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_ ON DEGREES OF MINIMAL IMMERSIONS OF
SYMMETRIC SPACES INTO SPHERES

Zou YIMING (&FFH)*

Abstract
This papei' considers the degrees of minimal immersions of symmetric spaces info
spheres. A practical way to count the degree of a given regular minimal immersion of a
compact irreducible symmetric space into sphere S} is given. As an application, degrees of

regular minimal immersions of all rank one compact symmetric spaces into spheres are
counted. -

§ 1. | Introduction

In this paper, we consider the degrees of minimal immersions of syminetrio
spaces into spheres.
By a theorem in [8], every compact homogeneous space can be isometrically
- minimally immersed into some sphere 8" for n large enugh. 'I‘ak;s\,hans&ub'EGJ showed
that any compact irreducible homogeneous space can be isometrcally minimally
immersed into some S* by using its spaces of eigenfunctions satisfying the equation
‘ ' dp=—\p , 1.1
for some constant A. The set of those constants which insure (1.1) has nontrivial
solution ig called the spectrum of the Laplace operator 4 on M, denoted by Spec
(M). In 1971, do Carmo and Wallach™ considered the case when M is also a
standard sphere. In 1972, Wallach™ considered the case when M. is symmetric.
From [1] and [7], one can see that the higher fundamental forms play an important
role in the study of the minimal immersions of compact homogeneous spaces into
'sp‘heres. One natural problem about the higher fundamental forms is how to find
the degree of a given minimal immersion of a compact irreducible homogeneous
space into a standard sphers 8" The case M =8" was considered in [1]. Also, in [5]
the degree was counted for M=0P". '
In this paper, we firt classify the class 1 representations for the symmetric pair
(@, K) in Sectiion 2. Then we givé two theorems in Section 8. Theorem 3.1 points
oub that for a regular minimal immersion of an irreducible compact homogeneous
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Space into some spheres the degree of the immersion equals to the degree of the
corresponding standard minindal- imiersion (Bection - 3). Theorem 3.2 reduces the
‘problem 1o simple cases for all irreducible co:mpa,oﬂ symmetric spaces of the inner
type. By using these two theorems, we give a practical way to count the degrees of
reguiar minimal immersions of compact symmetric spaces of the inner type into
spheres, and figure out the degrees of regular minimal immersions‘ of rank one
compact symmetric spaces in Section 4. - :

The author wishes to thank Professor Yan Zhida for hlS proposal and his help
durmg the preparatlon of this paper. ’

§2. Class 1 Representations of Symmetric Pair (G, K)

In this section, we deal with some special represantétions of Lie groups, which
:give the most important minimal immersions of the compact irreducible hon:iogeneous
-spaces, and give the classification result of these representations for those Lie ‘group
‘pairs (G, K )which correspond to symmetrioc spaces.

Let G/K M Ve a homogeneous gpace, where @ is a Lie group, K -is a closad
:subgroup of Q.

Definition 2.1. Let (o, V) be @ finite d/bmenswnwl irreducible representation of
@, where V" is either :rewl vector space or a complew vector space. If there is @ nonzero
wvector v €V such that p(k)v=2 for all k€ K, then (p, V') is said to be a real (or
complex) class 1 representation of (@, K). Or egwwwlentlry, we call V' a real (complew)
-class 1 (G, K)-module.

If V is a real (complex) class 1 (G,K) ~module and G is eompa,c’ﬁ then by a well

known theorem of H. Weyl, one can define a G—invariant inner product (or
‘Hermitian form) on ¥ so that ¥ becomes an orthogonal (or Hermitian) space.

Now, we assume (G, K) i a compact symmetric pair, i.e. /K is a oompac’ﬁ
:aymmetrm space. Leb g be the Lie algebra of G, I be the Lie algebra of K, g=¥+p a

-fixed Oartan decomposfﬁlon of g.Select a maxnnal Abelian subspace fp of p and extend -

it to a Cartan subalgebra b= b+, of g as usual. Introduce oompatlble orderings
-into the dual 5paces of b, and bf"i—\/——lbv Denote 5+ (zesp. 4%) the correspondmg
.get of positive roots of the pair(g, b,) (resp. (g% b)). Let w={ay, -, @} €4 be a
.simiple roots system of(g®, b°). Let A, be defined by

2, 05p /e, =3y, 1<, j<nic o
"’_’then A, 1<<6<<n, are the fundamental dominant weights of g°. If A=23nh, n are
.iidnnegative integers, then A is a dominant weight of g°. The following theorem

.gives a necessary and sufficient condition for 4. to ensure the irreducible complex .

G-moudle ¥ determined by 4 is a class 1 module (cf. [8]).

g
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" Theorem 2.1(Cartan-Helgason), -Let A bé a dominant weight. Let (@, K) be &
symmetric pair. Then A determines a complem class 1 (G K ) —module 3 ﬁ’ ‘
(1) Al3,=0, and .
(11) LA, Ay /<N, Ay is @ nonnegative mtegefr for all AE 2T, . ,
" We wwant to express Cartan-Helgason theorem in a more practical way by meang
of Satake diagram. For thig purpose, we need three lemmas. BT T
Keep the above notations. Let go=Ff++/—1 9. Let o be the- oonJugatmn of g%
with respect-to do, . be the conjugation of ¢° with respect to g. Put f=vo. Let 4
denote the set of roots of(a®, b°). For a€ 4, let the linear functions a%,a” and o be:
defined bv
i) =aG ), o () <o B, o () a0, HEf. -
Denoi;e Ao—{anA |5, =0}.Then for a€ 4"~ 4y, &€ 4t — Ao, a"=—a, —a®Cd4¥—4,,
For & A+-—A+ﬂAo, B“—«B, [:"’ B, Bf— - ,8 We have the follovvmg two lemmas
Lemma 2.1 IfaE4, then a® ¥a'¢21
Lemma 22. Ifacd— Ao, then the réstriction & of a to L’) swmsﬁes e, a> m(ar
ay, wheie m = 1, 2or 4. And 2 € “(restncted roots), iff m= 4 e, oa°><0
Let wo =0 1 4o. In the Dynkln dlaglam of m, we mark the elements of mo with
black dots. If @, a,Em; ‘e, and their restrictions &, a; 0 f)13 equal then we join a.
and oy ‘with . Sueh a dlagram is called a Satake dlagram In the followmg lemma’
we assume m:o#qﬁ ' b B ‘
Lemma 2.3. Zet anm; avo  Then .
- 1) if there is no BEw— o s0 that B=a othexr than a, then o =a foo* <oa, avo> 0,
o0 and <, oc"><0 an‘ <oc m:0>-LO moreover <a oa"><0 iff & ws oné of the cases as:
marked in the foZlowmg dq,agfmms / ‘ :
CIL « - = ..

et [ P a -

11) @f therre f:,s oa-,-‘:ﬁEm; To. such that ,8 a, then oc"aéoc fwthermome ol = ;9 cmdf
<oa os> 0 _ﬁor <a aso> 0, a ° and (aa a><0 for(oc m,>aeo . o “
Pr oof For convenience, let avo—-{wz+1, ey a,,,}, w— avo--{ai, e, a}. We firsts
prove, for aiEm: m:o, there 1s ayEm: o 0 Jﬁha,t ‘ o cE

o —a,'+ 2 mey oo 1)y
where n} are integers. Let- : ' A .
' ._;1} n,a, - S . - (2.2

Since af € 4* — 4, a8 it was pomted out above, there must be i E {1 ., I} such that.
n, >0, Now Lo, : oy : S ’
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LN
=(af)7= 2 2 ninion,— Z 04

=1 k=1

n

-3 (2w f)ak‘ 3 e

ThueE nini —1 2 ninf=0 for k+#4. Since every summand in these two equahtleq is

=0 and for 1<, there is 1<<s<l s0 tha’u n{>0 by the definition of nj. we see
-that if there is nf+0, there must be nf (1<s<l) such that nini=0. This implies
s=4. Now nt>0, so ni=1, n{’=1 and n} =0(1<j<I, yaéfz/) So (2.1) is proved.

"~ Now, we agsume there is no B E m—mo 0 that B=a other then «. Than by (2 1)

7

and al=a;, we get ay=a. Furthermore if <a;, wop=0, then oy+ > njoy is not a
J=1+1

root unless all n{=0. Thus by (2.1), of =au. If {ay, w0y #0, let m, be the mammum
-element among all those subsets @’ of & which satisfy &' w—mo= {a:}, then. Ty —
{&;} #q& Let B be the hlghest one among all roots

B =a;+ 2 Gkak’
T O

~then ‘
. B=a+ X oo € 4% — 4o,

T NTo

-and there is at leag} one ¢,%0. Thus

BU=“3“"2 oo €AY — 4o (23)

TN Ty .
and af #0;. By Lemma 2.1, af—a; is not a root of g%, soa;, af><<0. By (2.3)one sees

what > ey is a summand in the eXpression of af expressed by elements in o, and
o N Wy

“the coefficient of o; is 1. Thus af= 2. Under the condition of i), B is the highest root
.generated by m, except for OII and FII. By checking the Satake diagrams, one sees
that <af, &p=<B, a>=0. In the cases CII and FII, {af, &><0 holds only for the
‘roots that are marked on the diagraﬁis Thus i) is proved.
‘We now prove ii). Let as B Emw—my 80 that a=R. If {a, me>=0, then by a’= a
we see o =q 0T a’ = 3. If o° =a, then a=a€ %, and B°=BE3, contrad_lctmg oy
“Thus a° = 8. By checking Satake diagrams, we get <a°, a>=0. If <a, aro>7-0, then
2a €3, By Lemma 2.2, {a%, a)<0. Thus ii)is proved. -
‘ - Q. E D.
 From Lemma 2.3, we know thab if a € x —mo, then <a, a”>>0 iff a=a? ‘_
Suppose A=2n, is dominant and satisfys the conditions i) and ii) m‘Theorem
2.1, Let o Em: — oy A=a;. If of —oa,, then A=¢;. Thus ‘ ' -

© L4, /<0, Ay=L4, a¢>/<wu ) —~—~n< o _ 2.9

Jf o+ o, then by Lemma 2.2
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FA, GG [ L e, 0, o, a5 =0;
4,00/M =17 ]
R ! ""‘<A OC,'+06?>~/—4—<“,;, i>; <ai1 ?><O’
{(-/1 ap /<, o +<4, afy/<af, a7y -
2<A ai> / <0‘i) i> +2<A; “g>/ <a:;r) Cﬁ?},

{§n+1 Ny, <oq,os> O

nt+n£’ <an ai><0
where i ig defined by (2 1. Furthermore if <o, a’><<0, then 27&62*, and by
Lemma 2.2

<4, 2> /<2A, 27&) =<4, as>/Lan, ad+{d, af>/<af, Oﬂf>=—(n;+mr) - (2.6)

Now combine (2. 4) , (2.8), (2.6) and Lemma 2.3, we get

" Theorem 2.2. Let A=3 n;A; be a domimant weight of g°, where A; are Sundamental:
dommant weights with respect to = {ay, -+, an}. Then, A determines a class 1 (¢, K )-
module ((&, K) is a symmetric pair) iff | \

i) for &€ mwo, n;=0; foxr o o — wg, <4, a,) 4, oy, i. e. ny=mny,0 is deﬁned by
(2.1); and : ‘

1) if a; € w— om0 and there is no other a; € m— o such that a,=a;, then n=0 (mod
2) zf L&, mwop =0 and n; is arbitrary if o, wop+0; if there is a;+ay; such that a,—a;,
then ny+n;=0 (mod 2).

- Remark. The above result was also obtained by sugiura.

- By using Theorem 2.2 and Satake -diagrams, one can write down all class 1
dominant weights for any symmetric pair (G, K ) eagily, '
| Evample. Let M=8T (p+9¢)/SU,*xUy) »>g. The corresponding Satake-
'&iagran‘l is B o |

I

2.5y

2 " q

e 600

3
_ aanai
‘ Then a dommant weight A=2n, isclass 1 1ff n;=ny f01 1<a,<g, and n; =0
‘otherwwe Thus every class 1 dominant weight is given by nonnegatlve 1ntt=.sger~
linear combination of the following dominant weights - -
Ay =N+ Ay, 1<iy.
We Would like to- call a dominant weights set that gives all class 1- weights for
(@, K) by nonnegative integer linear combination and whose elements are linear

~ independent a bagic class 1 dominant weights set of the pair(@, K).

§ 3. Higher FUHdamental Forms and Degrees

In this section, following [4], we define the higher fundamental forms and the:
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osculationg spaces of an immersion of 4 Riemannian manifold into a constant
- curvature Riemannian manifold, and give two theorems on the degree of a minimal
isometric immersion of an irreducible compact homogeneous space into sphere.

Let M be a Riemennian manifold with consfant curvature K, M be a Rie-
mannian manifold. Let #: M—>M be an isometric immersion. Since # is locally an
‘imbedding, for convenience, we may identify M with its image in M. Then for -
PEM, T,(M)CT, (). | |

Let p& M and let By, 1,(M) xT,(M)— N, (M) ={vET,(M): <fv, T (M)>,, 0}
(., > isthe Riemannian metric on M)be the second fundamantal form of z. We
seb O2(M)equal 1o the linear gpan of the image of By,. We say that pE M is degree
2 regular if O2(M) is of maximal dimension. Let Ry M be the space of all degree 2
regular elements of M. Then R, is open in M. Let pE€ R,. Let N, be the normal
projection in N, (M) relative to N,(M) =0;D03* i.e. Ny: v—>v"€O0f. Define Bs,
(@1, @2 w3) = (Vao,,Ba(ma, w3)) " for a4, wg, 2 €T, (M) arbi’srai'ily extended 1o vector
fields on M, where ¥ is the Riemannian connection on M. Let O% be the linear span
of the image of Bs,. pE€ R, is said to be degree 3 regular if dim O} is maximal. We
define B, O for =2, 8,---by recursion as above on the space B, of all degree 4—1
regular points of M. Clearly the above process mush eventually stop since dim
Ty (M) +05+0}+ -+ 0y)<dim T, (M). Let m be the first integer>1 such that B,
#0 but Bp,1=0. Then we call m the degree of #.Since R, i3 open in Mi, R,#*¢.
Let, for each nonnegative integer &, 8% (T,(M)) be the k—fold symmetric power of
T,(I). The universal property of S¥(T',(M)) says bhat for p € By 1, By induces a
linear map of S*(T,(M))—0%. Let Oy 8*(T,(M))—>T,(M) for p€ R, be defined by

Q= Bep-+Byy + o+ By, where S*(T,(M))= i}l §*(T,(M)). Then @, is call the
. =

higher fundamental form of # at p, B,, is called the i~th fundamental form of » ab
P (call », the first fundamental form of &). The integer m i3 also called the degree
of Qp L. _ . A
Now we assume that M = G/ K igan 1sotlop10 compach oonneoted homogeneous
space, where G is a compact connected Lie group, K its closed connected subgroup.
~ Let ¥ be a nontrivial real clags 1 (&, K)-module with K—fixed unit vector v.
Then by Prop. 8.1 in[4], the map @1 M—>S; (the unib sphere of V) defined by
2(gK)=g-v i a minimal isometric immersion'of a multiple of the G-invariant
metric of M. We call minimal immersions of M into spheres defined by real class
1(@, K)-modules standard minimal immersions..-
Lot o2 M—>83c.H*1 be a full isometric minimal immer’sicin,that is, (M) isnot
contained in any great sphere of 8. Then accordihg o Theorem 9.1 in[4], there
is a olass 1 (&, K Y-module V =E#*! and the correépbnding gtandard minimal
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Immersion o,: M—>87, a linear isometrio injection A: Hoti—s Em+l such thal Aez=
Bog, for a linear map B: E#+l Foti, : e | 5
Thus, every isometric minimal immersion of M can be obtained from a standard
minimal immersion by a linear transformation. By virtue of Section 12 in the same
paper, if ,: M—>SPC B+ ig a standard minimal immersion, then there is a compach
convéx body .L,c82(H**'). such that L; parametrizes smoothly the set of all
ineqﬁivalen’o (up to orthogonal transformation) minimal isometric immersions »:

M—8Y (we allow L,={0}). We sketch out this results as follows:

- First, we identify the space of all symmetric mappings of E»*! with §? (Em*l)
Let u, ve E7*, denote their Symme’orlc product by uv, then wuw 6;8’2 (gmtty, If
1€ E7*, we set

(@)=L (G <o, b, |
where { , - ) is the inner product on E**!, Under this identification, the inner
product on :S’2 (E“*i) is glven by : ‘
- (4, B) =tr AB.
We identify 7,(87*) with {v€E™% (v, p>=0}. Let, for each pEM,
82(2,(T,(M))) be the symmetric square of o, (T,(M)) in S§2(E**1), Let W be the
-subSpaoe of §2 (E““) s;panned by U 82 (o, (T (M ))) Let W1 be the or’ohogonal

«complement of W in ;8’2 (B»H) | L,={0€ Wi, 0 4TI >0}

Now we can glve the parametnza’mon If O€ L,, then the correspond,mg minimal

isometric immersion is given by y,, (C+I) 3 oy Under this oorrespondenoe the
~interior points of L, correspond to minimal immersions. \/ C +1I @, witha/C >0,
which are full immersions of M into 7. We call them regular mlmmal immersions.

Fora boundary pomt some elgenvalues of / O+I are zero and ‘the immersgion is

" full into some 8" for some h< P;. - We have

‘Theorem 8.1. Lot G/K =M be an irreducible compact homogeneous space. For
any interior point ¢ of Ly, the degree of the minimal immersion Yo= m w, defined
* -above is equal to the degree of standard minimal immersion . SR
In order %o prove this theorem, we need a ‘lemma, .
‘Lemma 8.2." Let w: M—>8% be & full isometric mzmmal immersion. Let- T be amn
orthogonal. iransformation of 8. Then » and Ty 'w hawvé the same degree.

" .Progf Let m bé the degree of @, R,, be the degreé m regular points seb of M,
" PERp. Lot y=Tow. Lebt' @1(Q?) beé the fundamental form of »(9). Let pi=2(p),
pa=y(p). We identify T,(M) with: T (M) or Ty, (M). Then - A UTES
' T b w8 (T, (Mﬁ\))rr-Rm—Pm‘ (Fp(MEYY 0%+ s +0Q%% - oo (3. 1)

QL5+ (T, (M))) = Boutey (Tp(M)) +05, + -+ 05 .o 0 (8.2)
- We. prove 81=S8a. For thls purpose, we-need:only o prove the @——th fundamental form
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B? of y is the image of the ¢-th fundamental form B} of » under T
Since 4, (T, (M)) Tog, (T,(M)), the statement id true for i=1. Supposung the
statement is true for 1<i<k—1, we prove Bi=T oB1 Lot Xy, 05 Xup €Ty, (M)
and be arbitrarily extended to vector fields Xy, -+, X on a nelghborhood U of p, ik
M. Then there are vector fields ¥y, -+, ¥y, on 771 T. suoh that T(Y ) =X, Thus
B’%m;i(xi, . Xk) (Vaap:Bﬁ (Xz; Xk))N’H - B
| .= (V<TY1>p=B7c 1(TY2; veey TV ) )
L= (v(TYx)ﬂz(T “B}_s (Yz; - Yk)»N““
= (IVypBi 1T, - Yk))N’z‘"“T(VY;prk 1 (Y 2,°"" Yk)N"" ,
=T. B}cm(Y:b hR) AYk)~ . :
The thlrd step and 5—th step hold since T' is orthogonal a,nd T-04, Oj,s.for i<kh—1.
Thus Bf=ToB} by induction. This implies sy=sa. .. s Q. E.D.
. Proof of Theorem 3. 1 We use the same- notatlons as above. Note thab since 2
is a standard mmlmal 1mmer310n the. fundamental form is. deﬁned_ entlrely on M,
Denote the degree of Ty, by oy Pub p,+1=N. Then by §. 12 m 4], S 1
B = Rp,+.'z',,, (M) +0%, 4+ +0%, ey 3)
where pE M, pi=a1(p). Lev By, -+-, By be an mthonormal basis of BY sueh thatb
' By€ Ry, B, -+, B €T (M), Bisa, v, B€Oy, -y
| By, oy B €05 - (G, =N R ,
Let @, = (@1, +++, o) under this basis. Smce\/O_—T i8 positive deﬁmte for an interior

point O'EL; ~/0+I‘_$T<“ )T’, for Some A;>0, 1<@<N, and ali oﬁhogonal

SN

A
transformatmn T of B, By Lemma 8.2, we may agsume \/O'+I ( ., ) In
. C Ay :

thls case, fo= \/O+I @, = (?\.1501, . A,NmN) .
" Now: We use the method uSed 1n [4] Let o-(t) be an arbltrary geodesm through
p in M Then R ‘

;ik, (500 (0) € By + Ty (U) +--+0% e

by the deﬁnltlon of the hlgher fundamen’aa.l forms. In’ order ’ohaﬂJ 7
(a; 0') (0) #0 and belongs to O’;fl + +09,,

L2

dt»"
it is neeeSSary that @>fl,,, and g>k+1 Smce g/, kmi, 7\. >0(1<'b<N ) is a eons’oant

N {
,‘»f'~\>v' _‘ . . \‘(; v-“r '| B 2

we have o

e @0 L )@ =0,

It follows immediately from the deﬁmtlon of the hlgher fundamental forms that -
Gm (By, +Tp, (M) + 0%+ -+ 05 )= (B + Ty, (M) + 05+ 4 05)
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for 1<'z,\a, Now by (3.3) :
Ry, + T, (M) +02, 4. +0“x—EN '

Thus the degree of y, at p is the same as @,. Bub p is arbltrary in M 80 Theorem
3.1 follows. . - Q,E D

According to Theorem 3.1, in order to ﬁnd the degree of the fundamental form
of the minimal immersion ~/O+1 , for an interior point of L,, we need only to
find the degree of the corresponding standard minimal immersion #,. We note that
if ¢ is a boundary point of L, Theorem 3.1 does not hold, for if ¢ is a bounda,ry
point, ~/O+1I , is a full isometric minimal immersion of M into 8¢ for some g <p,.
In fact, Hsiang’s® gave some examples of minimal imbeddings of §*~* into §". Since
codimension =1 in these cases, the degrees of these imbeddings are<<8. But bthese
imbedding correspond o the boundary points of certam L,L for which. the degree of
the standard minimal immersion z, ig>>3. : . '

Now let M=G/K be an irreducible compact symmetric space. Denote the Lie
algebras of G and K byg and ¥ respectively. Let g be a Cartan subalgebra of §). Let
o1, +++, gy be a simple roots system of the pair (g, g). Let A, i=1, <=, r be defined by

2(N;, @) —5. '

(@, ;)
Then A;(1<¢<r) are fundamental don:unant Welgh’as of b. Let p be the orthogonal_ '
complement of f in g. Then T,z (M) can be identified with p. .
If there existy a Cartan algebra g of h in ¥, then we call M sy_:@hetrio space of

w14, I<r.

inner type. In the remains of this setion, we always assume M ig of inner fympe.
Such. being the case, by [9], from Throrem 2.2 every complex class 1 (G, K)-
module V' ig the complexification of some real class 1 (&, K )-module V,. If 4 ig
the highest weight of 7, then we also call 4 a highest weight of V.

Theorem 8.2. Let M=G/K be an inmer type irreducible compact symmetric

space. Let {dy, - , A} be a basic class 1 dominant weighits set of (@, K). Then

1) Hwvery AiE{AI, -+, As} corresponds to one and only one real class 1@, K Y-
module V' up fo ésomorphism. Thus we may assume the degree of the standard minimal
smmersion defined by Vi is m,.

i) If A=3FA; is @ class 1 dominant weight of (&, K), then A corresponds to
one and only one réal class 1 (@, K)-module V, the degme of the standard minimal
immersion given by V is 3 km,. '

Proof Since M ig of inner type 1f V(4;) and V(Az) are two real class 1 (G
K)-modules, then the irreducible component of the tensor product V (4)®V (4,)
with highest Welght ./11+/13 are real class 1 (G‘ K)-module. We denote it by Vo
Let i ; .

| T1; «M—WSIP‘CVL
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, @9, M->SPCV,
be the corresponding standard minimal immersions defined by real class 1 (G, K )=
~ modules V' and ¥V, respectively. Assume the degree of 4 is my, the degree of w, is
;. Let : | '
@, M r—éS{CVo
be the standard minimal immersion defined by the real olass 1 (@G, K)—module Vo
' deﬁned as above We show the degree of # is my+ma.

Since M is homogeneous and all minimal immersions involved in the discussion
are standard, we may consider the j-th fundamental form B; of any minimal
immersion y as defined in the j—th symmetric power S/(p)of p, and interpret it in
terms of derivations by elements of p. For mstance in the case of By at v=u2(eK),
we get ‘

Y(Xv) - (T;’? (ef}’.xv))t=o, X, Y ey,

Then . ' : ' o
B,(Yv, X0)=By(X, V) = (¥ (X0))™ ‘

The other cases are treated similarly and the sﬂ;uahon at an arbitrary point is

obtamed by equivariance.

Let 'v,—a;,(eK) ('1,—1 2), v= w(eK) Then by the begmmng of this section, we
have

'Vl=V2+V%+--~+V1’”*,‘ ' (8.5)
- Va=Vi+Vi+ - +VP, A (3.6)
Vo=V+V14-+TV1, (8.7)

where Vi=Ruw, i=1, 2; Vi=0i, V°=Ruvy;, V=0". We have to show g =1my-+ms.

First we show since (G, K) is of inner type, for an arbitrary complex class 1
(@, K)-module V (A), if vEV (4) is a K-fixed nonzero veotor, then o is a weight
vector, i.e. " there exigts a weight subspace V', of ¥ (4) such that vEYV,. Denote the
welghts set of V' (4) by II (A) Then

v= 3 o, V”EV
BEI(A) . '

Sinoce there exists a Cartan subalgetra gof g in f, and for any X ¥, X-v=0, we
have L .

A | V= n§> 'v" (3.8)
where IIo(A) —II(A)is a weights subset such that ‘for any H Ef and wEIl(A),
w(H)=0. If u€lly(4), then for any oa;Ear {al, e+s, o} (simple roots system of (g,
b)), we bave : | . -
'<7- 0@)—0 ‘ ‘ - (3.9)
where {A, o>=2(A, &)/(o, «). Since A= A -2 ko;, where k; are nonnegabwe_
mtegers by (3.9)we have : :
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4, a>—3k; <a,, =0, 1<i<s. - (3.10)
Relation (3.10)is a linear equatiohs: system satisfied by k ‘Since the ceefficient
matrix of this system:is the Cartan matrix, there exists-one and only one solution.
Thus 11, (A) consists of only one element Denote this element by A. Then by (3 8)
q;e Ve ‘ S
“Next we show fvo—-cfvi Va. Lot %—Z’Io, v Mo ", where IUMGV{" fv‘”EV are We1ght
Veetms of V1 and V4 respeetlvely Smee ' L

i 1 . . -' ﬁc+2 g‘z,

if o EAk is a snnple 0%, o, € Ga,, then @, fvo—O Thus for any fv’“-'v”"‘ in ’ohe
expressmn of w,, (?w, a;) <,u,k,oat> =0. Smoe the mmple roots Set of A,, has cardmahty
either r or r—1(r= Carm), it is not hard to Prove ve=0vy9v.

Since ‘ L
Xy Ry €V Ty | (3.11)
Xy Xy €V 3+ -+ T (3.12)
for Xy, -+, X,€p by (3.5) and (3.6), we have for Xy, oy XyE€D,
| X, Xk@oe% Srrn (3.18)
Thus g =my + ma,. ' _ S ;
NOW the theorem follows by induction. Q. E. D,

§ 4. Degrees of the Standard M1n1mal Immersions of
Rank One Compact Symmetrlc Spaces into Spheres

' In 'bhlS Seetlon, by usung the results in Section 8 we ﬁgure out the degrees of
all standard minimal 1mmersmns of rank one eompaot symme’ﬁrle spaces.

For M =8", the degree of a standard minimal 1mmer81on was 1ndleated m[‘?].
For M =OP", the degree was counted in [5] For the sake of" eompleteness we also
list the results of these two cases here. =

- Let' M =8%: The Satake diagram i§ =

8 — n=gy,

N g a : - .
L ] n=2r+1

Thus, by Theorem 2.2, every olass. 1 dominant weight has the form %. A, where Ay

is the fundamental dominant weight with respect t0 oy. Let a3, be the standard

minimal immersion defined by the real oI‘ass 1 (G K )-module Vk (V,c has hlghest

weight k). S R S i ; L BESS S myn
For M =CP", the diagram is

N
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. a¢ -

~~~~~

with hlghest welght k(?&i-k?nr) Every complex class 1 (G K )—module has the highest
weight of the form F(u+ADand is the complexification of a real elass 1(G,K)-
module. We denote the standard minimal lmmersmn defined by real class 1 (@, K)-
module V' (V¢ has highest weight k(?\;i‘l‘?\.y)) by mk B

For M=8P(n+1)/8E(n) xSP(1), the Qiagramis

@ 3 A e

1.2

In 'bh_lS oa,se a,ll cless 1 dommant We1ghts are gwen by % %s. We algo denote the
standard minimal immersion- correspondmg 0 & g bY @r. o -
For M=FII, the diagram is

1 ; é

All class 1 dominant Welghts are given by 70 ?»4 Denote the correSpondmg standard
‘minimal immersion by @j. ' T
Theorem 4.1 For S", the degree of @, is k. For CP", SP (n+1)/SP(n) %8P (1)
and FII, the degree of y is 2.
Remark The results were ob’ﬁamed by Mashlmo ‘
| Pfroof Since in all these four eases real clags 1 (&, K) —module V3 can be
obtained from V3 by taking the irreducible component with highest: weight of V.
Thus, from Theorem 3.2, one sees that noly the degree of 4 must be coun’ﬁed ‘
~ For S" let 4. ;S"‘->;S”’CV1 Asa K —module G—modulel'fi-Rfv@Vl, Ro is a 1-
‘dimengional K ~module, Vl_..T,,a(;S’ ). Thus' =, i8 of degree 1 by the deﬁm’slon of
the higher fundamental form. So the degree of wyis k.. : :
. Let. M=0OP"= SU (n+ 1)/ ST xTMm)). Then 4, is the L1e algebra of
ST (n+1), the Lie subalgebra of S(U (1) xU (n)is R®An-1. Denote the fun-
damental dominant weights of 4, by Ay o , Mg and the fundamental domlnant
weights of R@A,, 1 by Ay, 7\,' Let Vk—Vo(k (7\,1—{—7\.,.)) Let
. 0P8V o(M+Mn) . : .
As a K-module, Vo(hi+MA) = ' R’U@V @V%, where Rwv is a 1-dimensional K —-module,
VieeT o (M). V% is an irreducible K _module such that (VE)°=V*(A+MN,—1). Thus,
by the definition of higher fundamental form, the degree of o5 ig 2. So the degree of
@y is 2k. -
Let M=08P (n+ 1)/SP(n)x SP(1). The Lie algebra of G= SP(n+ 1) is Ops1, the
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'Lie subalgebra of K =8P (n) xSP(1) is Ci@C,. Let Qg =T~ T1, Ol = D3 — g, *++, @p =,
be a simple roots system of C, 4. Let af =2u, and a =a, 1<i<<n, be a simple roots
system of C4@C,. Then, any dominant weight of C,,, can be uniquely expressed by
- A=komo+Ebsws+ -+ +Fop,, v h '
where ko=k1=>+>},>0 are Vinte'gers. Any dominant weight A’ of Ci®0, can be
uniquely expressed by , - ‘
' A’=h§mo+h1m1+-o-+hn¢,,,
where 7g=>0, hy>+->h,>0 are integers. Now let
o o1; M—>BICVo(ha) =V o (mo+21).
As a K-moduls, G-module Vo (wo+my) =V*(@o+21) V(23 +,) DRv. Since ag an.
irreducible K-module, 7,za (@o+@1), @4 i of degree 2. Thus @y, 18 of degree 2.
Let @=F,, K=80(9), M=G/K. Denote the Lie algebra of G by fs and the. .

- Lie SUbalngran of K by .B4. Let Oy = g — %3, a2=zv3—w4,as3=w4; a4=—;l(w1—mg;w3—m4)-

be a simple roots system of Jo Lot oy = — a1 — w5, oh=wy— a5, Ay =3— 1y, dh=1, be a

simple roots system of B,. Denote the fundamental weights of f; by A, 1<i<<4 (and.

A, for B,). Leb | . : ‘
x | s MBS (). C

As a K-module, Vo(h) =Vo (M) @V o(M) ® R0, Tor (M) =V o(A,). Thus, the degree:

of my is 2, the degree of =z, is 2. o o : Q.E.D,

References

-.[1] do Carmo, M. and Wallach, N. » Minimal immersions of spheres into spheres, dnn. Math. ; 98(1971),.
43—62. : v . ‘

[2] Helgason, 8., Differential Geometry, Lis Groups, and Symmetric Spaces, Acad. Press, New York,.
1978. ' - .o

[8] Hsiamg, W., Y., On the compact, homogenleous minimal nanifolds, Pro¢. Nat. Acad.Sei. U. 8. 4., 56.
(1966) ,-5—86. _ .

[4] Ld, Peter, Minimal immersions of compact irreducible ‘homogeneous Riemannian manifolds, J. Diff,.
Geom., 16(1981), 105—115, :

[5] Mashimo, K., Degree of the standard minimal immersions of complex projective spaces into spheres, .
T'sukuba J. Math., 4(1980), 138—145. - ) - . ' )

[6] Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soe. J. apan, 18(1966) , 380—385..

[7]  Wallach, N., Minimal immersions of ‘symmetric spaces into sphéres, Symmetric Spaces, Short Courses-

) at Washington Univ., Dekker Now York, 1972, 1—40. . -

[8] Warner, G., Harmonic Analysis on Semisimplé Lie Groups I, IT, Springer, Berlin, 1972.

[9] Yan, Z. D. and Zhang, D. G., A method of classification of -real irreducible representations of realk
ssmi-simple Lie algebras, Sci, Sinica, 25 (1982), 14—24. :



