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. MULTI-DIMENSIONAL Q-PROCESSES"®
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Abstract

In this paper, the authors propose a method which . reduces the multl—dlmenhonal
- problem to one—dimensional ones. By keeping the idea in mind, some sufficient conditions
which are much more practical for the uﬁiciueness, recurrency and ergodicity of multi-

" dimensional @—processes are obtained. ‘ : -
The conditions are effeciive not only for the models in non—ethblmm systems, but
also for their couplings and others. ’

| § 1. Introductibn

Some stochastic models for linear Master equations of several variables have -
been introduced in the studies of non-equilibrium systems™ %, In probability
language, the models correspond to some Q-processes which satisfy the forward
Kolmogorov equation. Thus, one would like to know the uniqu.eneés,» the
recurrency, and the ergodicity for the Q-processes. It is known that there are some
general results about the above problems (cf. [4]). But these results are not
effective 50 $hose models studied in [3]. As we know, there is only one paper
which studles dlrectly the properties mentioned above for two-dimensional Q-
proceSSes In this paper, we will propose a method which reduces the wmulti-
dimensional problems to one-dimensional ones. By keeping the idea in mind, we
obtain some sufficient conditions which are much moré practical for the uniqueness,
recurrency and ergodicity of multi-dimensional @Q-processes. These conditions are
effective not only for the models in [3], but also for their couplings and others.

Now, we are going to state the main results in this paper.

Let E be a countable set and (¢(n, {): m, {€H) be a Q—matrix on EXE.
Throughout the paper, we will assume that the Q-matrices are totally stable and
conservative. Let {Hy,CE: Hy#¢, k=>0} be a disjoint countable partion of B, and
put

Manuscript received December 31, 1983.
* Research supported in part by the Foundation of Zhongshan University Adranced Ressarch Centre.
#% Department of Mathematics, Beijing Noxmal University, Beijing, China.



No,1 : . Yan,8.J.& Chen, M. F. MULTI-DIMENSIONAL Q-PROCESSES 9.t »

sup{ 21¢(n,0) mE HEu}, >k,
gus { i ' 1.1

Y] 9@ DB, j<b.

_ \We say that a Q-matrix is. regular if 113 determmes ad; most one @-process.

The following two results are on the unigueness fon @Q—procesges. :

Theorem 1. Suppose that (q(n, C) n, CEE’) sgtwﬁes the following two
conditions: |

[

<, >0, neEk@ZGCJEz, (1.2)

. “Oy=sup{g(n) mE B}<oo; k0. - S @3

‘Then, (g(rn C)) is regular if so 48 (gi;)- SR R
. Theorem 2. - For each k€ Z .={0, 1‘ 2, «:}: 'let By be a non—empty subset of Ek

A:S’uppose that (q(ﬂ 0) satisfies (1.2), (1.3) and the following condztwns "

€y, L€ Bys, ¢(n, >0 € By, .9

- k€ Zy, € By\Bx, ¢(n, ) >0=LEByUByns - -~ (1.B)

Define o R
ol 0 B o

qni= , e D . 1 i 1.6

2 SUP{Z‘“[Q(W, 0+ =, 201 qé) 2. nEBk},J—-k-h.l,, - @®

0, o K §>k+1.
. Then, (g(n, 1)) is regular if o0 is (qxs). = i
It ig clear that Theorem 2 reduces to Theorem 1in 'hhe cdase of B,=E (k€ Z _,_)

Let S be a finite or countable set,  and set X =275, For n={n,: wES} EX we
put

| Inl 2 Xo—{neX lnl<°°} | ,

Olearly, X o=2X if § is finite. We use 6 to denote the element in X, so that |f| =

If B=X, in Theorems 1 and 2, we see that (g(n, {)) is a multl—d;mensmnal
(evén infinite dimensional) @-matrix.. What the above theorems mean is reducing
the uniqueness problem in multi~dimensions to the one in one—dimension by
choosmg an appropriate partition {E}s of H. This idea is Very useful since the Q-
matrix (g) ((¢i)) in (1.1) (@. 6)) is a generahzed ‘birth-death @-maitrix, for
which we have the followmg uniqueness criterion.

Theorem 3,

(i) Supposé that

9765.:0: J>k+1; Qk.k+1>0; }7; J€Z,. 1.7
» 'fThen‘(qw) s 0‘¢gulwr 'l.lﬁ' Coa ;,;‘ IR ‘ .
‘ B=S\m,=co, 1.8)

-
il
[~}

awhere
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._...EF /gisii'l) kEZ+, -
- ) Fe 129‘”17'@, o<i<h, ':(1.9); '

L
Z qm,v_o.<¢<,ﬁlc; ;

(11) Suppose that (1. 7) holds ewcept 401—0 Then (QM) is regular iff :
. “Rl=oo,r (1.10)
'wfwre R’ can be obtained from (1 8) and.- (1 9) when 0 is freplaced by 1 and Z, is
: replaced by Z,\{0}. , . = : . .
The above three theorems will be proved in § 2 Theorem 3 is an extensmn of
[6, § 8, Corollary 1], for which our proof is much more simple.. .- R
- It ig clear that both R and R are computable, so they are Very convement in
the practice. As their applications, - in § 8, we will discuss the uniqueness for the
following models"™: | '
An autocatalytw 1 oduction of a ohemwczl . . P

A X A+X—+2X X+X-—->B
- Its Q-matrix'is 0 o e f
Mwmu, €=n+Qu,

M( 5 )’ L=n—2e,, . R IS R
g, D=4\ 2 /)" " S 1, {EX, L@y
NP ¥, ©) , {=n—ey+ ey, uo, : S
o 0, other {7, o
where § is the set of seats, u, wES, e,. = {8 fvé 8}, :a., and 7n,(w€S) are the
 numbers of A-particles and X-particles, respectlwly, (u, v) is the tranmtlon rate
of an X —par’ﬁlcle from u to v,. We will assume that - O S
Z}p(u, 'v) <0<oo uES e

Schﬁogl model
7» k
A+2X p— 3X X "—“) B
R ’"4
Its @-matrix is

r u B : " . v .
. : o N ‘ : .
Q(’?J g) =3 }\‘ ( 3 )""7\'3"71&; C =17 Cu ’ : (1.12)
a nup(u, 'v))'z="7_@u+3m u%fl),
L0, other {n. = -7
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Lotka-Voterra model:

4+ X 0%, Xy+ X5 2%, B+X, % D+B.
' Tts state space should be X & (Z%)8. For each n€EX, n={nu u€S, =1, 2}, set

. .
In | = 22 s Then Xo={nE€X:|n|<<oo}. ny denobes the numbers of X —particles

in u, and we use p;(w, v) to denote the transition rate of an X -particle from « o v.
Now, the @-matrix for the model can be writiten as follows: -

M@, {=1 6w,
Agbunua, Z“"”I—euzy - - -
q(m, ) =4 Mnuxus, {=1—eu1+€us, 1.18)
‘ Tuis (Uy ), C==97-—em+e,,¢, i=1,2, u#ov,
0, other Z,#n, ' : :
where ew={0udiy: vES, j=1, 2} o
By usselatoa S
AN X, BrX, - X4D
OX, 4+ X, % 83Xy, Xy 0.
Again; the ghate spacé is X = (Z%)%. Its Q-matrix is '
xi“u; {= =nN-+ey; ,
A1, C "7—‘61:1,.
A Kgbu??ui; {= 7)-3“1+0u2, -
g(n, {) =+ Ao (mi
2
Nupi(u, ©), {=n—eu+tew, =1, 2, u#w,
.0, other { 1. o ' -

C(1.14)
)nua,Z =7—eua+eu, :

~ The point of applying our fesul%s to the &Bbve modelsﬁ is simply choosing
C Hy=A{n € Xy In| = |
As another application of Theoerm 1 and Theorem 8, we will discuss the uniqueness:

for coupling Q—proc esses. To state this, notloe that there 1s a 0ne-—to-—0ne mappmg
between Q-matrix (q (n, l)) and ‘the followmg operator '

'Qf(ﬁ) = Z Q(T)J g) (f(l) f("]))) WEXO) ~,> e (1'15)’
where f is a bounded real function on Xo,. So we can alsq tise the term’ “.Q—process’i"‘

msf;ea,d of @-process.
' Theorem 5, Lot § be ﬁmte, X= =7% and

(Qf) ) =2 B, 1) (f@rtew) —f (M) +38 (%, n«) f (n-eu) f @)
+Z’)’(’M, v, 7]0: "717) (f('y)_'eu‘}'ev) f("'])): o B (1.16)1
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“where 8, & and y are non-negative and §(u, 0) =0. Suppose that. B (u, k). and y(y,
@, k, 1) are moreaSmg in Io and Z and define the couplmg operetor Q as follows:

2f(n, D=2 {B(u, m) [f(77+gu; 0+ f(n, 01+, 1) [f (1w ©) —F(n, O]

u*u

B, L) [f(n, {+e) —f(m,)1+0(w, L) [f(n, L ‘e«) —f(n, D1
o+ Z {B(u, 7)) ABW, L) [f (n+es, {+e) ~f(n, D]

UILy=Ny

+8(u, 1) NS (w; La) [f (n—ew, E—e)—F(; O}
+2 (r (%, v, 14, o) -7y, v, z’u;‘ )™ - ’

‘[f(n—eutesO)—f (- D1
+2<7<u: 'D: Cur Cv> '}’(u: 7‘”: 77«; ’7@))

[f(n, Z-6u+6v) —f(n, Z)]
+2 7('“: y Nus 770) /\7’(“) 'U; gu) Zv)

[f(n—euteo, {—es+e) —f(n, Z)],

“where f is a bounded real function’ on XXX, Bet
m—max{z B(u UBE |’q| =k},

s=min{S10(, 1: || =k}k€Zs, -

< =r 1 Sa 1 o (1.18
7] 2[ S e +__—2’“fr e ] ro=0, >0, k=1, )
= - >0, kE€Z
| ] ,,2[211‘,5 Tt 2"*17‘ 7o ] i +e
| ) B=too, o (1.19)
#hen, both Q—proeess and .Q—process are umque Moreover
'-,,% .'P(t;- ("7;~ C): (77', 5)) Z’(t,: 2 7}). S e (120)

Ep(t -0, @, C))——P(t 0, (1.21)

-and for éach v7<§ (1 e. 77.,< Cur uE 8), we have
~where p(t, 7, {) (p(%; (97, D, @, §))) is the .Q—prooess (Q——prooesg)

Of course, the approaoh used to prove ‘Theorem 5 can be generahzed ‘but we
will not do it in this paper. It is easy to check (see § 4) that the Q-matrices defined
da (1.12), .(1.13) and (1.14) satisfy the agsumptions of Theorem 5. Hence, _this
“theorem v’vvbrks”forlfhevaﬁoﬁve models. | | | ‘
‘ The recurrence for Q—proceSSes will be studied in § 5 'I‘he  main result is the
- following ,

Theorem 6. Let E X’ 0 and let (q (77,{)) swmsfy (1 2) tmd (1.8). Let Eo—{6'
By, (k=1) be finite. Suppose that the Q-mairices (q(1, ) and (g,;) defined by (1.1)
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is irreducible and a"egulam Then the (¢ ™, {))-pmcess is a‘ecuwent if so is the (gi)— |
| Prrocess. Momeover, the (q,,) —process 4s freouwent iff
| | ZF£°)=,°94 L
. k=0 c T
where FY is defined in (1.9). .

The positive recurrency and ergodicity for (g (n, C)) —-prooeSSes will be studied:
in § 6. The main results are the following

Theorem 7. Let (qi,-j be an arbitrary trreducible and regular Q-matriz on Z2..
Then the (gi;)—process ts positive recurrent iff the/) e ewists a non—negatwe solution (@
'bGZ+) to the followmg inequaties:.

2 qi2;+1<<0, rz#@‘o, IJZquq-] <oo, (1.22)

Jor some 4o € Z . (equivalently, for any 40 EZ ). ; '

‘Theorem 8. - Let S be finite, and let (¢(n, 1)) satisfy (1 2) and (1.8) 'w@th
Ho={0}. Suppose that both (a(rn, Z)) and (gi;) defined by (1.1) are irreducidle. If
(gss) s regular and for (1 22), there ewists @ monnegative solution . (u;) Sfor ¢o=0,
which is increasing in 4, then (q(n, {))—process is positive recurrent. In fact, it is-
ergodic, 4.e. there emists @ probability measure {w (?7).} on X such that

| lim p(t, &, M) =p(®), & 1€ X, (1.28)

where p(§, £, M) s the Qéprooesg corresponding to (g, {)).
Theorem 9. Let (gi;) be @ Q—matrin satisfying (1.7). Then, there evists @ non—
negative-and increasing solution (@) to (1.22) with to=0, iff

dEEE}? dy/FP <0, (1.24):
where FyY is defined by (1.9) and
do=0, du=g M(1+ zgm ) 5>0. : (1.25):
Moreover, if (1.24) holds, then the function (w: ¢ € Z,) defined by

s we=0, wy>d, Uppr=up+FP us—dy, k=1 (1.26)-

s a non-negative and fnoreasing solution to (1 .22) with t,=0. L

Ags an application, we will show in § 6 that Schl6gl model is ergodic., For the-

models defined in (1.11) and (1.13), we have nothing to do since § is an absorbing:

state for these models. Hdweizer, for the Brusselator model defined in (1.14), our
conditions do not work, thjs is a remainder problem. |

One may ask whether the condition. (1.24) is equivalent to the positive- - -

recurrence for the (q“) —process or not. The answer is negative. To compare the two-
properties, we have

Theorem 10. Let (g‘,) be & Q-mairiz satwsfymg 1.7). Then there exisls @ non—
negative solution to (1.22) with ta=0 iff ‘
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2=sup'{(§ a) / (33 70): kez+} ’ (1 27)

=0
If the Q—-mwtrma; (g:5) is also irreducible and reqular, then the condq;twn (1 27) 1s
equwalent to the positive recurrency of the (g;)—process. ‘
It is obvious that d<<d. For blrbh-dea‘oh processes; it is not difficult to show
$hat d<oo iff d< oo, v | = |

§ 2 “UAn‘ique'ness

Lemma 1. Let (q): 4, j€E) be a @-matriw. Then .
(}‘+9¢>ui<29uuj, 0<u¢<1 @GE R>0 (2.1)

has only sero solution off .
(7~+qs)% E q, 0<u<1i, wEE A>0 . - (2.2)

Jms only zero solution.

 Proof It is well know that the mamma,l solu’slon (4) to (2 2) can be obbamed
by the following procedure: define ‘ '

=1, ic,
u"tP = ,2;' g/ (M), n>0,i€ B,
then 4 '
d“’\@ﬁf a8 N—>00 for each i€ER.

Now, suppose that (v;) is a non-zero solution to (2.1). By induction, it is easy fo
show that o,<u{® for each n>1 and i€ H. Hence 1>, (¢€K). This is a
scontradlotlon - o o

Proof of Theorem 1. '

h "By [8, § 4.3, Corollary 1] or [9 §5. 4 ’I‘heorem 1], it sufﬁoes to prove that

for some A>0 (or equivalently, for each A>0),

(gD =S g (r,DuD), O<UD<LER @9

‘has only zero solution.  Suppose that there exists & non-zero solution {u(n): nEE}
for some X>0. Seb ' ‘ ' o :
‘ ‘ ‘ u=sup{u(n): n€ By}, kEZs. (2.4)
Then (uy: keZ 4 is non-zero. For each k€ Z,, choose & >0 and n<">€Ek S0 that

Sk(h"‘\"c;;) <—- and u(n("’)) = (1— 81,7) Ug. 4 ‘ . (2 5)
Replacing n in (2. 3) with 7™, it follows from (1.2), (1.8), (2.4) and (2.5) that

Gt [2 3 a0, 0+ 3 a(®, D+ 3 g(r®, D
<w (A — (At 01) ) +g (1) < (Vg (1)) L— et
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(7~+q(n""))tt(?7"”) =2 q(n"”, C)u(Z)

20 % @, Dus+ mz q(’n"" Dut b 9(77"" Dty

ie.,

2t S (S0, 0) <£§mq 0 D). (2.6)

Olearly, uj, is increasing. By (1.1), we now get
k=1 .
-)21 U+ g.gki(uk =) <oy st (U — ), KEZ,.
By (1.1) and (1.2), this means that
(5 +o)u<F g, 0<w<L, ez,
FE
. But this is impossible by Lemma 1 and the regularity for (g;).

(2.8)

Proof of Theorem 2. The proof is similar o the proof of Theorem 1 We 1eave'

it to the reader as an exercige.

Proof of Theorem 8. (1). Suppose that (gw) satlsﬁes (1 D.
~only one increasing solution to

(7\-+Qu)ut—29¢juj, up=1, ’I/EZ.,. )
for each A>0, In fact we have
uo=l,

) =1
ui+1=[<7\:+(]z>%'“ Zgia‘ui /gz‘,i+1; =0,

Uig1 — Uy = [2 i5 (s — 'M:) +7Wi /9’m+1; ©=>0.
We now prove that - A

Mgy, <%a+1—uk\ (ul uo) FO -y, k€ Zye
‘When ]c 1, (2 12) holds since

Ui — o= Mo,/ Gos = MdoTo.
Supp05e> that it holds for k<n. Then, by using

2 gm(uk-u‘) = 2 @ )(ul-f-i—ut)) k €Z+,
(2.11), 1.9) and the’ momasmg property of wy, it. follows that

- [ E q® (u;“l-—uk) +J&u,.]
Ty ﬂr""

'<qn I [(ui——uo) Z g"“)F“’) + Mty (Zg@m +1>]

Ug i~ Uy =

= (71/1 u’O) F<O) +7\«un [2 gJ !+1gn n+1 2 g(k)F(j)—l'g;.}ﬁ

= (Uy —up) F® +?\.u,.'m,,,

Then there exishy
(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

1Ffz”):, ‘

g1 = Un= Gt 1e [2 Aog P, + My, ] = MboGmn i1 (2 qPmy+ 1) = MM,
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By induction, this proves (2.12).

(2). To prove (i) of Theorem 3, it is enough o show that (2.2) has only zero
solution iff (1.8) holds. Supposka that R<<oo and (u;) is the solution to (2.9) con-
structed by (2.10). By (2. 12) and (1.9), we gei

: gt — 1< (U w) i F 0+ ama, << [+ (ua = -1%o) Go1] Mg
Henee Uity —1<1/2, and S0 log (uy41tz )<2(uk+1uk —-1) for & 1arge enough.
Therefore, there exists a constant U >0 such that - - | | » -

1o uk—Elog (it ) <OR<oo |

This implies that
L g =Tim w<So.

Jo—oo

Now, U= uyu=t € [0, 1] is a non-zero solution to (2.2). Gonversaly, if (2 2) has &
non-zero solution, it is easy o show that R<oo..

Ag for (ii) of Theorem 8, it is enough to notme that (2 2) has only ZOYG:
solution iff - S P SR :
(?»+'qia)uk=;§kqwu;, 0<’Mk<1, 70?1

has only zero solution in the case of goz=0. A

§ 3. Uniqueness for Some Processes of
Non—-eqUilibrium Systems

As apphca,hons of the Tesults in § 1 we will prove in this section thab the Q-
matrices defined by (1 11) (1 14) are regular, i. e. ’ﬁhey determine uniquely the
. Q-processes. o
Theorem 4.
() The Q-matriz (g, {): 1, {€X o) defined in (1. 11) 8 'regulwa' zf
a=supla, uES}<o0; - (8.1)
(11) Let 8 be finite, then the Q—matmm (q (7), O: K CEX) defined by (1. 12) s
regular;
(iif) The Q—matrnw (g ('n, O:m, CEXO) deﬁned by (1. 13) is regular if (3. 1)
holds;
@iv) The Q—mwtmw (q (m, {) ", CGX o) deﬁned by (1 14) is regulwr if
. Ca= %a,,<oo ' (8.2)
Proof Take By={n€ Xo: |n] k}, k€ Z, in the four cases. Then (1.2) and
(1.8) hold. .
For (1) and (111), the condmons of Theorem 3 (i) hold and
Qk k+1<~7\dﬂk‘
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Since P
2 <2Fk /9m+1)> Z Figk)Qk 12> g (Mak) —lfoo,f
now, (i) and; (iii) follow from Theorem. 8. (ii).

The @-matrices (g;,) corresponding -to- (1. 12) and, (1 14) are blrth—death Q-

miatrices. By (1.8) and (1.9), it is easy to carry out that
: U S S ‘ 3.3
R_ kZ—OmZ-O’I'k ‘Ti+1’r£ p ‘ L ( ' )
K=, b1 T%= Qo ki1

For.(ﬁ),weﬁave:,, S S , |
T]g=SU.p{§<7\.1&}“ ( 9 )+7\.4 ) [?’], }<2 1?\.1@(]02 k) +7\.42 b (34) :

Here we have used

) A

sup{ St [n| -B =k, 3.5)
By (3.5) and R o
S/ 18 1P < St/ 18]

we See that

e 3[u( 2] e

=>6" 1}'2 [inf 2 ni—3 sup 2 72] + (7\'34"7\42/3)75

Inl=kuc8

[{Sl <ISI) —3k2]+(x3+x2/3)k.
Now, by (8.4) and (3'.6), we get - ; :
) :

Hm ﬁ__s_w1_>hm ﬂa__> 2 3

mgg Ty TipaTs 5 Tl piThe =20/ (9] 8]* (Mw) )v
Tt follows from (8.8) that R=oco. Therefore (11) follows from Theorem 3. (1).

For (1V), we have
k=sup{; May: (9] ==k}.=?\.1&, k€Z,.

" By (3.3), we get

R> i—oo

=0 7‘1&
Therefore (iv) follows also from Theorem 3. @).
To conlude this section, we discuss two special cases.
Pr0p0s1t10n 1. Let (g 4, j€EZ.,) be a Q-matriv satisfifing -

Qu— li—j|>2 o (8.8
and * ’ ’
' { kam&X @ék,zm-zg (:Isk+'1. 2k+2+§2k4.-1.l2k+3>‘ >0, ' ; (3 7)

8, =10IN (Gag, 92+ Gay; 211, Gape1, 24-1) >0,
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SN S SueSig :
go‘gom =oo | (8.8).
Then (gy) 65 regular. '

Proof Simply take Ey={2k, 2k +1}, k€ Z, and apply Theorems 1 and 8.

Proposition 2. Let (g 4, j€Z4) be a Q-matriz satisfying

7;=0, i, j=n and |i—j|>1, - . o T (8.9)
Qn+k,n+k+1>0 kEZ-H |

where n is @ given poswtfwe imteger. Set fr,,—q,,.,.k, ,,_,_“1, k=0 and sk¥=§,+;6, nip-1, K=1
Then (qy;) 18 regular if (3.8) holds.

Proaf Simply take Ho={0, 1, 2, -+, n}, B, ={n+Fk}, k>1 and apply Thééréniaﬁ
1 and 8. : . ,

§ 4. Further Applicati_ons

In order to prove Theorem 5, we introduce a relation “~”on X x X as follows:

("7+6u; C) or (77: Z+eu>; NuF Cu
: (n— 6,,, 05 muF lu nu=>1, v o
1, D= (n, L=e), mut o L, 4.
(n+ew (o) m=lw |

(nf e { - €w), Tu= €u>j>-v '
for each u € K. Then, define

Bo={(6, )}, » »
Bra={(n, 0): 3,0 €\ By such that (, D> DYU Bo, (4.2)
Ho=Bo, Byys=Busa\By, k€ Zs. o |

Lemma 1.

(i) For each nEZ,, B.cBa;
(ii) For each n€ Z,

B.={@, H1u {(géu;;'ﬁ “eu,>: o - . '(4.3)»‘

1=hm+1

m=1, 2, -, 73 hm=0, 1, oo+, m; S Suy, ""; Uy, M@y be "'epewted}

¥ [3 n . . . »
U{(g Cuss z=216“’+ » eu,>: i=1,2, -, 0; =4, 4+1, =, n;

1=
SDuy, e U, may be 'repeated}, ,
where 2 eu,—ﬁ whenever a>b; ,
(i) Hi(n€ Z,) are disjointed, UE =X x X and {E,} satifies (1.2) and 1. 3)
Proof (i) Clearly, BocBi. For each (v, {) €B,. (n=>1), by (4 2), there exists
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an (7,0 GU B, CUB; such that (7, Z)—>(77, 7). Hence (m, {) € Bpya. By‘induétion

this proves (i).
(i) To prove (4.8), denote the right side of (4.3) by B,. -Clearly By=B,.
Suppose that B, =B, for all n<<k. We then have o show that B,~B, for n=k. °

First, we consider such an element (n, {) that has the form <2 €y ; eu,). If
| =t

=1

m<k, then . S - ,
o 0=(% ﬁ )€ Bu-Boc B,
A J = 22N —
We may now assume that m=F%. Hence o
. (D= <2 Cuys €y )
If hy=Fk, then L 7 L
v =1 -

(77) {) =(§ Cups ¢ )"”'( E Cuys g >€ Bk-i-
If hy<k, then there are two cages:

(a) The times of w, a,ppea,red in {fwi, e, Uy, } and in.{u‘h,:ﬂ, e, u} are different.
Then :

k=1

(0, D=0, t=e) = (Sew 3 ou)€ B

(b) The times of u; appeared in {us, -+, w,} and in {41, Ui} are the .same,
Then Wwe may agsume Un, =Uy. Henoe ‘
(7]} Z)"’(W eukg z 6“1;) GBTG 1.
_Pherefore in both cases (a) and (b), we have (n, O EBk

Next, we consider suoh an element (v, {) that has the form <2 Cus Z ey, +

ze:+16“’> There are three cases:
(a) The times of 4 appeared in {ul, -ee, 1} and in {ug, o, Wiy Upyq, +o, Uy} are
the same. Then (n, {)—>(n—e,,, {—e,) € Byy. - L , o
Now, assume that the times of u appeared in the above two sels are dlfferent
Then, w; should appear in {w1, =+, tsa, «, Uy}
(0) If w1 € {thigs, *++, w,}, We may assume that u,,=uy. Then
(1, D> M—ew, ) €By.
(e) If us € {uns, ’Mk}; then.
(n, D1, E—ea) EE-
In thé above three cases, we always have (v, {) € B,
Combining the above discussions, we get B, B,. ,
Conversely, assume that (n, )€ B If (y, )€ By 1=5, . then it is
immediately that (1, {) € B, by the definition of B,. Therefore, we may assume
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(77, C) ¢ Bi-s. Then, by (4. 2), we can ohoosa an
(”7; O € U Bl"'Bk—i‘—'Bk—l

such that (n, -, 0. We say-that (7, {) +* (TH—eu, 0, C—}-eu) or (n+eu, ¢+
e,). Otherwise, since (1, {) = (n—éu, C) (7, ¢ T—e.)or (77— eu {—e,)and (7, C) € By,
we Would have (7;, O EBk_gCBk_. = B4, this is a contradiction. So, by (4.1),
$here is a u€ § sach ’ohat B ' ” ,
(0, ) = (i+ew D), @, {+ew) or G+es, {te).

By the definition of B,_1, we see that (1, {) € By. Hence B, By.

By induction, we have proved B,=B, for each n>0 ,

(iii) Suppose that (7, {) € B,cB,and q((v), o, @, C))>O Then by (1 17)
(7, 7) should be one of (xew, 0, (, §+eu), (77+e,,, tte) WES), (r)-{-e., €, C),
(m, {+eu—e) 0r (N+eu—eo, {+eu— e0) (u, vE€ S, wv). By (4.8),

ntl

(77) C) GBn-{-i—‘ U Elm
and so (1.2) is satisfied.

The remaing are obvious. : .
Lemma 2. Leiq 7((, 0, (@, D) be the Q—mmtmw corresponding 0 o} deﬁned in
(1.17). Then, for each (n, C,) €k, (fn>1)f,he¢e exist {@1, ooy vy S8 and {a1, v, @}

T4y 2 a=n such that

Z A D, G Z>>=éa<w, a). R

(LDER
Moreover, 2 aie,, deterrmmed by the mght side of (4 4;) varies over the whole set {n: ||

=n} whenefverr (n, {) waries over the 'whole set B, : T
Proof (i) By (4.3), we see thab (n, O S B.=B,\B,1 1ﬁ" 117 has the form _‘

Gegerde) o

S S et
where ¢€ {0, 1, «¢, n}, k€ {¢, i+1, -+, n}, S Suy, -+, u, may be repeated Vbut
' . ey oy Ut N {1y o0 Uy} =. '
(ii) Denote the distinct elements of {tg, +ovy W\{Wigty oooy Unk, {Uier, =%, U, }
and {Ue1, ***y Uny DY {01, coo, O, {Vrety o0 vy} and {41, *+*; sy Tespechively.

Then -we may write

4 o dy J
[2 eut=2 ajev; 2 ' 'Uj, aﬂ>o.’ a§1)>07

-5=J,+1
3 o= St ap | | ' 4.6)
l~~z+1 i= +1 w, ‘ A. o ( "
A lgle 2 cv@)ew, a(2’>0

Seb a;=af" -+ j =J3+1, -, J. It fallows from (i).and (4 .6) that
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J3 J
1
?7=g @ 46y, ) 2 a§~ )evj:
j=

J=da+1

R R o “.7n
=Bawt 3 oot Y aa,
i=1 ¢ =T+t J=d1+1
and | o
5 . o :
2 a;=n @9

7=
(iiil) We are going tofcomput‘e' Z g((n, Z), (77, C)) for (n, ) €H,. Wha’a
we need indeed is ﬁgu're outb -
Boo={@ D E€Fus: (n, )G, D}.
By (4 1), (4.6), (4.7) and (i), we see that
@) (e, L+e,), (ntes, O, (0, {+e,) & Fys.
(b) Ifje{L, -, Ji}, then (n—e,,, {— ) €Bus; (1~e,, O and (77, {-e)€

v\l

E,.

(0) If JE{Js+1, -+, J5}, then (n—e,,, {) € F,_s, cither (n, {—e,) €F, (when
aP>0) or (n, {—e,) hasno ‘mveaining (Whéh ai’=0), and either (n, O+ 0,
{—e,,) (when w1>>0) or (7; €v,y { —6y,) has no meaning (when a{®=0).

@ Ifj€ {Ja+1, «-, J}, then (z, {—e,) EH, s, cither (n—e,,, {)EH, (When
a’>0) or (n—e,, C) has no meaning (When @i’ =0) and either (n, )+ (n—e.,
{—e,,) (when a{">0) or (n—ey,, {—e,,) has no meaningv (when ag.ﬁ =0).

Oombninig the above discussion, we get

2, L0, @ D)= 5 G0, 0, G D)

( +£) € B
J . J
=2 8('”:‘) )"'],v_.;) A3 (@:’: Cvg) + . 2 0 ('Ui: 771:_«;) + 2 8(’0:‘; Ci;)
i=d1+1 I=Ja+1 .
'—Z d(v;, a;).

(iv) The last assertion of Lemma 2 is obvious. :
Lemma 8. Under the assumpmons of Lemma 2, for each (m, ) EE, (n=0),

there emst {vq, *--, «)J}C;S' and {ay, -, aJ}CZ+, Za,—n such that

2:8(’03: G,) Z. 5(("7? z), (7], g))<2{:j§1 ﬁ(vf: wi) +u§ B(’U/, 0)] . (49)

G0 EBnn

Moreover, Eajev, varies over the. whole {N: |n|=n} whenever (n, {) varies over the
: =1 :
whole B, ,
Proof Notice that (i) and (ii) in the proof of Lemma 2 are shill available,
Using the notations and the proof for (iii) given there, it follows that
{(7’;) Z) EE’H-I’ (T]J g)'—)@;; Z>} {<77+6m €+6u> ue {")Jx+1) B QJJ}OI}

Ulnten, O, (, L+ey,): j= J1+1 o J}.
By (1.17) and (4.7), we getb
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30D, G D)

ﬂ{)ei‘nﬂ B} .
= 3 B m)ABG, L)+ ,_jz (B 1)+ L]
. Jlfj<.7 - ISt
" —Zﬂ(% a)+ 2 B(v,, a®)+ 3 B(u 0).
143&.7

Now (4. 9) follows since B(, k) is mcreasmg in k. :

Lemma 4. Under the assumptions of Lemma 2 for each n, ) €z, and ewch (n,
) €E,, we have ’ :

o 10, O, @, HH=0 | (4.11)
whenever |n—k| >1.

Proof Using the proof of Lemma 2, ib is easy to show that

(G, DERy (0, O~ DY=0- |
This proves (4.11).

Proof of Theorrem 5. For the Q—ma’ﬁrn: (g(n, O): m, §EX ) defined by (1 16),
take Hy={n€ X: |n|=Fk}. Then the Q—ma’nmx (gi5) deﬁned by (1.1) is a birth~death
Q—ma’omx and satisfies .

{QE.N+1—ma‘X{ E 9(’7; C) [n| =k} =14, k€>Z+1
T, -1 =mmin{ 2 9(77: O: |0l =k} =5 k€Z+\{0}

For the Q-ma’ﬁrlx g, O, (77; DY) (m, O, (@, D) € X x X) replace By in (1.1) by
H, defined by (4.2), and define a Q-matrix (945 according to (1.1). By Lemma 4,
(g:;) is again a birth-death @-matrix. By Lemma 3 a,nd Lemma 2, we have

'rk"’qu+1—ma'x{ Z, Q(('Y], C) (7); C)) (77) C) EEk}

7, e B
<max{2 28 (u, 14): |77| =k}= 2Tk>4”k; b€ Zy,
. gk-élk,k-i—l_mn{(ﬁ OgE él(("_h O, (77, D): (’7, C) EE?&}

: —mm{25(u, Mu) |97| =k}= Siy EZ+\{0}
Hence, if (1 19) holds and o”,ﬂ>0 (kEZ +) then (4 12) and (4 13) imply thak

| ’<'4.1,2>V

(4.13)

S| L RAPSRID S PR (N SN
2[ Ty +’r7ﬂ"k__ + -+ Ty Ti’l’o] R
'i[—l~+ . +—~S———‘Si—]/R= .

T T4 -1 ‘7170

Therefore, 2 and £ are regular by Theorem 1 and Theorem 3, (i). If a. 19) holds.
and ro=0, r,>0 (k€ Z,\{0}), then the conclusion follows from Theorem 1 and
Theorem 3, (ii). |
Finally, the remains are easily oonsequences of [10] _
Proposition 3. Let 8 be finite. Then the Q-matrices deﬁwefi by (1 12), (1.13)
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and (1.14) satisfy the assumptions o f Theémm 5.

Proof The caloulations are elementary once we erte down the Q—matrloes
For . 12) '

. ) Ny i
18 (’L&, "714) =7\'1“u ( ?;“ >+7\'46w 5(“: 77") =A’2 ( 3 )+7"377u;

Ly 0, M 1) = (4, 0), u, 0ES, uto. .
For (1.13) and (1.14), 8 and u should be replaoed with § % {1 2} and (u, w)
(uES =1, 2) respeotlvely Then, for (1.13), we have -

B, )= {

(4.14),

kiau"]uiy i= 1

0,i=2, -
. 0, i=1, : y
O PR
. AaMuiug, u=w, i=1, j=2, !
Wﬂpi(u: 'D): uFo, 73:.7.:17

ﬂuﬂ,’_ﬂz(u, 'D); U+, '1'=.7=2,

0, other (u, 4)# (v, j),

7((“: ‘7.1)‘) (_'U: .7)) TNt "70:') =

and for (1.14), we have _
. Ay, ’b=1,

B((u: 'I’)) nui)iz{o i=9

C. }"47} A 8] Q:=1) ;
5((, w>,m;>-—={0 - | !
» V=2, : S

7»26«'%1; u=fu)'q',=1’ j=2:
7'((”" é’)) ('UJ .7)) Tuis 97‘05') > (nz .,
' nmp@(u) W)} u#@: ’b=.7=‘1) 2’

0, other (u, §) % (v, §).

)"7112) u=n, 7’=2) 7.=1:

§ 5. Recurrence

Lemma 1. ZLet (¢;:4,5€F) be a regular wreducable Q-matriz. Then the (czu)"i
process is recurrent i ff ‘

wi—Zp,m, 0<w<1,i€H o (5.1)

has only zero solution Jor some jo€ B (or equivalently, fO’l‘ any yOEE) » where (p;) is

the jump matriz of (g,,) ie.,

-~ . giﬂ/ 4, ] %.7 ’

: 5.2

: Pu= {O, i=3j, 4, jER. (5.2)
Pfroof Olearly, we.can fix a jo€ H. By [7, Theorem 1], the. (gi;)~process is:

Tecurrent iff the jump chain (p;;) is recurrent. Then, by [4, Theorem 6.6.1] it is

equivalent Yo that the minimal nonnegative solution of
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—‘210&0%'*‘10@!0, 'bEE . RER S - (8:3)

is gf=1 (@EE) Therefore by [4, Theorem 5.6. 3] the proof is reduoed 1o showing
that (5.3) has no nonnega’ulve non—constant bounded solution iff (5. 1) has only
zero solution. To this end, letb (m GEH) be a NoON-zero solution of (5. 1). Then
(v =1+z: 4€EH) is a nounegatlve non—oons’ﬁant bounded solution of (5.3).
: Convemely, if (5 8) hag such a solution, then the minimal nonnega’mve solution of
E5 3)’ satlsﬁes ; i<l and there exists at least an 4,€ E 5o that oE <1, since (y;=1,
€ K) is a solution of (5.8). Henoe (T=1=a}: @EE) is a non-zero solution of
(5.1).
Proof of Theorem 6, By Lemma" 1; to prove the first part of Theorem 6, if
suffices to show that (5. 1) has oh’ly "zere‘ 90111’01011 implies thab .
u(”?) EP(’W’ )u(O 0<’Uf(?7) <1, n€ X, (5.4)

has only zero solutlon Where (p (77, 19)) is the jump matrix of (¢(n, O)). Now, the
* proof is similar o the proof of Theorem 1_ Suppose  thab {u(n) ne X, is a non-
zero solution to (5,4). Then -

ROTOESPIC z>u<:>, o<u(p<Ln€Xe G5
Set w=sup{u(n): n€ By}, @EZ+ Slnde Eo={0}, Hy'is a finite set (k>1), _there
exists an n® € Hy, (k=>1) %0 tlha,t
ta=u(8); Gmu(®); BGED
doto=g@u(@) = 2 (0, Du(D) < J9 (@, Da=dosta. 6.7
If k=1, by using the method in the: proof of (2 6), it follows that

g™, e)uk+ 2 <2 g(n"" Q><u;;-—u,> >3 q(n“” 9) <um w),

so u; 1, and

L et .
q;oouk-i-zqm(uk u:)<gk.k+1(uk+1"u’k>) k=1, (5-8)

Combmmg (5.7, and (5. 8), wegeb .
Qkuk< 2 Qrithi, 75 E Zs. :
- It is now easy to show that w=0,% EZ + (cf. the ‘proof: of § 2, Lemiua, 1) since (5.1)
hag only zero golution. Bub this isa contradotion, to-u(n) *0. L :
As for the second part of Thorem 6, by Lemma 1, we need only o prove thab
T= Y. Ty 0<cv§1 @€Z+ | (5.9)

k:#() 9 q,

has non-zero solution iff- 2 Fir<ea; Notlce that (5 9) ‘has. non-zéro solubion: iff

= g, 0<w,<1 @ezf ;j . (.10)

k#:(),‘ q:
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hag nonnegative bounded solution, and {5 10) has at most one solution which ig
wo—l arl, (5.11)

H—:L"' x = <2 s (m ma) +onx >/Q’s,;+1; q,>1

Clearly, v_(;,»)'_is ‘increaging, Thus, the proof ig ‘reduced to: showing that (w) is
bounded iff o v

SR <o,
. =0 . ‘
Observe that

41 ~ o~ =1 ~ ~
gl: Q?) .($i+1-'f»-’ﬁw_'>{=§ s (J”«f" %‘) - '

Hence o _ :
~ =1 (D (0) . e f
' 1654.1— Z; ”2 j'__ (x.'1+1“ J) et e=>1
=1 @,5+1 Qb,z+1 . ‘!’;- B
This proves that (y;=2,,,— x fz,>1) is a nonnegatlve finite Solu’ﬁlon to '
«;—1 <!)
qi (;7» ; : ;
R Zl g‘ht'}‘i - q ¥‘6+1 ’ . E o B o EoL ey L

On the other hand, the solution to (5.12) is unique, i. e.,

: zl'”gl(l )/912;

Zf=:=2i /95,:+1)21+% /9m+1, i>1,
and it is easy to show B R
: z*——" FO - i>1
by induction, Usmg the above remarks, we get -
a;o—fci—l -F®,. fcﬂ_i—x,—F , =l
This of course 1mp11es what we need. .,

o e i c
Proposition 4. Let ;S’ be ﬁmte Then the (g (n, C))—process deﬂned by (1.1_2) 78
'recuwent

" Proof Take Ey={n€e X: 177[ Ia} By (3 4) and (3 6), we have s;,1/7y43—>00
(k->00) . Hence : o

Now Theorem 6 is available.,

§ 6 POQIthe Recurrence and Ergodr ity

P¢oof of TheOfrem 7. If the (g;,) -prooess is posmve recurrent then for some
(each) ¢y € Z, there emsts a nonnega,hve solu‘olon ’po R

J#ﬂm* q‘
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SVt gco0

i*io Qo
by [4, Theorem 9.4.1]. But (6.1) is just the condition. (1 22) 1f we seb w;,——O in
addition. Therefore (1.22) is necessary.
Conversely, if {u: $€Z.}isa nonnega‘owe ‘solution of (1.22) for an %E Ly,
we define

ci=1, i +%dq; =—quu,,fb ’bo A (6.2)
Then ¢; +2 qi; <0, i€ Z,, and so

3", i€Z., | (6.8)

=y

. o c>2 qwq (ui— )+

‘where ¢=(inf{e;/A: € Z,}) NO>—co. Denote the Laplace transform of the

minimal (g;;)—process -by (PF=(Ax)).” It . follows from "[4, Theorem 3.3.3 and
Theorem 3.8.1] thatb o '

—0>2P (}\.)(é,-—'?»c)": - . (6-45

Since (g;) is regular ?\,ZP:’;’” )y =1, @E Z ., A>0, it follows from (6 2) and (6 4) |
 that
’U;,?jz P?’m.\ (}\;)05—2 P:x]un (7\;) ‘l‘.P,,;ﬂ (7\.) G;n—?h-1+Pmm(7\') (0;, 1),
ie., . ‘

&

) mi>1+u>gjn(x) (c;,—l), 1€ Z,.
Because of.]:i{:‘% APER(A) =lim p;; (¢) =y, 6, JE€ L4, We have
A . : t—roo :

0>1+0b'¢,,,(0,,° 1)) ?’GZ-F)

,and 80 wy, =0 for each ¢ € Z+ This implies that ;= >0, ’1:, jEZ, and 2 m—‘l So-

the (g;)—process is ergodic. :
Proof of Theorem 8. By Theorem 7, it suffices to prove that
219, Du(® +1<0, n#6,

S96, Du(®) | <o ' 65

hag nonnegatxve golution. To this end put
‘ w(n) ==uk, WEER, k€Z+

s @iven.'n ¢ Ho, there exishs only one.kE Z, +\{0} go that n € Hy. ‘Hence

;Q(’?: C)y({?—!—l _2 29("’), 0 (u— “:)"‘ 2 4(77, C) (uk+1—'w;a)+1

< - Eqk,(wk—uf)+qk.k+1(uao+1—uk)+1 Equu;+1<0

by (1. 1) (1 2), uy,/" and the aqSumpmon of ’shls ‘theorem. But
29(9 Z)u(C) 29(0 Z)w = Joiths

‘s finite, 50 (6.5) holds.
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Proof of Theorem 9 Let {u;: ¢€Z.} be a nonnegative inereasing solution to
(1.22) with 4o=0. Then

o1 (w1 —uo) = |’Zq§a’l‘5!<°°: o (6.6)
quiu,+1<0 k>0. (6.7)

By (1.7), (6.7) and Abelian transform, we get
Tt (Upr — ) +1<’5_.' Gy (g0 "2 4.7:? ) (Uy41— u:) (6 .8)

Pub vy =wpe1— 1, (h0). Then v, is finite by (6 6) By (1.9), (1.25), (6.8) and
induction it follows that : : _
v <FOvo—dy, HE Z.. ’ - (6.9)
Now, (1.24) follows from (6.9) since u,}, 2,20, k€ Z,. o

Conversely, if (1.24) holds, then (6.6) holds for (u: k€ Z,) defined by (1.26).
Hence, by (1.9) and (1.25), for each £>0, we have

1+gs, k+1(uk+1"uk) gk.k+1F s — g, k+1dk'+'1 EQ(S)F (O)Ufl Eq‘*’

=2 g® (F(O)ui d) 2g,§>(us+1 t) = Zq:u(urw)»

i.e. ’ng,-u;—{—1=0, and so (1. 22) has a nonnegatlve mcreasnng solution when 4o=
o : g L
Goroﬂary. Let (qy) be a birth—death Q-mairis:
| rk=q1a.k+1>0,‘k>0,
sk=gk,k_1>0, k=1,
“Then, the condition (1.24) s egwiwlent to

2 T o, | (6.11)
k=0 3k+1 _
Proof By (1.9) and (1. 25), we have
G _ryery 1 e L S roraem
B 81008 [1+Skdk—1] To =0 S1Sa***Spy1

Pr0p051t10n 5. Let S be ﬁmte Then the Q-process corresponding to Schligl
-model s ergodic. S '

Proof By (3.4) and (3. 6), —>0 (h—>c0). Henoe (1.24) holds.

Proof of Theorem 10 Let (u; @G Z) be a nonnegative soclution to (1.22) with
'%—O and put vy =up.1—uy. Then (6 9) holds, and S0 :

0ty =3 o< (3] 710 ) o= Syt < (3 70 Jus— 3

‘Therefore, we have (2<u1<oo Conversely, if.(1.27) holds, we choose u,=0, ul>c3 |
and define w;, (5>2) according to (1.26). Then, by using the proof of Theorem 9,
it follows that
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‘ 2%‘“5*‘1"—"0,‘70%0{ . .
2 gofu,, 9’01%61 is ﬁm’ﬁe, e
and". | N
: 1—1 . Lo 76-—1 Tl S opet ‘
=2 (FiPus—di) >d SIFO 3140, k>2.
We. get a nonnega’mve solution Yo (1. 22) with q,o.__O
" The lash asser’mon of Theorem 10 is obwous a
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