &)+ +( 1)“’0Z(1 n— 1) +( 1)rt

L, )= (=),
~Here We take d(l m) ~0 when l<m
From (1) We can obtam

{d(" D ( 1)“1 o @
~lan, by =d(n, lc+1)+( 1)k+1d(n k, ]o), L
 1=1,2,8,y k=n—1,n-2, .2 1 ’

™
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Smoe there is ]ust one n—part1t10n wmh Welght greater than [ ] (n), and Jus’ﬁ :

-one n—partition with Welgh’u equal fo [—2—] also: ([—7-%:—1—] . [ 5 D and the odevities of

(n), ([ n+1 ][%D ‘alfe opposite, we have the following 1mprﬁoveme»nts of the

recurrence formulas (1) and (2) :

A, 1) =dn—1, 1) —~d(n-2, 2)eret (= 1)[21+1 ([ ﬁ])+( 1y

=113
7o) [3]) o

A ‘d(n, 2= —d(n—2, 2)+d(n 3 3)_ o+ (= 1)[]+1 <[ n-+

a(n, [2]-1)=(-D elg([ 2t ] 41 [g_]_) | .
e ([2R L[] o | ®
[3])-o | | |
( [5)+1)- o
{d(n n)=d(n, n— 1)=...=d< [_’Z'_]+1)=__(~1)n+1’
an, B =d(n, B+1) + (~1)Ha(a—b, B),
n=1, 2,3, k=[%] [%]—1 2, 1.
By the recurrence formula @), d(n) can be caloulated qumkly

emd(n, m) = (~1)

@

We denote the numbers of odd and even n—partltmns by Do (n) and P (n)
respectxvely ’I‘hen po (n) and P.(n) can be expressed by p(n) and d(n)

Po(n)- L ey —dm)), -
| ‘pe@——-;,;(p(n)+d(n))-'_"v

~ §2. Numbers of A-classes of S, and A

Let o, ¢ be two permutations in S,. If there is a pefzﬁﬁtation p € A, such thab
o=p lvp, we say that o and v are A-conjugate. Obviously, A-conjugate permuta-
tions are always conjugate, but conjugate permutahons are not always A—conjugate..
Hence some S—classes split into A-clasges, which are the so—called sphttmg clasges.
We know' that the odd conjugatbe class is always not’ sphttmg, and an even con-—
jugate class is splitting iff the lengths of its disjoin$ cyclio factors are different odd:
numbers. Moreover, whenever a class is splitting, it splits into two A-classes. Thus,
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the number of A-conjugate classes of S, equals the sum of the number o6f conjugate.
classes of S, and the number of- gplitting classes of §,; the number of conjugate
classes of 4,, which is just the number of A-conjugate classes of 4,, is equal to the
sum of the number of even conjugate clagses of 8, and the number of splitting
classes of §,. »
For convenience, we call a 'partition corresponding to a splitting class a splitting
partition. That is to say, a sPIitting partition is a partition with distinct odd parts.
By g(n, k) we denote the number of splitting n—partitions with weight greater
than or equal to k. Then ¢(n, 1) is just the number of splitting n—pa,rtltmns,
denoted by ¢(n).
- Ttis easy 0 see the followmg facts:
1°. Any partition with éven weight is not splitting.
. If ay=a,_, then (ay, as, «--, @y, @) is not splitting.
* Hence we have |
Lemima 1. An n—partition (@i, aa, +-, as) (n=>2) is splitiing &ff
@ when s=1:n fos odd; * )
» (2) fwhen §=2: a, 45 odd, @s<a;_y and (al, 0y G-1) 48 a splitiing partition of
n—as. :

Corollary 1. ¢(n, 21) =g (n, 21+1).

Weknov& that the only n—partition with weight [—3—] is <[ ?”'2” :’, [—%D ‘This

partition is not splitting because [ n"é‘l ]= [-’-2”-:’ when n is even, and one of the

consecutive integers [—g-:l and [ n;—l] is even when 7 is odd. The only n-partition

with weight greater than [12"-] (n), is splitting 1ff n is odd. Hence we get a
Tecurrence formula for g(n, Ia) By (70) we denote the greate 5 odd number not
exceedzng k. Let

5 _{ 1, when n is odd,

0, when n is even. -
Then

q(n 1)=g¢(n— 1 3)+q(n 3,5)4-: +q<n—-< >< >+2)+8,.,.
q(n, 8) =¢(n, 2)

=2(1=3, 8) +g(n=5, V) +-(n < PECHREIES S
I 6

~Q<n,<% )=q(’%'iﬂ\ 1) < < >< >+2 +8"’ |




o

‘and so
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Here we also take ¢(7,.m) =0 when I<<m. . N R
~We can.oalculate ¢(n, k) by:the following, recurrence formulas S

{q(n ) =g (1, n— 1>—v---~4< [2])-s |
" lgtn, 2141) =g (n, 20) = g(n—21—1, 20+3) +¢(n, 2A+8),

- n‘=1,;,_2, 8, e ;=[_ZL][_Z_]—1 )2, 1

§3 The Proof of q(n) d(n)

~ In this section we prove on 1dent1’oy abou‘o the number of sphttmg olaSSes of S
and the difference between the numbers of even and odd olassas of S _
Theorem 1. q(n) d(n) (n>2) . ) ) .
For the proof we reqmre ‘the graphlcal repreSen’sa’mon of paltltlons Every '
n-partition can be represented by a two- dlmenSmnal array of dots. One dimension
indicates the size of each part and the other the number, of parts The alray is oalled

_the Ferrars graph of this partltlon If a= (a4, g, < as) 1s a partltlon of n, then

ibs Ferrars graph has @ rows, and the 4 th row contains o dots We denote the
Ferrars graph of « by I'(a). R . . ,

Let I" be a Ferrars graph By reﬂec’amg T in the mam dlagonal we obtam
“another Ferrars graph I, W}:ueh is called ‘the conjugate of I'. Ths ri~partition
«eorresponding to (I («))! is called the. oon;;ugateuof a, denoted by af. It is clear that
oonJuga,tlon is an mvolutmn of the parbn‘aons of any mteger ag the oongugate of the
‘conjugate of o is agam o, S SO g '

For convenience, we deno’oe the greatest part of the partltlon (aai, U2 gs) .
by Z(a) "The number of occurrences of g in o 1s ealled the multlplmlty of a m a.
The mul’mphefay of oj in'a is 31mp1y called ‘the” rdultlphcl’ﬁy ‘of ‘& and denobed by
r(a). / , "“\ . :

It is easy to see thab St '

s(a®) —Z(a) 1(a%y ——s(a) 'w(oc“") r(a) r(o*) =w(a).

Lemma 2 I i n~pwtwt'wn a is splwttwg, then s(a) <n.

Proof Becanse oa»has Ts(a) distinct bdd” par%s and the sum - of s(oa) smallest
distinet odd numbers is (s (a))2 we have oo

C e e @)y,
s(@y<m.
Lemma 3. Lei Ey danote the set of all even n—paﬁfotzom B fwhwh sat@sfy

1. 1(B)Y<r(B),
2. 1(B), r(B) and n have the same odevity, -
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3. The multfoplwzmes of the. parts dzﬁ"erent fa”om l(ﬁ) 0 f B are all even,
Then ’ ‘ "
| )= !Eo!
Proof Let Q be the set of all splitting n—pattitions.
If o= (a1, a5, +**; a,) €Q, then
\ CaBaG—i) ¥, L1 2 e s
Put R
: a;=a—2(s—i)—1.
Then’ al, az, e gl are all non—negatlve even' numbers ‘And from

e a,>a,+1+2 i=1, 2, 51,
weknow‘ﬁhafs BN S o
@ =ap= >0, =0,
§2 @+ @y oo i =n.
Let
- B=(s+al, é+w§;“-~,‘s+d§)“’.
Then
1(B) =s,7(B) =s+ai, s(B) =s+ak.
Hence : o ’ oo PR

1(B)<r(B),
[(B) and s(B)have the same odevity.  Furthemore, 1(B) =s and n'have the same

odeviby, because & is an even partition. Finally, sinee al, @b, +++, @, are all even, the ‘
differences of any two of thém are also even. Thus, thé 'mdltlphcltles of all parts
(except 1(B)) of B are all even. Therefore, 8C H,. -Obviously, dls’smot spllttmg
partitions give distinet 8’s. 8o we have ¢(n)'< [Ho|.w A
‘On the other hand; if B=(b, bs, -+, b,) € B, then S - T
' | ., (l(ﬁ))2<5<5) r(B)<n.
Thus : -
: | 7‘;_* Z(B) «/—_
Tet s= Z(B) The conjugate partition B¢ of 8 has s parts. Suppose
- BP=(o1,7Cay +7ey08).
From the properbles of Ho, we know that . . ... -
o=0=r(B)ZUB)=s, =12, ., s—1.
Set S '
L dmams, =L 2 s
Then dy, dy, - d are all even, and - -
Cd>dp>>, 430,
ditdot o Fdg=n—s
Let - R ~
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ai=d+2(s—4)+1, =12, -5,
o= (ay, ag, ***, @s). ’
Since RN
w1+.ag+---+ws=n,
L@ aa> e >y,
and a4, @, ***, @ are dlstmct odd numbers, & is a splitting n-partition. Obviously,
distinet B’s give distinet o/s. Thus |Ho| <q¢(n).
The lemma is proved.
Let O Dbe the set of all odd n——partltlons and H the set of all even n-—partitions,
We shall define an injection ¢ from O into H, and it3 image set is E—E,. Then
0] = | B~Eo| = | B| - | Bo| = | BE| —g(n).
Therefore ; g
| a(n)=|B| 0] =q(n).
This is what we claim. .
Proof of Theorem 1 If a=1(ay, as, +-+, ;) i8 an odd n-partition, then's and n .
have opposite odevities.
Case 1. 1(a) =ay and n have the same odevity. } .

In this case, s(a?)=I(«) hag the same odevity as n. Hence o* is an even
partition. Let '
' oV =af, v : .
Then oc"’EE Because l(a‘/’) 1(a*) =s(a), l(a”’) and n have opposite odevfmes
Moreover because ¢?=1I, any even n-partition B is an image of i, whenever [(83)
and n have opposite odevities, and the images of distinct o's are distinch.- |

Case 2. 1(a) =ay and n have opposite odevities and r(a) <w(a).

Let I'(a) be the Ferrars graph of a. Since r(a) <w(a), the number of dots on
the last column of I'(a) is less than or equal to the number of dots on the last row

of I'(@). We delete the last column of I'(x) and add a new smallest row of r(a)
dots. Then we geb a Ferrars graph I'y of s(a) +1 rows. Let o be the n-partition
correspondmg to the conjugabe graph I'y. Then

' s(a*) =a;—1 (@:1>1 since a is odd),
o) =s(a)—1, r(a")<w(a?’).

Hence s(a?*), l(a¥) and n have the same odevity, a i3 an even partition, and
rla)<w(a¥).

From the definition of o¥, we know thab every even partition with multiplicity
less than or equal to its weight is an image of , if its greatest part has the same
odevity as n, except n=m? and ay= (m, m, +-», m). butb this oy belongs to H,.

R A

m times

Case 3. 1(a) and n have opposite odevities,r(a) >w(a), and the multiplicity r,
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of @, is odd.
In this case, s>r,, otherwise, a1 =a,, a= (a1, a1, -+, ai), n=ayr, n and @y have
h'———V'—d R

7 times

the same odevity, contradicting to ‘rhe hypothesis.

In the Ferrars graph I"(a) of &, the number of do’os on the last row is less than
the number of dots on the lash column. The numbers of the dots of the lagt r, rows
are all equal t0 w(a), but the number of dots on the (s—rs) th row is greater than
w(a). ‘

We delete the last 75 TOWS from I'(a), and add the conjugate graph of these o
rows to the rlght of the last column Thus we get a Ferrars graph Fg, let oa"’ be

the n—partition of I '

From the definition of a*, we have .

s(a*) =ast+r,  1(a¥) =s(a) ~r,
| w(a?) =w(a), ra* ) =aur. o L
Hence s(a"') and n have the same odevity, and a¥ is an even partition. The greatest -
part [(a*) of ¥ hag the same odevity as n, r(a*) >w(a*). Moreover, l(a?) is distinct
from w(a*). The multiph‘ci‘by of w(a") i 7, an odd number,

We also see that all even n-par’mtlons satlsfyng these oondmons are 1mages of
and distinet o's give distinct images. ‘

Henoe, if 8 i an even partition with multlphol‘oy greater than weight, and the
multiplicity of its last part is odd, then S is not an 1mage of v,lv only when its greatest -
part is equal to the 1ast part. In this case, ‘

m, m, <+, m),
B=( L )
here s is an odd number, and s>m. Smce B is even, m must be odd. The partﬁnons
of such form belong to H,. '
Case 4. ~ a3 and n have opposite odevities, r(a)>w(a), but the multiplicity of a,
iseven, L . S

Afber deleting the last r, rows from I" (a), we geb a new graph I'y. We consider -
the (n— aﬂsas)—partl’mon Y1 eorrestpondmg Y0- I'y. Because s(y4) ~s(a1) —rs and 7, i8
even, vy is -aldo an odd 'partition. Moreover, 1(71) =ay and n—rsa, have opposite
odevities, :

If 7, is also in the Oage 4, we delete an éven number of rows agam and consider
the partition corresponding to the subgraph and so on, '

Because we delete an even-: number of ‘columns for each istep, and « is an odd
parbition, we can divide T(a) into two subgraphs. The upper subgraph Iy is
conresponding fo a partition 72 in the Case 2 or 3, while in the lower subgraph I,
the numbers of rows with the same length are all even. And the number of dots on
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‘the first row of I'g is less than the numbers of dots on the lagh row and last column
of I's. Wt LTTE A et ,.!/;-7.‘ S A SR Do
Using the same. method as thaft in case 2 or 3, we get an even partltlon vy from

Y2 Let 73 be the partltlon w1th Ferrars graph (I'a)’ Then 73 g an even par’ﬁl’olon

and . . S D AR A
W(72>>3(73)

Vv Henee we ge’s an even n—par’sltlon (fyz, 73) Set o = (72, 73)

The greatest part of ¥ is equal %o 3(72), thus its odevﬂ:y is_the same "ag n.
r(a@) ¢(72)>l(73) >u (a"’ ) And thé mulhplmlty of ’ohe last part of aa‘/' lS even
Aoeordlng to the congtruction 6f o¥, We know ‘that dls’nmet as have dlstmet ‘
- images. Tt o

Now we investigate the oondl’slons for whmh an even par’m‘aon Wlth mulhphcfﬁy
greater than weight, with ity grea,test part havmcr $he same odevity as m, and with
the multiplicity of the last parb éven, ' Gannot be taken as an image of . If B is not
an ; 1mage, ‘then; after dele’omg‘ ‘some parts With even multiplicity from B, we ge‘o a
partmen which i§ not an 1mage in the-case 2 or. 3 E[enoe 113 mus’o be (m, mn; < ym);

s i ! rtimes -
T=>m; 1, M and n have the same. odevlty TheSe partltlons all belong 10 Ho.

Ag any odd partition must be one of the four cases, and the partitions in Ky are
justiall partitions which are nob.images of ¢; we-conclude that 4; is-a one-fo-one
correspondenoe from O onto & - - Ho. The theorem is proved k, , »

Because an n—partl’mon is even iff the- number of-itg parts has ’uhe same odevﬂiy
as n. Theorem 1 ig an equlvalent statement of the Sylvester 8 identity.

Theorem 2. The excess of the numbefr of fparmwns with an even number of parts
over that of partijians with an odd number of parts of. the. same number n s equal to
(~1g(w). e

. There are corollaries of Theorem 1 P

Cerollary 1. In S, (n> 2), the mebefr of even congugaie classes s always gfreatefr
than that of odd conjugate classes.. . . .- " :

_Corollary 2.  The number of A—comugate classes of 8, is equal to p(n)—{—d(n)

The number of conjugate classesof A, is equal’ to,——— { p(n) +,,3d(w)}. N

Corollary 3(Sy1vester) p(n)—q (n) is even.
" Proof From Theorem 1 '

| pa(n) —po(n) ( ey Q(n)

Hence, we get from T
e n;p(n)t—-pa(n)ﬂoo(n) Wt
Yhat =~ . . i ceel Ui L00 il e



No. 1

Wang, B. F. SYMMETRIC AND ALTERNATING GROUPS . 7~ . 43

4 i e.

[1]
[z2]
£3l

of the manupcrlpt St o --: i

( ) —g(n) = {2170 (n), when n is even,

n

P g e(n), when n ig odd.
P(n)-g'(n) ig even, AR I N I+

The author is much mdeb’oed to professor Duan Xuefu for lus ormoal readmg
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