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'THE CONTRACTIONS ON SPACE I

Yan.SHA0ZONG  (fFRF)*

Abstract
" The theory of the contractions on Hilbert spacé is now well known. Halmos™ and
Sz-Nagy!®! discussed their u—dilation. Afterwards, Foias and Sz-Nagy established the

theory of the harmonic analysis of the operator on Hilbert spacet®l. The aim of the pre-—
sent paper is to discuss the constractions on K}"ein space II. '

§0. Introduetlon :

Throughout thls paper (-, , ) denotes the mdeﬁmte mner producﬁ of Krem
space II. The decomposition I = H @H + is ca]led regularm if |

(D H+_]_H i. e. for any : . |
2. €H., <w+, 2.) -,
and . .

2 H,., H_ beoome I—Iﬂbert spaces When the i inner product is taken as (o, -). v
—(+, *) respectively. ' A

The subspace L of II ig called non—posﬂuve posfalve non-negative or negative,
if the set { (=, o) |2 € L, w#O} is non-positive, positive, non—nega’ﬁlve or negatlve 4
respectively,

The following facts are used hereafter. A

() For every regular decomposfﬁlon I=H_ @H we can m’sroduce a new
inner product on IT as follows. |

(o T2y, y-+y+]H_‘“ - (-’”—; Y- )-l—(m_,_, Ye), 0, ¥ € Hy,y ,

o |z Vdenotes the norm. P, denote the

projections from Hllbert s];)ace (H [ , ] H_) on subspaces H respeo’ﬁwely Define
J= P_,_ P, then for any », y €II, we have ’ .
(o, Y1z = (T2, 8), @, 9) = |72, yla.
When there is no possibility of confusion, symbols ( , *lm,
simplified to [-, ],

, Py will e

, Pt, respectively.

g S o e e e e 8 e S 8 e

(2 Al topologles of II 1nduced by the iranous regular decomposfﬁlons of H are
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equivalent to each other.
(8) Any unitary operator U on Krein space is bounded™. -

§1. Subspace LA1

In this section, we discuss the construction }of‘a clags of subspaces of II.
Definition 1.1. Suppese I=H_®H, isa reyulwr decomposition, and A is @
densely defined limear operator from Hilbert space H_ into Hilbert space H,. Then,
the subspace Ly={{w, Az} |s€d(4)} of Il is oaued the subspcwe fmduced by A, where
{w, ‘Aa} is the vector v+ Az in II.
‘Lemma‘l.2. The Sfollowing equivalent q’elatwons are tfrue
a) L, is a non—positive subspace, off A is a contraction in the usual sense of
Hilbert space. ,
b) L. is a closed subspace, off A 5 a dlosed operator.
) c) LA fz,s @ mavimal non—pos@twe, tff A is a condraction with d(A) H
d) LA is @ closed fmamma;l negatfwe subspace, @ﬁ 4 is a stmct contmomon (¢. e.
| 42| < || for any O%wéd(A)) with D(A)=H_. ‘
e) Ly is @ degenerate su63pace (6. 6. Ly ﬂéjaé{()}, where
Li={y|(y,2)=0, €Ly, y€II}),
iff L€o, (A*A} , where o, (B) denotes the poimt spectrum of B.
' f) L, is a closed subspace and I = . L.®LL, rz)ﬁ' A is a closed oparator and ‘
: 1€p(44") Np(4"4), |
whefre p(B) denotes the resolvmt set of B. '
T g) Lyis a mamimal negative subspace and II =L,@LL, iff D(4)= —H. cmd ]]Ah
a<<l, where o is a constant. :
h) Lisa maw/bfmal non—positive (or closed mammal negamfve subspaoe), fz;ﬁ there
ewists a Vinear opemtor A from H_ into H, ‘such that 9 (4)=H_, L= LA and
|  l4el<lel  (or[4s]<]a], 220).
- Proof The proofs of a)-—d) are trivial, and W111 be omitted.
. e) Let G4 be the graph ofA it ig clear Ls= G‘A and Li= {{A*z, z}| 2E Q(A*)},
' Where A ig the ad]Olnt opera’uor of 4 in the asual SenSe of Hilbert space. Therefore,
Liisa degenerate SubSpaoe, 1ff there are’ two nonzero veeto:rs mE@ (4) and
£€ P(4) such that o S
o p= A%z, Ap= 2. o (1 1)
Obvmusly, the equahon system a.1) ig: eqmvalenb to hat © there is a nonzero
vechor y such that §=A*4y (i. 6. LE0,(4*4)). " o ' '
f) If L, is a closed subspace and II =L,@LZ, by b),.then we only must prove
1€ p(A*A) Np(44%) . Since I=L,@®L}, go.that for any wvechor {w_, 0}, there exist
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sCD (A) and 2E€ 2(4") such that : ST
L o=+ A%, 0=As+tz. . (1.2)

Thus it can be seen, for every »_ € H_, the equation (I — A"A)w=w_ is solvable in

9(A). By the theory of spectral decomposition of self-adjoint operator, 1€ p(A4*A4).

Replacing {z_, 0} with {0, ©,}, similarly, we will obtain 1€ p(44%) too.

| The proof of the converse proposition is also eagy.

g) By d) and £); the proposition'g) is trivial .

h) Obviously, every vector # in II may be expanded ﬁniquely T=0_-+o,
relative t0 the regular decomposition H=H_@H,. According to that the subspace
L ig linear and non-positive (or negative) it is easy to prove that there exists
unique linear operator A from H.'into H, such that L=L,, and by the maxi-
mality @7@ H_. The proof of remainder of h) is obvious.

 We immediately give a simple proof of the followmg corollary, Whmh has been '
obtained by other author™,

Corollary 1.3. Suppose that Lisa closed mawimal negative subspace. Then II =
LOL* is a regular decomposition iff L becomes a Hilbert space relative to the émner
product (e, »).. S

~ Proof The necessity is obvious, so we have only fo prove sufficiency.

By h) in Lemma 1.2, there is a strict contraction A with 2 (4) = H_ such that

L=1L,. According to f) in Lemma 1.2, we only need to prove 1€ p(A4*4).

Obviously, if 1€ o (4*4), then Johere exists a Vector s€H._, Such that | f,, H—-)oo
{n—c0), where

. .o [ 1
—(I—4"4)7 o, 4, ~[o, 1- ;)
and A*4 = I?» dE’A is the 8pectra1 decomposwlon

Since {{ o, AFJICE, and = ({fofur ACfumfudby Lumfubs ALfi=fn})
e (T LD (Famfu)y oD == (Fa=Fo)ia,0),

80 {{fa, 4f:}} i8 a Cauchy sequence in Hilbert space L, henceforth, there exmts

{f:Af}EL (f€H_) such that . ,
- Hm-((I =44 (fo= 1)y fn —f)=0. | | (1-3)
On the other hand, when n>m, By, fa=fn And from (3.8), we have H,, f=
(I—A"4A)~2 By p=fn (m=1, 2, ---). Obviously, this contradicts that lim. | fp,]=

o0, 80 1€ p(A*4). Therefore, we have [[Aﬂ = A*H <a<l., Thus 1{7 can be seen that
AI=L@®L" is a regular decomposition.

Lemma 1.4. Lot T be a bounded linear operator on a Hilbers spaoa H.
a) If B* and BE-(E'*, H'") are positive and negative spectral subspaces of (I—

Ty (I—TT*)) respectively, then for any. o€ B'* (s € B*), T*0€ B* (Tw € B*=).

b) For any Borel measurable function F(t), &f f(3) is bounded in a certain
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newghboq"hood of point t=1, then . S :
o T f(I=TT)=f(I~ T*T)T* ©(1.4)
The proof of Lemma 1 4 hag o essential chﬁioulty, and will be omitbed.

| § 2. Re'gular Contracftion "

In this section, we discuss the construction of the contraction and regular
contraction on II. ‘ ‘ '

- Definitign 2. 1 A lfzm,eaa" opemtor T on I is called a contmcmon, of for any
wsed(T), . , . .
| ..(Tm, Tm><(m,w).‘ L (2.1):
We know that a contraction on Hilbert space mush be bounded, bub a
contraction on Krein gpace can be unbounded evén‘ if it¥ domain of definition is-
whole space (example of this kind is easy given). Thus, in general, the econtraction.
is not ‘a" “gobd”_ -opérator. Henoce, we introduee the following more special
contraction, : S - o '
Definition 2. 2 Suppose that T is a densely defined contraction, . if there. ewists
_ @ regular decomposition I =H_@H,, such that H_.CD(T) and I=TH @ TH_)*
is @ regular decomposition, where TH_ is'the closwre of T-H., then T is called a-
regular contraction. : S o
In Definition 2.2, we may: replaoe TH Wl‘bh TH ‘In fact, because H.C2(T)-
and (T, To) < (=, @), subspace TH_ must be negative and closed, i. e. TH_=TH_.
Later, we will prove that the regularity of a contraction is independent of the:
selection of regular decomposition I = H @H £ (See Theroem 2. 7). Now we prove
that the regular contraction is bounded. '
Theorem 2.3. If T .is regular, thm-- T s bounded -on D(T), T has unique
- ewtension on the whole space II, and this ewtension is also @ regular contraction
Proof Let [+, «]1, and|-|; be the inner” product and norm induced by the:
regular decomposition II =TH _ (—D(TH )+ res pectively. Set Tg_=Prg_ T PH-,
Ti=P ’.I'H-TP f: ar,ld T2 =Prg_ TPg..
.obv1ously, we have o prove that Tz_, T3 and Ts.are all bounded operators from:
Hilbert space (II, [+, +] into Hilbert space (II, [, <]1) m'thyr.ee steps. T
. a) Since |Tg_o|:=|z| (w€EH.), Tu_ is bijective. But Tz is' a bounded.
operator, and d(Tz') =TH_. By the conversie- operator theorem, Tg_ must be a.
. bounded operator. a ) N
- b) If T, isunbounded,” then ’ohere exists a sequence- {y,,} CH,- suoh that Il A
—->O (n=><0) and |Tagafs=1 (n=1, 2, --»). We may assume that lim 1|TH_T1V Yol = o
#0 (otherwise, chodse a subsequence of {y,}). Pulting ‘
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o= =T gk (n=1,2, ),
obviously
| lim (2, ) = U (T T, TH%Tiyo + (y,., yﬂ)z o (2.2)
And yet . . ’
lim (Tz,., Tz,.) =lim (Tay,, Tgy,,)>0 (2.3)
by the agsumption of contraotlblhty, the inequality (2.8) is in contrad_le’slon with
+he equality (2.2). Henceforth, the operator Ty must be bounded.
¢) If Ty is unbounded, then there exisbs 2 normed séqﬁeﬁce {¥.}cH,, and
JTayals>00 (n>00). Similarly, define z,= —T7Tsgn+ys(n=1, 2, ---), and from
the boundness of Ty, TE and Tl, we Jmmedlately get the {(z,,, %,) } is a bounded
:equence, ‘
On the other hand, we have v :
(s 20) = (T2, T2n) = (szn; Tﬂ%) = | Toya|i—>00. (2. 4)
*Obvmusly, the boundness of {(2,; 2.)} is in oontradlctlon with (2 4), henoe T,
“must be a bounded operator t00. : B
‘The proof of remainder of 'I‘heofem 2.41is obvioﬁs
Without loss of generality, we may assume ’ﬁha,t the domain of a regular
'contraotlon is the Whole space IT hereafter. o : :
Suppose that I=H_@H, and I = H',L(-BH’; are the regular decomposition of
M. If Ty, Tyand Ty are three bounded lincar operators, /T H_ —H' T1 H,—>
H';, and 7T, HQ,—%H' then the lmear operator T on ZI is bounded ~which is
.gencrated by the equatlons
To=Tx. =, wEH_; :
A { Ty=Tiy+Tw, yEH,.
In thls case, the operator T is denoted by {Tm, Ti, Ta}. We conS1der the polar
-decomposition Ty =V R, Where R= (T 5 Tz)Y2 and V is a partlally isometric
soperator. ' oo
Theroem 2. 4 The opemtor T {TH_, Ty, Ta} (~¢elatrzfue to the regular
-decomposition I =H_@H, and I =H ®H1) is a contraction, iff :
a) R*’>1I;
b) for any y€H,, : I
(B2 —1)=* V“T1y1| | (Z+TiPT:—TiT2) " ?y[,
rwhere P is the projection from Hilbert spaca HY onto subspace H @J (V)
Pr oof " We first prove the necessity. ' ‘
If T is a contraction on IT, then a) is tﬁvial We prove b) as follows.
ObVloust, the contractlblhty of T 1s eqmvalen‘u to that for any w,E€H,,
w_CH_ EEE AR
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- [(TH Ta. _I) w_, 2 ] —[Tgo_, Tww,] — [Tyw,, Tg o]’
- [T, zv+] [I-T3Ty) s, 4], : (2.5
~where [-, -]’ denotes the inner product induced by H=HL @H 1o ‘
We firgt prove VI H, 2D ((R*—I)~%2) by the reduction o absurdity."
k " . R= "RHKdE,L l' ”
denotes the speciral deoomposﬂuon of R. If there is a certain a;.,_EH such thaﬁz
VT, € D( (B*—1I)~*/*), then there exists a _posmve number ¢(w,)such that

’ I" | =) -1ﬂdEzy1"2\Mo+ [TiT 104, 4] . (2'-6)' '

1+s(c ).
Where v1= (B — B1sey V T1w+ and .Mo-— [(I 7)oy, w+] On the other hand,
by (2.5), we have ‘ o |
o sp Loy o) <Moo -o@uy
- I(es, 0 == [(B=Do_, 01— [Ro, V'Tu,] ~ [V*Taay, 2.1~ [TiTass, .].
Particularly, we choose o_ -—R(R2 )™ ysin I(dy,3.), then from (2.6)
I(zy, —R(B*— I) _1.%) = |R®- I) oy |2~ [TiT2,, 93+] > Mo, (2 8y
the inequlity (2.8) is contrary to (2.7), and hence V*TIH +{CD(B-D)Y 5“)
Now we prove the 1nequahty in b) Smoe V*T;LH .,,C @( (R*—1T ) =/ 2), S0 tha’ﬁ for
any miEHi, we have : B
' I (w+, o) =—]| (RE I)i/ B, +R(R“‘ I) ’1/2V*T1w+|j + [I (39 I) 1/2V*T1m >
[T:PTus,, 5,]< (I-T3T) s, 2], A Xo)!
but the set (R*—I)Y2H_ ig dense in the closed subspace R(Rz T ) = 2V*Tiﬂ . of
H_, thus it can be seen, the proposmon b) 'i8 true.’

On the oontrary , if &) and'B) hold; 'then we 1mmed1ately obtain the mequahty'
(2.9), thus, (2.5) is true 100, and hence T'= {TH , T, Tg} is-a contraction.
The following:corollaries are obvmus , : ;
Corollary 2.5. T={Txu, Ti, Ts Y is a regular contraction (relatme ‘0. the
regular decomposition I =H_GHH.), iff; Tl e A
a) R2>1, and V is ¢ unitary .opefraiaa", R S TR TR
b) Ty és a contraction, and for any y &€ H,,
[ (B2 =DV Ty | <| (T - T:To) Yyl - :
Corollary 2.6. - Supposs T'={Tx, Ty, T:} is a regular eontraotmn (relatlve».
to the regular decomposition II—=H_@H,), then K = (R2—I)~Y VT (E—=T5T,). "
is a eontrao’ﬁion on Hilbert space (I —T5T,).H, into. Hilberf space. Wtoo. ‘
The proofs of these corollaries are.straightforward, and will be omitbed.

. Theorem 2.7. Suppose that T ={Txn, T1, Ts} is a ‘regular contraction Mlaf»&d
to the regulafr decomposition fI=H_ @H +. Then for any regular decomposq,mon
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H H.@H,, O=TH.®TH
is also a regular decomposition (4. ¢. T is also a regular contraction related to IT = H@
). |

Proof Obviously, we only need to prove THY ig a maximal nega’mve subspace-
and T=THL@®(THL)L.

By the "definition of regular contraction, II=TH_ @(T H.) is a regular
deoomposwlo]q. On the basis of g) and h) in Lemma 1.2, there existy unique
operator A from H_ into H, such that 9(4) =H_ |4|<a<1and L,=H_. Thus

TH =T({{w_, 2.} |o_. € H_ }={{Tno_+T1Aw_, Todw_}:|o_€ H_},
where {+, +}; i9 the graph representation related to II =T H -©TH_)"L.

Now we prove that TH' ig a maximal negative and I=TH' ®(TH_)* under
the regular decomposition H TH-@UH-)*, by g) and h) in Lemma 1 2, thisis

to prove : :

a) operator B= (Ty.+T14) is one~to—one map from H_ onto TH

b) |T2AB*|<B<1, wher B is a certain constant. By the contraotlbih‘ty of T,
113 is clear that B is the one-fo—one map from H_ into TH And by the Corollaries

2.6—2.6 we have [Ty |>1, Tg H_ =TH_and

|TFTA| = | R W A| = Il]?'1 (RE—I)¥*(R*—I)~ VT, 4|
=R (R*—D)Y2K (I— TT)2A|<| 4| <<l
Thus it can be.seen that B=T57 [I+T'7 1T1A] is the one—to—one map from H_ onto
TH_,i.e. a) is true.- C S
* The graph represantamon of TH. ( =TL A) related to I =TH _ @(TH )l
Lrap-1={{y, 248"~ 1}1, yeTH_}. o

By the contractlblhty of T, for any - € H_,

' | Be- [i= T 4o [*>e-|*— | 42|,
i.e. for any yETH_,

lolE— 7By 3 [ B2y [P [AB o= | (T— £ VB, (2.10)
From | 4] <a<1 and the fact (2), there exists a positive number » such thatb
| (I—-4"4)"*By|=rlyls - (2.11)

No loss in generality,we may assume r< 1. Thus it can be seen that for any y€TH_,
1 T2AB y 1< @ —22)*2]y]1.
'I‘herefore b) is true, and = (1—r?)¥/2
Obviously, a bounded contraction may be not regular.
Example Let I=H_@®H,, H,=1"=H_. Suppose that {¢;} (i=—1, =2, -+)
{e;} (4=0, 1, 2, «++) are the thorogonormal bases of H_ and H, respectively, and 7"
is the left shift on I (i.e. Te;=e;.3, $=0, +1, £+2, ---). Evidently, T’ is a boundod
contractien, but TH_ is not a maximal nega’ﬂve subspaoe, and bence T can’t be a
‘regular contraction. -
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§3. U- Dllatlon of Reg ular Contractlon

Definition 3.1. }S’uppose that T is a coma"actwn, and. Hy, Hgarethe Hilbert
space. If there ewists a unitary operator (which is unitary with a*eszvect to the imdefinite
inner product) U ffrom TI®H; onto I®H 4 such that

| T=PT|s, -
where P‘(fb—l 2) are the prrogectfbons Sfrom O@H* onto II -respectively, then (U, H,,
< H) is called the u~dilation of T in the Halmos's sense. I f Hiy=H, cmd (U H,, Hi)
statisfies the followtmg equamons ”
=PU*|ps, n=0, 1, 2, ‘
then (U H 1, Hy) és called the u—dwla,tfbon of T im the Nagy $ sense.

In this section, we shall find out all u—dilations of a regular contraction in the
Halmog’s or Nagy’s sense, o o :

Lemma 3.2. (1) If T.is a contraction (or regular contraciion), then for any
unitary U on II, the operator UT is also a contraction (or regular contraction).

@) IfT={Tg, Ty, To} isa regula'r oontmatwn, then there ewists & unitary U
on 1T such that

a) UTH_=H_; : -

b) If (U, Hi, H,) isa u—dmlcztfbon of T in the Halmos’s sense, then (U’ U H 1,
H,) is also a u~dilation of UT in the Halmos's sense, where U’ =U®Is,; .

) If (U, Hi, H,) is a u-dilation of UT in the Halmos's sense, then (U'~*U, Hy, .
H,) is also @ u~dilation of T i the Halmos's sense, A

The proof of Lemma 3.2 is straightforward, and W111 be omitted.

Now first give the general form of w-dilation of .2 regular contraction T' wwh
" TH_=H_ as follows. fo
| “Theorem 3.83. IfT={Tg, Ti, Tg} is a regqular contmotrz,on, and TH H-,
Then the general_form of u-dilation (U, Hy, Hs) of T in the Halmos's sense is. . -

] 'E_ . Tj_ ‘; o Y
U= 0 Ty (I=T.T5)**U: |,
U.;,(R2 n¥2 x . Z

X =UR*—I)"V2RV*T1+Vs5(I— K*K)i/z(I TsT2)*2,
Y=—TT5(I-T.T5) U+ V(R -I)V*(I-KK >V1, o

- — [U4_RK'+V5(I—K*K)1/2]T§U +U4_R(I KK*)”Q VsK*V1+W :

and Hy and Ha must be ewpanded

e ck ..

Hi=RU) @AV )@ (ﬂ’ (Uz) @Jf (Vl) ) L
Hy=ZU) @AV 5)D(RU)DZV )",
where V', R and K are the same as in Theoaﬂem 2.4 and Corollary 2.6, Ué, Vs, UJ cmd



No.1 - Yan, 8. Z. THE CONTRACTIONS ON SPACE «I 83

Vi are all unitary operators: = . N RO . o :

Ue ZE-D)—>AT.); - : Vsi AT =K K)VAI-TT3)" >RV 5);

Us: Z(T-T:T3)~>%Us,); Vi ZT-KE)(R—-17PSAV);
and W is a unitary operator from H@Zbert space (£ (U,) DR (V1))l onto Hilbert space:
(ZUH)OZWVs))*. :

In particular, when Hyi=R(Us) DAV and’ H, =Z{Uy) @ 3 (Va) (4. e. W
vanithy, (U, Hi, Hs) is the minimal u~dilation of T in the Halmos’s sense.

- Proof The operator U is represented by the 3 x 3 matrix

. TH_ T1 ’ A.j_ '
‘U= 0 T, 4y 5
Ay As A

where Ayt Hi—>H_; Ay Hi>H,;, Ay Hi>Hy A H. S>Hj and 45 ) +—>Hﬂ.,
Evidently, U is a umtary operator from T@H: onto I @H 2 iff 4;(5=1, 2, -+, 5)
are all bounded, and Satlsfy the followmg equatlons ‘

TuTa— AjAy=In, - @) —TyTE +T1T1+A1A1—-—-IH_, @)
—T1T1+T§T2+A§A5—IH, (2 T T3+ A A5=1T14,, 2
— A5 Ay A3 Ay A3 45— -In, " ()  —AAi¥ A Ai+ A A =T, 'y
~TuTa+ 4340, (@) TT+Ad5=0, @)
— T As+ A345=0, (B)  —Tg Ai4+TiAi+ A4, 45=0, (5
~TiAi+Tids+ A345=0,  (6)  Tadi+Azd5=0. ) -

In order to find all sloutiong of the equatlons (1)—(6) and (1")—(6"), we shall
divide into several steps and when there is no posﬂnhty of confusion, the below
mdexes of all idential operator (for example Iy, I, ., Lm, L, etc) are omitted.

a) Solving (1). Tz =V R is the polar decomposition, R? =1, and Visa umtary'
operator on H_, From the equation (1), we have ‘ A ,

A=T.(RP-I)*A, - (3.1}
where Uy is a unitary operaﬁﬁor from J(R“‘ I onto %(U_;,) CHa.

b) Solvmg (4). By (3.1), the equation (4) is reduoed to

—RV*Ty+ (R*—I)¥3T%45=0.
 Using Theorem 2.4, we obtain
—R(R*-1I) 1/27*T1+U4A5—
Therefore, the general form of A4j; is
Ay= A3+ 43, (A AN (U, A4 A TN, ' :
| MA=U.RR D) PTy. (8.2
Since K= (R*—1I)~**V*T}y is bounded,, 4} is also bounded and :
Al* =K; 1RU4

1) #(4) denotes the null subspace of 4,
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c) Solvmg (2). Since .@(A ) LA(4), we have Ajds=AS"AS+ A} A3, But
T MT=TWVTi—Ki (R” K =AVA-KIK,
" and hence (2 is reduced 6 |
‘ AT A= (I-T3Ts) — KiK.
Thus, for any s € H,,

’ [ A= (I - K*E)*(I— Tsz)l/%“g '
i.e. there is a unitary operator Vs from 92((1’ —K*K ) Y 2(I TETg)l/ %) onto .%’(A“)
such that

A3=V5 (I—— K*K) 1/2(I—T§T2) 2. A(V's) CL/V(UZ) . (8.8)
d) Solving (2'). Similar to Steb a), As;=U,(I-T,T5)*2, where U, is an
isometric operator from Z(I —T-1) into Hy. ‘
e) Solving (4). Ifs€c A(43) (.e. I—-TT3)o=0), then (I— T2T2) Tsx=0.
* .And by Theorem 2.4, we obtain
[(R2—1I) ‘1/2V*T1T§w|[ =0, o€ A47(4)
and hence T'{T32=0. Thus if can be seen, that the equation 7,75+ A1 45=0 may be
divided by 43, %0 we have » »
Ai—A + AL, Ai=—T.T5(I-T:T5) U= -T.T34:7™),

@(Al) K (A5) =% Us) CHi, D(4y) = 9? Tt CH1 o (3.4)
By Lemma 1 3 and Corollary 2. 5 we obtain A :
Aj=—T1(I-T5Ty) 2T*U2 =—VK,5U;, (3.4

where K»=V"*T'1(I—T3T,)™*/* i3 a bounded operator
f) Solving (17). Since 2(4?) | D(4L), we have A1A1-A1A1*+A°A°* Since
N A =TTy N VTy), ZVT) CE(B~I)V*2)
and V*T'y (T —TETs) “2ig a bounded operator from Z(I —T4l) ;11951100 R(R*—I)~?),
it is easy to ’prove. that (I—T3T,) */2TiV is also a bounded operator from.
Z({(B2—I)77?) into Z(I—T5T%), and hence. - . | 4 '
T Ti=VV*TT5VV*=V K ,K5V*—~VEK.T5T KV
- Note that the domain of A} is included in # (Us) and » '
D(Us) =AT-T:T%) DA(T:KY),

S0 C
L4Y =V ETUU K VKT A
Thus, the equatlon (1") is reduced o '
‘ VKK V"-—!—A"A‘”r (R2 I)V*
According to Theorem 2.4, above equatmn is solvable and

ATV | @-n=0, AO*VI(R*—I)F‘Vi(I KK*)1/2(32 n+, . o

 RAY=RT D CHUD", "' (8.5)
where V', is an isometrio operator from 7 (1 KK NA(R*—I)Y? inte Z(Ua)*.
g) Solving (5). By the step a), (5) is reduced.to. - SR B
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— RV A1+ (R*— I)WU A=
and using (3.4") and (3.5), we obtain
—R(—K,TU;+(R*—-I)Y2(I— I{K*)““Vl) +(R2—DVU4,=0
obviously, this equation may be dividedby (R®—1I)¥2, so
As=A3+ A5, As=UR(R*— 1) VV* 4 (=UR(I-KK"*Vi—-URKT:Us), .
A(A) A" (UL, Z(AD) A TD*. (3.6) -
h) Solving (6"). We apply the expressions of 4, 45and A3 to the equatlon
(6"), it is reduced to : '
T.(A3"+KiRULD) + (I-T.T5)Y2Us (A" + 41V (R*—I)"¥/2RU;) =0
and aeoofding o the conclusion of step ¢), Lemma 1.4, (8.6) and
(T2 A3") CR(I—-TaT3)",
- above equation is reduced to
Ta(I— K*K)”"V +U34% =0.
Therefore, we have
A3—A30+A30; bo=—Vs(I—-K"K)T3Us,

P4 CRUs), F( M) =RT)*. ECRY
i) Solvmg (8"). Applying the expressions of A}, A%, A and A3 to (8), we got
T1 AL+ A3 A3 =0,
it iy equivalent to the following equation - :
(ASTi+ A4V =0. (3.8)

We substitute the expressions of A% and 4% in (8.8), thus A
Vs(I-K"K)Y*(I-T:To)*TV + A(~U:TK3+V1(I - KEK)Y(R—I)*?) -
- =0 N CR)
Owing to 2(4%) =Z(Uy)*L, and ,%(Vi)cj(A;f)l Z(Us)*, (8.9) is reduced to
Vs(I K*K)m(I 75T ,) 1/Q‘TIV—I—Vs(I K*K)YPTT. K5 -
A, 1(1 KK*>1/2<RQ 1)1/2

i. e.
Vs (I—-K*K)llﬂK*—l—A,goVi(I—'-K'K*) (R -1)¥2=0, © (3.10)
- Since (I—K'K)Y¥?K*=K*(I-KK")%?, the equation (3.10) ig solvable, and
‘ Ao —Adoo‘l'Asoo, Asoo==VsK*V1, Z(Ab00) =Z V1),
D(Aor) =AW 1)* N A(Ts)* S (3.1
) Solvmg (8"). Applying the expressions of 43, 4%, A4 and .As o the equation
(8", (8') is reduced to the following two equations
—Us(RP—DU+UL(R2—I) VT TyTiTy (R —I)~120;
+U(—R*—I) V7 Ay AiTy (R -1 ) YL+ AAT '
+ A4 =TI 5wy, S : (8.12)
CAAY A AIAT + ASAY + ASAY =T ey (3.13)
Actually, on the basis of the equation (1'), (3.12) is equivalent to . '
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| AQAY £ AQAY =0, (3.14)
and using (8.8), we easily venfy that (3.14) is satisfied. . Omng o the equality
(3.14), the equa‘mon (8.18) is reduced to - IR T

 ASASA ALAY =T agon o (8. 15):
Note that P (4ly), D(Ake) and D(Alo) are subspaoe orthogonal to each other,.
. 80 the equation (3.15) is eagily reduced to . R E
oy VsV*‘i‘AaooAsoo*I PYATS ‘
Thus it can be Seen/ Af5o must be an isometrio operator from JV (UQ@/V’ (Va)
into Z(AD)TOZV4). o e e .
k) Solving (6). Smce ‘ ST e e ,
. V*dy=—V*T (I —TiT)~ 1/217;’172—1—(1-32 )1/2(I~KK*)1/2V§,
we have Z(V*4;) CO((R*~I)~+?), and o | ;
Ti Ay =TV V* 4 =T3V (R~ 1) ~**(R*—I) (R*— I) “1/2V*A1
= KiRUU.(R—I)"Y?RV*4;— K (R*—1I) T Ay
| = A ALK (R D ‘1/2V*A o . (3.16)
On the other hand - = - o |
ToAs+ AF A3 =T As+ AS (= Vs(I-K *K ) 2T2U 2= VsK*Vit A%). (8.17)
By (8.16), (8.17) and the orthogonality of domains of the operators the equatlou
(6) is reduced to the following three equations. o 3
‘ A" A300=0, ) ' (8.18)

Tida— ASVo(I— K'E)V*T U5~ KK TiU5=0, ~ (3.19)
— APV K Vi+ Kf(I-KEKHVEi=0. . -7 (8.20)

Accordmg o D(Vs)=H#T—-KK)VA(I-T5T,), it is easy to . verify that the.

. equations (3. 19)* and (3. 20)* are automatlcally satisfied,” and hence we only need:
. to solve (3.18).

From (3.18), we have B

TS LAT ). | (3.21)

L) Solving (3). We subs’m’oute the expressions of 4y, A, and A,7in the equation

(8), and restrict (3) in Z(Us) and #(Us)* respectively, thus the equation. (3) is

divided into two equations. Then,. for every equation, we contihuously obsgerve the-

" ranges of thQSe operators in the "equation;. :ei“ﬁher which belong Z(43) or Z(43)1L,

thus, the equation (3) i¢ divided further into four equations., Bub a pair among

them is conjugate, hence the equa“blon 3 essentlally is divided into the following:
three equations S ’ A

Iges— AV (R — I)“l/2 (R2 I) "V Ay — Ay Ag— Ay AL =0, (3.22) .

—AYV (R —I)"V2(R2—I) 2 * Ay~ (Algo+ Alge) * Aho=0, (3.28)

Igazs— AV (R2 I ) N (32 I ) LAY A — (Aboo+Afeo) * (Aboo+ Adoo) ‘

=0. ST S | (3.24)
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It is easily checked that (8.22) and (8.23) automatically hold, thus, we only
need 10 solve the equatlon (8.24). Owing to
Loy =AYV (R2—I)"¥2(R2—=I)™Y 2V*A° qooAgoo——O
the equation (8.24) is reduced to

I acasyronmy — Ayt AB00 ~ Ao Ao ~ ASeoA%00=0, - (8.25}
bu‘b Agoo = — V5K+V1 B Agod 300 = 0 and Agoo Oo'=0 (See (3 21)) B and hence . .
Tupearo= AsooAsoo:' - (3.26)

And since A%, is an isometric operator (see step " 7)), Al must be a unitary
operator from Z(45)1OZ(V 1) onto Z(A)*OZVs).

Thus, the all conclusions of Theroem 3.3 have been proved.

For the general regular contraction, we have the following theorem.

Theroem 3.4. Suppose that T={Tx, T1, Ta} isa regular contraction. Let U
be arbitrary unitary operator with UTH_=H_. Then the general form of the
udilation (U, Hy, Hs) of T im the Halmos's sense is (U'"Uy, Hy, H,), where (Us,
H,, H,) is the u~dilation of UT in the Halmos's sense, and U=U®Ix. -

Now we discuss the u~dilation of a regular contraction in the Nagy’s sense. For
convenience, we rewrite the form of U as follows _

U= (;; i:) ‘(W:here 31=(jg> By= (A4 As))

Theroem 3.5. Suppose that T=4{Tx_, T4, Ts} is a regular contraction. Let T e

arbitrary unitary operator with OTH_=H_. Then the general form of the u~dilation

of T in the Nagy's sense s : , ,
= i _ 3.27)
U (Bg As) S ( )
where A . B
Ay
B1= ﬁ‘.i B > Bz= (A4 AS):
) . 2 !

and the forms of A; (6=1, 2, -, B) are the same as in Theorem 3.4, which are given
Jfor the regular contraction UT. And H;(=Hz) must be expanded

Ho=[ Z0W*(@0) 0% 7)) | O OAFI® mwa ®AT ]
@ S oW AU (V) |, |

and W is ewactly a unitary operator on H.
In pwrt@cular, when H = {0}, (U Hi, H,) is the mfzzmmal u—dfalamon of T in the
Nagy's sense. : o :
P'roof Obmously, the. equahty \
v . P1U2 / P
is equivalent to
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. g _ BiB,=0. . (3 28)
Sinee 9(4;) = 9(44.2) D(43)=Hi, 9(A,)=H_ :).%(A.i) D(4;5) = —H D%’(Ag) Hy
DA(Ai)(6=38, 4, 5) and U is a unitary operator on II, it can be seen, the equation
V (3.28) is equivaleht to : ~
Ayl = A Ay = Ay As=A;45=0.

Thus 9'2 (Vi) , Z(V's), #(U,) and % (Us) must be orthogonal to each other, i.6.

Hi=(ZU)@ZV5)) ©(ZU) V1)) DHs.
S1m11arly, prowded that (8. 28) holds, the equality

: T =PJe/Pt

is equVaIen’a 0 - . S
: . BiWBy=0. . o (3 29)
Obviously, (8.29) is eqmvalent to 4, W A,;=0, 4=1,2, _7 =4, 5, i. e. the mapping W'
must be of the following form

Hy=(ZU) D% (Vi))@)(gi’ (U @9? (V~))@H 5,

Hi=(Z% (U4) @ZTs)) @W (ZUHDOZTV5))D(XU:) DZV:) DHs), .

H, ——) Z(Usg) @%(V:O ®Hs.
By the mduohon, we have AW A;=0, i=1, 2, j=4, 5, n— 2,8, i, thuy

Hi= (AU @2V ))@| 3, OWH AT @AT5) ]@H',

H:= (FUI@AT)O| 3} @ AT <V5>>]
Sledup) SATIOH),

'L aUye% V2 @H ’
If we oonmder the equatbions (A,W”A,)*—O(n =1,2, «, 4=1, 2, j=4, 5), then il is
not difficult to prove the conclusion of Theroem 3.5. N

. §4. Contraction with the U-Dilation

In this section we shall give somé important applications of Theorem 8.4

Theorem 4.1.. IfTis q linear bound’ed operator:ion IL, then T' has a u—ddat@ony
iff T is a regular contraction. 4
Proof .The sufficiency has been’ proved in Theorem 3. 4 we: have to prove the
necessiby. ‘ s ’ .

If (U Hy, Hj) is'a y-dilation of T, then for any wc I,

(Tw, Tw) = (P*Us, P?Us) <(Uw, Uz) = (x, ),

and hence T’ is a contraction on II. We prove the regularityof T as follows.

Because . I®H;=H_®(H,®H;:) is a regular decomposition of II ®Hs,
henoceforth, I®H,=UH_@U (H,®Hy) is also a regular decomposition of '@ Hg;,
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thus, UH _ is a closed maximal negetive subspace of I@H,. By Lemma 1.2, there
exists a contraction 4 from H_ into H,@H,, such that 9(4)=H_, |4|<a<l
"and UH _=L'A, Let P, and P, be the projections from H @®H, onto H, and H,
respectively, obvi'ouslyi, we have A =A,+A4,, where A+=P+A; Ay=P,A. . Since
Z(Av) LR(4s), so ‘ o .
e max([4.], [4])<a<t | (3.50)
From (8.30) and the equality (P?=I—P,) o
TH_=PUH_=PL,={{o_, P*4s_}|o_€H_}
={{z_, A }|o_.€ H_}=1L,,
we 1mmedlately obfain that II= (TH YOTH)' is a regular decomposﬂnon in
other words, T is a regular contraction.
Theorem 4.2. T s a a"egular cow,tmct'wn wﬁ" T s dlso a rregular commomon
Proof Since (T+)t=T, so that we only need %o prove that Tt is also a regular
oontraction provided that 7' is a regular contraction.
» When 7' is a regular contraction, by ’I’heorem 8.4, T has a u—dilation (U, H,
H,), i.e.
. =PU|pm
‘herefore |
PiUT IP’
ie. (U, Hy, H 1) is a y~dilation of T, so that T't is also a regular contraction.
" Corollarx 4.8. 7 is a contraction on II, (k<o) iff Tt 4s also a contraction. -
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