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THE CONVEX VECTOR PROGRAMMING
ON AN ORDER COMPLETE ORDERED
* TOPOLOGICAL VECTOR SPACE

- Wane SUSHE}{G' (EHA)*

Abstract

This paper first gives . several basm theowms, mcludmg some eqmvalent forms of .
‘Hahn-Banach Theorem on an 01de1 complete ordered vector space. and an order complete
-ordered topological vector space. Then, with these results, we can convemently d,lscuss the
problems of general convex- vect01 “programming. In specxal ‘cases, Wwe glve the.
corresponding results of Rockafellar Problem and Kuhn—Tucker s problem

§ 1. Introduction )

Now there was Kuhn-Tucker’s theorem of convex programming,  whether on
%he problems of practical projects, _economet'rios, or on management science, etc, the
-convex programming and its duality theory have widely been applied. But in
-application, one has met various kinds of more general problems of convex
‘programming. -Thus it is necessary o have it more perfect in theory. Recently,
‘there have been many papers published in this field,such as [1—35]. Shi Shuzhong™
-a8 the pure algebraic caSe,-. hag perfectly generalized Kuhn-Tucker’s theorem of
*60NvVex programming to an order complete vector lattice. This paper, based on [1]
:and consulting [2], discusses the general convex vector programrmng and its
8pecial cases on an order complebe ordered ’nopologmal vector space.

This paper first gives several basic theorems. Except for the theorem about the
-continuity of a convex map, they are the generalizations of Hahn—Banach Theorem
on an order complete ordered vector space or ordered topological vector space. With.
these results, we can convemently give a series of results about the general convex
"vechor programming and its special cases. So, on ordered topological vector Spaces)
i makes the discussion on the convex vector programmmg more perfect.

[2] , also in ordered topological vector spaces, discussed the problems of convex
"vector programming. ‘But-on the generalization of Kuhn-Tucker’s theorem, which
is prmclpal result, the eondl’olons requlred are strong, even causing ’nhe ongma]
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Kuhp—-Tu_eker’ 8 theorem not to bea special case. - 'What is more, ‘[2] only gives the
resu lts without any proofs. ‘

§ 2. Definitions and Symbols

This paper assumes that the vector gpaces are on the real field B. We suppose.
that the reader has had the basic concepts of a vector space and a topological vector
Space. A SR .

Let X and ¥ be vector spaces. To a subset ACX XY, let

A,={y€EY | (z, y) €4}.
To a subset BC X, let Bt be the set of all algebraic interior points of B. B is absorb
if OE Bt A convex subSe’U OcXisa convex cone if YA>0, A0=0C.

If a vector space Y is also defined as an order “<” and sa’msﬁes the following
conblstenoy conditions: '

1) 91, 95, 9:€Y, ?/1>?J2=>y1+?!3>?/2+%,

2) y€Y, =0, y=0=ry=>0, '
then Y is called an ordered vector space.

Let Y be an ordered vector space.. Cy,={y€Y¥ |y=>0} is called the the positive
cone of Y. If y €0, it is denoted by y>>0. To a subset of ¥, if there is a y; €Y such
that V a €4, a<yy, then y, is called a upper bound of 4. If there exists a upper
bound y, of 4 such that yo<ys for any upper bound ¢y of 4, then vy, is called the
supremﬁm of 4; the notation is yo=sup -4. Similarly, ‘wé can define the lower
bound and the infimum inf 4.  If gup A exists f(;r,any non-empty subset” A that
is bounded above, then ¥ is called .order complete. . Certainly, if ¥ is order
complete, any non—empty subset that is bounded below has its infimum, =~ >

If ¥ is an ordered vecbor space and a btopological vector space, and O, is
closed, then ¥ ig-called an ordered fopological vector space. If ¥, as an ordered
vector space, is order complete, it is called an order compléte ordered f;opologmal
vector space. pE S ; SR :

Let X and Y be topologmal veotor space. We know that if 4 is convex and
int A+ @, then A'=int 4. The set of all continuous linear maps from X to Y is
denoted by B(X; ). Xis called a locally convex sPace if 1t has a local ba,sus
consisting of convex Se’vs : - ' : S

Let Y be an ordered topological vector space. For a subset ACY", let [A] (A
-0y N (4+0,). A is Oy-saturabed if [A] =A. O, is normal if Y has a local hasis
consighing of Cj-saturated. sets. . ST L :

Let X be a vector space, ¥ an ordered vector space.. For a map f:f.D( flcXx—
Y, where D( f) is the field of the definitions of f, if D(f) is convex and Vzy, 22 €
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D(f), A€ (0, 1), fOm+ (L—A)ws) <Af(2s) + (1—A) f(zs), then f is called a convex
map. : .

§ 3. Basic Theorems

Lemma 1, Let X be @ vector space, Y anm order complete ordered vector space,
and f: D(f)CX—Y a conver msz If f(0)=0 and D(f) is absord, then thefre 6wists
g linear map L: XY such that Lo<f(w), Vo €D(f).

Theorem 1. Let X be a vector space, Y an order complete ordered vector space,
ACX XY a convew set, and D={s € X | 4,#¢}. If

1) D is absord,

2) Yo €D, A, is bounded below,

8) (0, v) €4, y>0, -
then there ewists a linear map A: X—Y such that

Az+y=0, ¥ (2, y) € 4.
Proof By defining a map f: DY, f(a) —=inf 4,, we have Vzi, wQED A€ (0,
1), A+ (L —A) A4, C Asgy 11290, Hence
S O1+ (1= A)@s) <inf {AA,,+ (1 —1) 4.} =inf {7\.Am}+lnf { (1 K)Aq, }
S0 f @)+ (1= D) f2), -
then f is convex. Moreover, it is clear that f satisfies the conditions of Lemma 1,
- hence, there eX,lsts a linear map L: X—>Y such that Lo=f(s), Vo €D. That is Le<<
Y, VY€ 4, 2€D. We take A= —L, and have Av+y=0, V(z, v) € A.

Theorem 2. Let X be a topological vector space; ¥ an order complete ordered
topologioal vector space, Oy normal; f. D(f)CX—Y a convex map, Ccontinuous at a
point of intD(f); and Lo XY a linear map, XoC X a vector subspace. If DY n
X O#Q and

Low<f(w), VWEXOHD<f),
then the/re exists a continuous linear extension In X—Y o f Lo such that
Lo<f(a), Vs€D(f). =

Proof Let K= {(e, )| f@@)<y, v€D(/)}, B={(s, Low) lwexo}, A-K-B,
and D={2€ X | 4,#0}. It is clear that 4 is convex and D=D(f)— X, Thus, we
can easily find that 4 satisfies the three conditions of Theorem 1 hence ’ﬁhere exigts
a linear map A: X—Y such that ' '

Az +ys=>Awa+ya, V (w1, y1) EK, (ma, y2) € B. _

Since (0, 0) € B and Vo€ H(f), (v, f(2)) EK, Ao+ f(z) >0. ,

Also, to the fixed point (23, y1) €K, we have n(w, Loz) €B, VoEX 0y nEN,
hence n( Ao+ Lew) <Awy+yi, VnEN. But Y is order complete, so Ax+Lyw<<0. Also
A4(— &) + Lo (— ) <0, therefore Az+Low=0, Vo € X,.
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- 'So,‘ L= —4"is the linear extension of Lo. Below, we will verify that L is _
continuous. , ) ’ o

We can assume that f is continuous ab =0, and f(0)=0. For any 0-
neighborhood ¥ in ¥, since O, is normal, we can assume that 7 is circled and O\~
saturated. But f is continuous at 0, so there is a O-neighborhood U in X such that
FWUND(F)CV. Since D(f) is also a neighborhood of O, TUAD(F) is a
‘neighborhood of 0. We can take a circled 0-neighborhood UoCU ND(f ). Certainly.
FO)<V. YEU, we have L(—m) <f(—=), hence —f(—o)<Lo<f(w). As
—f(—2). f(&) €V, we have Lo € [V] =V, namely L(U,) CV. Therefore, we have
proved that L is confinuous at 0, namely L is ‘oontirxuou_s. Thig completes the
proot, '

Theorem 3. Let X be a topological vector sgogce;A Y an ordered topological vector
space, Oy normal; and f: X—Y a convew map. I f f 48 bounded above on & non—empty
open set, f 18 continuous. ‘ ‘ ' o

Proof If f has a upper bound yon a O—nelghborhood U then f is continuous
at 0. In fach, we can agsume that U is circled and f(0)=0. VV,_ a neighborhood of
0inY, dueto C, s normality, we can assume that ¥ is circled and O,—saturated.
There exists a number A, 0<A<1, such that AMYEV. Henoe, Vo €EAU, leb ¢#ku, we
have f (m)'———- FOw) = f (Au+ (1—%) 0) <Af(w) <Ay. On the other hand,

0=f(E oL 2) <L (@ +F (—2) <5 (@ +D),
g0 —My<f(w). ‘That is, —ky<f(w) <Ay, Ve EAU. Slnoe AY, »—}\,yEU f(w) € [V]
¥, that is, f (KU) V. Therefore f is continuous at 0.
If f has a upper bound g on a neighborhood zp+u of a point @, where U is a
neighborhood of 0, then f is contmuous In fact, to any wie X, Vue V, we have .

f<m1+%—u) ( (mo+u)+w1———§—mo) f(mo+u)+ f 2z — xo)
<t itefCmee),
that is, f is bounded above on: m1+-1— U. Hence, to a convex map ¢, g(w) =f (wi—l—a:)
we know that g is bounded above on ‘vhe O—nelghborhood ;[— U From the result

above, g ig oontmuous at Q. Tha,t is, f is continuous abx. Theref01e f is continuous.

Theorem &. Let X be a vector space, Y an order complete ordered wvector space,
and AC X XY a convew set. If ’

D VO, NELy=0, -

2) JEY such that Ve={o€X|(a, ) € A} is absord, then there emists a linear
map Az X—=Y such that . - - Lo : ‘
‘ o Az+y=0, (v, y)€A.-
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Pq‘oof Take the convex cone 0= Uo?nB into consideration. Of course, C also
A>

satisfies the oondl’mons of 1) and 2). Aooordmg t0 this, we obtain DA{z|C, %@} =X
and O sa’msﬁes three conditions of ’I‘heorem 1 Asa resul’o there exists a hnear'map
A: XY such that Agry>0, V¥ (z, y) €O This completes the proof. o '

Theorem 5. Let X be @ locally convew space; Y an order complete oa"derred
topclog%al vector space o, no'rmal “and int O,, L, T, fdot X OC:X—>Y isa contmuous

limear map amcl Xoisa fuecioo" subspaoe ihen ﬂwfie is a continuous limear ewtenswn A
X—=Y of A,. ’ . , ' _
Proof Let yo€int 0y, and we takeé a O'—neiéhborhood :V=yof-0§,. Since g is
~continuous, A;1(V) is'a rxeighborhood' o‘f 0in X,o. Hence, there is a 0-neighborhood
U in X Such that X, ofl U=47(V"). But X is a locally convex space, o there is a
closed and circled convex 0-neighborhood W T . ‘
For W, we can obtain a oontmuous ‘semi-norm p: X —>R, () ——mf{t>0 o€
tW?}, and have W= {mEX\p(m) <1}. o
Hence Vo€ XO, we have o/ (p(o) +e) EW, Ye>0. Therefore
Ao(a/(p(2)+&))ET,
that ig, Ao(m/(p(w)+e))<y0 Then, Aoa}<p(w)yo+ &%, V&>0. Slnce ¢ can be
arbitrarily small and owing to the consistency condition of an ordered ’ﬁopologloal
vector space, we have Ao <p(a)ys.
By defining a continuous convex map fi XY, f(o)= p(cc) Yo, We have Aw<<

(@), VoE X, Therefore, applying The_orem 2, we have a continuous linear

extension A: X—Y of A,.

In fact, all theorems and Lemma 1 except Theorem 8 in this section are

equivalent to Hahn—-Banaoh Theorem

§ 4. General Convex Vector Programmmg

Let X -and Z be vector spaoces, a,nd Yo an order oomplete ordered veotor space.
We associate two points — oo and +oco with ¥, denoting it by ¥oU {oo}. For any
subset ACY,, we say sup A=+ oo if 4 is non-empty and not bounded above; we.
say inf 4= —oo if 4 is non-empty and not bounded below. Besides this, we say
sup Yo=+o0, inf Fo=—oco, sup = —oco, 'and inf J=+oc0. Asaresult, to any
subset in Yol {0}  there exists the supremum and the infimum. Here, we can
assume — oo o0, ’ IR ‘ '

If there is a bilinear map <+, +>: X X Z—Y, then, to any map f: X->¥, | {oc},
we can define its conjugate: f*: Z—Y o) {0}, f*(2) =sup {<z, 2p — f(2) |s € X}; and

its seoondary conjugate f** X —->Y0U{oo} f**—- ( Vit )* Jf is a closed convex map if

f=r=.




118 Cr IN. ANN. OF MATH.V . , Vol. 7 8er. B

Prop031t10n 1. f%and f** are clossd convew.

Pfroo_f F* (@) =sup {{z, 2>—f*(z)|2€Z}=sup {<a, z)—alw>f (); 2€Z}=
sup {<z, 2 —al<y, »—a< f(2), Vye X; zEZ}, hence we know that if there exists a
© et { (2, o) |2 EZ, a4, EY o, AE A} such that f(w) =gup {<z, z>—06;,[7\.€/1}, Voee X,
“then J is closed convex.

Butb f*(2) =sup {<=, >—f(@) |2 € X}, that is, the set {(m, f(@)) o€ X} is that
kind of set mentioned above, therefore f is closed convex. For f*, its position is
symmetrio with f* and it's also a conjugéte (f*¥s). As is said above, any conjugate
is closed convex, so f* ig also closed convex.

From now on, we always let X be a vector space, Y an ordered hopologmal
vector space, Yo an order oomplete ordered topological vector space; and choose Z=
B(X, Yo) and <+, +> for <T', >=Twx, thatis, %o any map f: X—>Y,U{co}, we
define its conjugate and secondary éonjugate respectively as "

F*: B(X, YT oU{es}, £7(T) —sup {To—f(a) | o€ X};
| F* XY oU{oo}, fH*(@) =snp {Ta—f*(T) | TEB(X, Yo)}.

Besides this, we define a set—valued mép 2 f X—B (X Y,) as |
| 8f(2) ={T € B(X, Yo) |T(y—2) <f() —f (@), Yy € X},
and we call 9f the subdifferential of f, where we say 9f(2) = B(X Yo) if f(@)=
+c0; and 9f (z) =@ if f(z) = —oo.

A map f: X—Y,U{oo} is convex if its eplgragh
epi f={(@, ¥) EX xVo|f&) <v}
is convex. Let dom f={z|f(z) + +o0}. Clearly, we have the following result:
S is convex&Vmy, @2 € dom f, AE 0, 1),
| FOps4+ A—=A)s) SAF (22) + (1—1) f(@a).

Proposition 2. Let f: XY, U {o}. We have the following resulis:

a) If f(w) is finite, then T €0f () © f(2) +f* (1) =Tw.

b) If f ds closed convex and f(w) or f*(T) is finite, then T € af (w) & acaf*(T).

. Proof Fora), TE€2f(2) & T(y—o)<f)—f(), WEX & Ty—fy)<To—
| f(w% VWEX & Tao— f(w) =sup {Ty f(y) lyE X} f (T) & f(w) + (1) =Ta.
- Then, we have a).

Applymg a), we'can have b) : . :

For some convex map fiio—Y U {oc}, - suppose that we study the following
problem: . . R . S ; P
(P) inf { (@) “‘UE X}, R
- . which ig called a basic problem' Corresponding 4o the problem (P),: we give some
convex map &: X ><Y—->Y0U{oo} such that &(z, 0) =f(z), Vo€ X. @ is called a
perburbation. Besides this, we give a corresponding problem
(P | ~sup {~*(0, T)|TEB(Y, Yo)l,
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which is called the dual problem of Problem (P) ralated to the perturba’mon .
The values of (P) and (P*) are resPectlvely denoted by inf P and sup P*. Again,
we define a convex map h: Y=Y U {0},
. h(y)—inf {0z, v) [s€ X}

Proposition 8. . a) sup P*<inf P;

b) A (T)=d*(0, T), TEB(Y, ¥o);

) sup P*=4"(0), inf P=A(0);

d) The set of the solutions of (P*) such that sup P* s finite s oh™ (0).

~ Proof a), b) and ¢) are immediate from the definitions. We prove d) below.
Since k* and A™ are both closed convex, from Proposition 2, we have
T eon*(0) & 0cor™ (1) =ar* (1) & r(T)<h*(T), VT EB(Y, ¥y)
: o ¢80, 7)<a*(0, T), VTEBY,Yo) & T

13 the solution of (P*) such that sup P* ig finite. This completes the proof

Definition 1. Basic Problem (P) is siable if h(0) s finite and 0h(0) #(.

Proposition 4. * Problem (P) is stable < Problem (P¥) is solvable, inf P—supP*,
end this value is finite. Moreover, at this moment, oh(0) =0h™(0). A

Proof When we know that T € oh(0), since Ty<h(y) —h(0), VyEY, we have

REOE sup{ —k*(T)}=>—h' (=~ Sup{Tz/ h('y)} =h(0),

-, mamely sup P*>inf P. Bub we always have sup P*<\inf P, so sup P* inf P.

If inf P=gup P* and this value ig finite, then |
fea (0).6 ™ (0) +h () = =0 & 1 (0) +h*(T’) =0& h(0) +h*(T)
. =0& Teah@),
- and this meang that Oh™"(0) =0h(0): From these, we can come to our conclusion.
Theorem 6 (Criterion of Stablh’o}"). If C,, is normal, inf P is finite, and thers
ewist @, 10€ X (perhaps dy=ao) such that D (zo, ) doesn't iake +oo on an absorb sei
and D(z;, +) s contimuons at some poént, then (P) is stable.
Proof VyEY, since @ (o, +) doesn’t take +co on an absorb set, we have
. . : ' L Do, ty) #+o0
when # is small enough. But |
Rty <P(@o, ty),
80 ty € dom &, that ig, dom A is absorb.
On the other hand,Vy€Y, we can get ?\,OE (0,1) such that {(e—1)y/ME dom h.
And we can assume yE dom A, otherwise we have had h(y) % — oo, From
- 0=2o( (Mo~ 1)?//7%) +d-i0)y,
we have A
- inf P=h(0) <hoh(ho—1) y/xo) & (1:7;.,)%@) :
Then there must be A(y) + — co. That is, A does not take the value of — co.
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Let A= {(y, Yo) EYXY'o[h(y) ~h(0)<yo}. We have DA{yE Y| 4;%#¢}=dom A.
- Bince & doesn’} take — oo, we can see that .4 satisfies three conditions of Theorem 1.,
Then there exists a linear map A: ¥ Y, such that,
o V(, W(y)~hi0)) € 4, 4y- +h<y> h(0>>o
“'hat is -

— Ay<i(y) —h(o)., V.y‘EsY.;?" ' S
- But 2(y) <P (), y), 50 —Ay<d(a), y) — %(0). Sinéeb & (4", <) is continuous at some.
point, similar to'the proof of /s continuity in Theorem 2, we ];now that A is.
continuous. Then —A€2A(0). So (P) is stable. . =~ . 1 {0 i )

Propomtlon 5. zeXx,Te B(Y Yo) are frespectmely the sclutions of - (P) and.
(P, inf P=sup P*, and this valué is finite & T(z, 0)+d*(0, TH=0. . "

Proof =>: From Proposition 4, (P) iy stable. Then Pcont0). So h(O) +h* (T
=0. But, from Proposition 8, »*(T)=&*(0, 7); and 7 is a solution, then’ (7, 0)="
2(0). Therefore &(z, 0) -E—QD*(O T)=0. = Since inf P<®(2, 0)=—&*(0, )<
sup P*<inf P, we have inf P= Qi(az 0) = ~@" (O T) =gsup P*. Therefore, “wé have:
the conelusion. o SRR

.+ §B. Saddle Point and Lagrangian
Definition 9. Let A aml B are tfwo sets. For some map I A >< B-—) Yo U {oo}, we
oall (a, b) the saddle point of L if L(a b) is ﬁmte and '
LYY Ie, 9)<Ie, b)<L(s, B), VmE_A yEB
We clearly have
Prop051t1on 6 (Saddle Point Theorem) Thé: Following “#wo  conditions are
equivalent:- ' : SRR ’

© 1) (a, b) is‘the saddle point of L AXB—>Y0U {0}
2) a is the solution of 1nf sup L(m )3 b s the sol'wtfbon of Sup 1nf L(w y) and

the values o f the two pfroblems are ﬁmte and egual (to be L(a b))
Definition 8. The Lagrangian of Problem (P) related to the pertwrbczt/bon Q w
defined as L: XX B(Y, Y4)—>Y U {0} such that .

L(w, T) = —sup {Ty— @(w, y)lyEY}
Since

(int L(a, 1) =ink {~sup [Ty~ B, 4)]} = Ceup(Ty- (s, y)}=—@*<0 T), |

fhe Dual Problem (P*) can be Wn’ﬁten in the followmg form
‘ PN sup inf L(z, T).

B, Y0)X - WA L

If we let &, represent the map (g, «),. then L(w, T)=—&; (T) Henoe
o (B, T} =R = BN = B o e
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Therefore, if Vo€ X, ©,(0) = @**(0) or &, is closed eonvex, then the Basic Problem
(P) can be written in the following form
(P) mf L L(=, T)

From Saddle Point Theorem, we have :

Proposition ¥. If Vo€ X, &,00)=0;"(0) or D, is closed convem, then the
Jollowing two conditions are equivalent: '

a) (:3, T 4s the saddle point of the Lagrangian L of Problem (P);
b 3.4s the solution of (P), T is the solution of (P*), inf P= -SUp P*, and this
mlue is finite. ‘

§ 6. Rockafellar Problem

For a given convex map J: X X Y——>Y0 U {oo} and a hnear map A XY, we
consider the basic problem ’ ‘
(P) inf {J (=, A=) [mE X3
We define @: X x Y —Y U {0} such that &(z, y)=J (s, Aa; y) as its perturbatlon
Tt is easy to find that the dual problem of (P) is
(P ‘sup {—J*(T4, -T)|TEBY, Yo}
When J(z, v)=F(2)+G(y) , where F and G are convex, it ig the original
Rockafellar Problem, i. e: Fenchel Problem.
From Theorem 6, we have
Proposition 8. IfC,, is normal, inf B s ﬁnfété and there evists € X such
that J(wo, *) 48 continuous at y= Awo, then Problem (?) is stable.
From Proposition 5, we have :
Proposition 8. z€X, P€B(¥, ¥,) are qfespéctively the solutions of (P) and
(P*), inf P=sup P*, and this value s ﬁnite & J(&, Az)+J*(T4, —T)=0.

§ 7. Kuhn—Tucker S Theorem

- Let Y4 be an ordered topologloal veet01 SPaoe, Y, a topological veclor space,
and X a topologlcal vector space. Let- I D( ficx —Y, and ¢: D(9) CX—>Y, are
_convex maps, and h: X—Y; an affine map. Applying the results above, we discusy
the following problem of convex vegtor programming '

g f (@) —>min
@ g(w)<0 i
When X =R, Yo=R, Y1=F, and Y2-, By O nE N, it’s the classical Kuhn-
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Tucker Problem.

Let Xo={w|h(s) =0}. For convenience, we mark H the hypothetic conditions:

H: O, is normal, int O, #(@, int 0,,%0@; ¥, is a locally convex space; D'( f) N
D'(g) N Xo#@; fis continuous at a poiﬁt of int D(f), 4 is an open map from X to-
h(X); and 3 20€D(F) ND(g), g(w) <0, (o) =0.

Lemma 2. To problem ~ @) h i

#)—>min

| 2 { ey
we take perturbation @10 XX YVi—>YU{o} such that By(w, y)=f(2), @f g(2) <ys
@1(m, y) = +o0, otherwise. If Oy, is normal, inf Py is finite, int O, +@, and Swo€ D
(FYND(g), g(me) <O, then (Py) is stable. |

Proof Since @i(w, +)° constantly take f(zm) on {yE€Yi|y=g(z), from
Theorem 6, (P) is stable, -

Lemma 8. If O, is normal, int Oyﬁé(ﬁ, S is continwous at a point of int D( f),.
h is an open map from X to h(X), and Y, is locally convew, then for problem (Pg)

' ‘ f(@)->min

@y {7 % |

if inf P, is finite and DN Xo#¢ there ewists a continuous lfmear map M: V>Yo,

such tkat
f(@) —l—MOh(w)}inf Pg, VwE.D(f).

Proof We can a.ssume that inf P2;~—O and A is linear. Take
A={(a(@), ¥) ly=f(2)}.

We know that 4 is convex. We chsouss Ain Ah(X) x Yo

V(0, y) € 4, since k(o) = O hence Ffl@)=inf P,=0, so y>f(w) =0, namely y>0..

~ Take §=yo+f(20), 20E.D(f) N X0 and Yo€int O,,. Let

Ve={ul (4, §) € 4}.
Yu€h(X), we suppose u=h(z). Since mOED‘(f), hence 36>0, VAE (O, &), wo-{-hﬁ
€D(f). But
JFOz+0) -‘-=f< (Sm—l—mo) +(1—-~5-)mo)< f(Sm—}—wo) +(1—— ) (mo)

—f(-%) +5 (f@“""%) f(%)),

and yo>0, S0 When A=0 is much smaller there is ——-( Vi (8m+a:o) —f (mo)) <o. -

this moment, f (}\,az+wo) <f(®@o) +yo=9. On the other hand, Au=h(Az) =h(\z .—l—wo) .
Then (M, §) € 4, that is, MuE€ V. Therefore, V' is an absorb set in 2(X).

So far, we have proved that A satisfies the conditions of Theorem 4. Therefore:
there exishs a linear map M,: h(X)—>Y, such that Mooh(2) + 5 () =0, Vo€ D(f).
Sinoe f is continuous at a peint of 1nt.D(f) , similar to the proof of Theorem 2,
Mgoh is continuous. For any O-neighborhood ¥ in ¥, »ther-e. is a O-neighberhood 124
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in X such that ﬂOOh(U) CV. Bub his open, so h(U) is a neighborhood of 0 in
h(X), that is, there s W= h(U) such that Mo(W)<V. Therefore M, is oon’nmuous
in A(X). .

Moreover, from Theorem 5 there ig ﬁ X—Y,, a continuous linear extension
of M,. This completes the proof. '

Remark. The conditions “f is continuous at a point of int D(f)” and “A is
an open map from X to A(X)”. are requisite. In fact, we know that the first
condition is necessary if we take A=TI and let f(0)=0.' If we take f=—1I and let A be
an isomorphism, then Moh=1I, that is, the inverse map ¥ of b is continuous, so b
is open This meang that the second condition is necessary. - -

' From now on, we begin fo use 7’ to represent the element of B(Yy, Y o), and M
the element of B(Ya, Yo). Let B* (¥, ¥o) ={T>0}, and

K —{2€ X |g(2)<0, h(z) =0, s€ D(f)ND()}.
We take the perburba’ﬁmn D: X XY 1XY3>YoU{oo} of (P) such thab
& F (@), if g(@) <yo, h(2) =ya
(@, y1, y2) = {

. + oo, otherwme
Bince

— (0, T M)—-— sup[ Tyi—Mya Cb(a; Y1, Y2)]

AsY15 Yz

=inf [@ (v, y1, ¥a) +Ty1+ My.]
=inf [f(2) +Tyi+Moh(2) Ig(W) <wil
oo, if T1H>0
{mf [f (@) +Tys+Moh(2) |g(e) <vil, 1fT>0
oo, if TH0,
{ mf[f(w) +Tog(w) +Moh(w}}, 1f T>O

where, if —2*(0, —T M) is finite, Yy:>0, we have nT; > ~Tys — Moh(w)~
J(®)— 925*(0 —~T, —M), Vn€EN, and since Y, isor der oomplete we have Ty; >0,

that is, at this momient, T>0; but if D(f) N D(g) #Q, there iy —@*(0, —T, — M) +

+oo, therefore the dual problem of (P) is .
A S @) inf  [f(2) +Tog() FUA@].

T>0 VM €D ND@)

Theorem 7. If inf b s finite and Condition Hholds then, Problem (P)is stable
Proof Af first, we consider the problem
(B { f(z)—>min
, 9(2) <O,
where f is defined on D(f) ) Xo. We know that inf Py=inf P ig finite. (Ps)
satisfies the conditions of Lemma 2, so (P;) is stable. Ténkihglh=0 in (P%), we
obtain the dual problem of (P;) - A | ‘ |
(P sup  inf  [f(&)+Tog(®@)].

70 #€DU)nD@ N X,
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From Proposition 4, (P is solvable and sup Pt=inf P3,~ that is, there exists a
positive continuous linear map 7. ¥V4—¥, such that Lo
f(z) +Tog(w)=>sup Ps——lnf P, Vo€ D(f)N D(g) n Xo
Hence, to problem’
(P4> {f(w) +Tog(m)—>m1n
h(z) =0,
we know that inf P,—inf P is finite, where f( )—Hf’og( ) is defined on D( f) At
- D(g). (P ) satisfies the conditions of Lemma 8. Therefore there exists a continuous.
linear map M: ¥ 3—>Y, such that ‘ o .
f(2) +Tog(w) +Moh(x)=int P4=in-f P, Vo€ D(f)ND().
Moreover, sup P*=inf [ f(z) +Tog(w) +Moh(z) |s€D(FYND(g)}=inf P, that is,
inf P=sup P*. Again from Proposition 4, (P) is stable. Thig oomple’oes the proof.

From Theorem 7 and Proposition 4, we clearly have -

. Theorem 8(Kuhn-Tucker’'s Theorem). If Condition H }wlds, then - Problem.
(D) has the solution s=% < # €K, and there evists a pesitive continuous linear map:
P, Vi~ Vo, and a-continuous linear map M: Ys—>Y, such that o

f@)+Tog(e)+1 °h(w) =>f(#), VwED(f) nD(9).
HMoreover, Tog(z) =0.

If we take : o
L: D(f)ND(g) x B*(¥4, Yo) X B(Ys, Yo)—>T,

Lz, T, M)=f(2)+Veg(w)+Mh(a),
ihen, we can have Theorem 8 in another way. -

Theorem 9. If Condition H holds, then: Problem (P) has the solution v=2 &
zE K, and there ewists.a positive continuous limear map P Y- Y, and a continuous
linear map M: Yy Y, such that (&, (T, i1 )) s the .saddle point of L. Moreover,

Tog(z)=0.

Theorem 10. I f Conditiin H holds, then: (%, (T, M)) 08 the saddle pomt of L
& 5 is a solution of (P), (T; 1) is a solution of (f’ Y and inf P= =sup P,

Proof = Applying Theorem 9’s “<=", we know that % is a solution of (P)
and Tg(z) =0. From the Saddle Pomt Theorem, we know that (T M) is a solution
of (P*) and inf sup L=sup inf L=L(z, 7, M) f(a;) that is, inf P= f(w) =sup inf
L~=sup P*.

&: Since (T .Zﬁ) is a solution of (P), inf Lz, T, ﬁ)-—sup P*—int P= f(a;),
that is, L(a, T, M =>f(&), Va€D(F)ND(g).If we take =2, then Tog(z)=0.
But ¢(#) <0 and T>0, so Do g(z) <0. Therefore Pog(z)=0. On the o’uher hand we
always have L(a, T, M)<f(z)= L(a;, , IT). Therefore

L, T, M)<L(, T, I)<L(sz, T, i), Vo€D()N D(g), .
TE€B*(Yy, Vo), MEB(Ys, Yo).
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That is, (z, (T, #)) is the saddle point of L.
Usually one obtains the last two results by changing (P) into the followmg
form '

inf  sup L(w, T, M),

zeDFHHND() T>0,YHM
and then applying the Saddle Point Theorem. But this requires “Vo € X, @3*(0) =
-0,(0)”. Hence, this requires that ¥y has the property ‘“Ty; <0, VT>0 = y1<<Q”.
This condition is much stronger. ‘Generally, we only have “Ty;<0, VI'>0 = y, 3>
0”. Therefore, we try t0 make use of supinf L, a form of (P*), and to apply

‘Theorem 7, and deduce the lagt two result: Thus, on one hand, the condition

Tequired are weaker; but on the other hand, this makes the conditions consistent in
discussing the Kuhn-Tucker’s problems,
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