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THE OPTIMAL RATE OF CONVERGENCE
- OF ERROR FOR ENN MEDIAN
REGRESSION ESTIMATES
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Abstract

Let (X, Y) , (X, Yo), o+ (X, Y0 be iid. random vectors, where Y is one-
~ dimensional. It is desired to estimate the cond1t10nal median §(X) of ¥, by use of Z,=
{(X,, ¥,), i=1, ---, n} and X. Denote by Ent (X Z,L) the kNN estimate of £(X), and put
H,.(Z,) =E{[§M (X, Z,)—&(X) || Z,}, the conditional mean absolute error. This artical »
establishes the optimal convergence rate of P(H,(Z,)>e), under fairly general
assumptions on (X, Y) and %,, which tends to o in sormne suitable way.

§ 1. Introduction and Main Result

Let (X,Y), (X1, Y1), e, (X, Y.) be R®x R'-valued iid. random vectors.
Denote , : »
Zu={(Xs, 1), -y (X, Yo)}, X={ Xy, v, X}, @
Z, is the sample of (X, Y). The conditional digtribution function of ¥ given X ==
is denoted by F(y|z) =P (¥ <y| X =g).

 Suppose that R(z) is a quantity determined by F(y|z), and we Wlsh to
estimate it, basing on the sample Z,. The case that R(z) =E (Y | X =g), the mean—
value regression function, has been much studied in the literature. On oonsidéring
the robustness, Zheng Zhongguo proposed in [1] the conditional median ¢(o)——
the median of F (y|s), as the object of estimation. He introduced the h-Nearest
Neighbor (kNN} estimate &.,(z, Z,) of £(#) as follows: Introduce a suitable
distance |#—4'| in R®. Rearrange Xy, -+, X, aocording to their distances from s:

| X (@) =2 <[ X2 (2) — 0| < <[ X pu(2) —2].

Call {X,:(®), *+, X(2)} the INN of . Deno’ﬁe by Y ,.i(z) the Y -value
corresponding t0 X, (2), that is, V(o) =Y ; if Xu(o) =X;. &u(w, Z,) i3 defined as
the sample—median of {¥,4(z), e, Vot (o) }. Zheng gtudied in [1] the strong congis—
tency and asymptotm normality of ‘bhlS estimate.

Manucript received J anuary 25, 1984. _
*® The University of Science and Technology of China, Anhui, China.




130 CHIN. ANN. OF MATH. . -Vol. 78er. B

The mean absolute error, and the conditional mean absolute error for given
Z,, of thig estimate, are ) | |
Hu=B|6a(X, Z,) —€(X) |, and Hu(Z,) = B{|{n(X, Z) —E(X) |12}

- Tespectively. From a practical point of view the latter is more sensible than the
former. As pointed out by Wagner in [2], in | practice Z, is not always easilly
available. On the contrary, Z, is gathered during a period of time, and will be used
repeatedly in problems with the same nabure. '

The purpose- of this paper is to study the behavior of H., (X, Z.), as n—>oo

.and b= 70,, varies with n. A remarkable work of this kind of study is due to Beck

[3]. In his work Beck used 2 Yu(X)/k to esbimate E(Y |#). Denote by G, (Z.)
. ¢=1
the conditional mean absolute error E’{ gﬁy w@ )/ E—EX|X)]|| Z, } Beck estab~

lished the followmg exponentlal rate of convyergence

\ | P(Go, (8 >8) =0(™) _
under a number of eonditions, among which the crucial one is the boundedness of
Y. From a theoratical point of view the boundedness condition on Y is too
restrictive. We ghall tackle the problem under more reasonable condition imposed
onY. _ - o : o - .
Define m (a, p) as the largest possible absolute value of the p—percentile of

F(y[m) 0<p<1 and .
e, & =supfm (&', L23), uw'n<2uwn} 0<a<3.

The main resulb of this paper is as follows:
Thecrem 1. Suppose that 1°. F(y|w) has a unique median & (@) for any . 2°.

F(y[m’) AN .F(ylzv) Jor o'—w. 8°. B[G(X, 35)]<oo for some 306(0, %) 4°. The

distribution Q of X possesses @ density f, and for a>0 small enough.the set {z: f(z)>
a} differs Jrom some open set by only a Lebesgue null-set. Also, suppose that

: Fin/n—>0, log 1/, —0, for n—>c0, ,.('2)
Then Jor any >0 there ewists 0>0 (depending on & but not n) such that- ’
P(Hou, (Zn)>e) = 0(6“’“") )

: ThlS rate cannot be 1mproved further: For any given {k,} with k,—>oc0 and k./n—>0,
one can find (X, Y ) whose dlstrlbutlon satigfies the four oondltlons of Theorem 1,
butb for any ¢>0 and O>log 2 it is true that : S ‘

llm sup{e“‘"P (H e (Zr)=e)}=1, Y]

Oondﬂnon 8° i3 a mild restriction on ¥. In order that H,, (Z») is meaningful, ‘
we must have B |£(X)|<co. Condition 8° is stronger than this.- Hence there is a
question: Can condition 8° be replaced by. the weaker one E|&(X)|<oo? We shall
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show by an example that this is impossible: The condition E]f (X ) | <oo is nok
enough even for the far—weaker assertion that ,
hm P(H,,kn(Z )=e)=0.

Since in (3) k., may tend to oo with any rate slower than n, the rate O(e‘”"”)
given by Theorem 1 can be made arbltrarlly near O(e'“") but cannot reaoh it. One
naturally agks: Whether or not there exists (X Y) with ¥ unbounded such that
P(H ., (Z,)>e) =0(e"") for some {F, |, with F,—>c0 and Fra/n—>0? The questlon ig
interesting but the probable answer is not apparent 10 guess. ; A

‘We shall give the proof of Theorem 1 in §2, and then make some remarks
rela’oed to this theorem.

§ 2. Proof of Theorem 1

(I) Some prehmmary faots
1. Hoeffding inequality ([4]). Suppoma that the random vanable '3 obeys the
Binomial law B(n, p), then for any ¢>0 we have

P(|£

=—p >e)<2exp(—nsg/(2p+;s)).
From this the following corollary follows easily: Let Ay, <, A4, be n

independent events,
' min E(AJ =p">p>0.

I<i<n

Put
=§L1 L4,
_then R . ,
P(é<np)<2exp{—n(p'-p)*/p*'-n)}. (&)

- 2. Under conditions 1°, 2° of Theorem 1, the median {(z) of F(yl=z) is a
continuous function of . B o '
- The proof is easy and ’uherefore omltted
3. For ¢>0, define. ‘
f1e (@) = P(¥ <£ (o) —stw) fo(@) =P(Y>¢(@)+eln). ° (6)°
Suppose that conditions 1°, 2° of Theorem 1 hold. Then for any constant b, the sets
{5 fu(@) <8}, o u®)<0)
are both open. ‘ o
| Proof EVldently one only hag to show that
2, —>e=ylim sup fi (2, )<fw(w)) i=1, 2. " ™

Given £>0, find 5>0 sufficiently small, such bhat f(w) F e are (,onunultyi
points of the distribution F(y|z). Since £ (o) is conj:muous, we have



132 , CHIN. ANN. OF MATH. . Vol. 7 Ser. B

|& (@) —€(2) | <
for large n. Hence for large n we have
E(my) — <€ (@) — 49, €(z,) +8>¢(w) +6—8.
Therefore we have for large =,
fis(m’J <F(§(‘D) —&+9 I ) 5 f23<a’n> <1i- F(S(m) +e—-0d ! mn (8)
Since ¢ (2) F e+ are continuity points, from condition 2° and (8), we have
lim sup fu.(s,) <lim F (¢ (&) — e +8|2,) =F (§(2) —s+3|2).

Setting 8]0, we get lim sup fi,(#,) <f1:(#). The case §=2in (7) can be handled in

a dimilar fashion.

4. Under condition 2° of Theorem 1, we have

sup{|m(z, p) |:]o] <r}<oo
for any p€ (0, 1) and r<co.

5. There exist >0 and » sufficiently large such that Q(S,, 1»)=n for any »
belonging to the support of @ and |o|>r, where S,,, is the sphere with radius p
- and centered at a. ' ' |
These two facts are easily proired and details omitied.

(IT) Since ¢() is unique, we have

f5v5/6<m) <_;-— .

for all » and 4=1, 2. Choose b<—%~ so that Q(By)>1—g1e, where Bi={x: fi,¢6(2) <

b, 4=1, 2}, & is a positive number to be specified. It follows from (I) 8 that B; is
- open. By condition 4° of Theorem 1 one can find ¢>>0 such that {z: f(2)>a} differs
from some open set By by only a Lebesgue null-set, and Q(B3)>1—e;¢. So there
is an open set Bsc By By such that Q(Bs)>1—8eie, and ¢(w) is continuous
uniformly on Bs. »
For simplicity we shall call the set

{w= (1, **, Ba): G<OG<&+h, 1=1, -+, d} ,

a regular superoube with size A. Find regular Sui)eroubes Vi, «Vy ‘with the same

size such that V;CBa, ViNV;=0 for i, j=1, -+, N, 03%3’, and

2 QW) >1—4ess,

: sup{lg(w)—f(m o€V, }<e/B, i=1, «+y N. | 7
Denote by o(S1, S2) the distance of two sets Sy and 8, in R%, and by D(8) the
diameter of set §. Find regular superoubes Vi, ., V% with the same size ¢* such
that V‘ cV? (ﬁhe inner of V), =1, ---, N, and -

V‘ Q(VD >1-Bes. : ' ()
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———

We have {Amin p(V7, Vi—V7?)>0. Denote by [a] the largest integer not exceeding
1<ic¥ . ..

a, and

Cp= [q* (a‘n/ (2]0") ) l/dj s bn =‘q*/ Cne
From k,/n—0 it follows that 5,—0.

For each i (4=1, -+, N) there exists a family of regular supercubes H;={Ha,
Hy, «--} such that 1°. Each H,, has a size b,. 2°. H), N HY =@ for uwv. 3°.
Rd U H; ife
4°. There is a subset of H,, to be denoted by ¥ ={G%, -, G5} (I,=c), such that

UG

=1
N
Write ?;s’qg;. Similarly, the set {H;: H V', u=1, 2,---} will be denoted by
é=
Yu={Gu, G, -}, and gn——-@ Y. Evidently one has 4,D%; and 4,09, Also,
¢=1

if the size of V' is g, theﬁ the number of elements in ¥,; does not exceed
(g/b.)= (q/q*>"03<%‘ aq®n/k.

Hence, the number of eléments; in ¥, does not exceed -g- Ng®n/k,. Note that

-%- alNg® does not depend on n.

- Let Z Dbe a family of point sets in R%. For simplicity, we shall denote by (%)
the union of all sets contained in &#. Also, for a set BCR?, the number of X/s
(#=1, «--, n) contained in B will be denoted by # (B). Now define

‘ Gr=1{G- GEGy, #(H<h.}, i=1, -, N;
=§J15?:s-
For G € ¥ 5— &5, define | |
W(@)=U{H: HEH,, p(G, H)<D(&)}. :
~ From the definition of &7 it follows that if o €EG (Ge¥,,— ?Z;}, then X, (o) €
- W(@) for 4=1, -+, k,. Also, when n is sufficiently largé such that 4,<?¢/d, then
W (&) C(Eﬁmj. It is obvious that there exists constant m,; depending only upon d,
such that for GEZ %4~ Z%, W(G) can be exprossed as the union of less than mg
regular supercubes in H.. '

Since the volume of GY; is bi>2k,/ (an) and f(#)>a for € B;, a.e., we have

Q&) >2k/n. O
By Hoeffdmg 1nequa11ty one finds easily that
P(#(Qy) <kn)<2exp(—k,/5). , @n.

Put
Sa={F#(Gy)=>k,, for all G;EZ,}.
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- By (11),and notié‘iilg:thaf the ‘riumlébéi“"‘of- el'émeﬁ:%s"iin‘ f?,, does not'éﬁéée& -;; aN n/

k,, one finds that | . :
‘ P(S,)=>1—aNg¢nk;*exp(—k,/5). (12)

Since log n/k, —0, we have n=0 (exp(k./15)). Therefore it follows from (12) that
there exists constant 0>0 not depending on n, such that, A
. A P(S,)=1—exp(—0OFk,) . . ' - (13)

For snnpholty the symbol 0 will be employed o denote any positive constant
nob dependmg on n. O can assume diffrenit values in each of 1ts appearance, even
within the samd expressmn a h

(I1D) Now we proceed to prove fhe ﬁrst half of Theorem 1. we have-

P(H,,k”(Z )=>¢) ‘

<P{E[l§nk,,(x Z) 'f(X)II(g,.—g>(X)]Zn] ___' }

2.0
+P {Eflfnu,,(X Zn) f(X)IIw.. 9“>‘\X>1Z"] = }

AJ,,,+JEH . . ' (14)
Take J,, first. We have ‘

2SS SLIFINE S AT Fe STEA >~l )

w]r—n

—!—P{E’[]E(X\[I(g. @.,(x)lz,a‘ e ATt Th W

It follows easily from condition 3° of Theorem 1 that B{(X)| <o, Fmd M
sufﬁmently large such that

(f(w) ldQ(w) <—- :

i J(e HE (@) >M)
Then we have

Jh<P {Q((gf'* DN (16)
40 M )(see(g)) Since from (9) we have

QUEI-FDN =QUED) +1-QU@D) <QUED) +5ese,
it follows from (16) and the choice of g1 that

GhOOSe sle( )

| A 2n<P(Q((f¢*)>>0)<P(s¢*ae¢) an
Since {?j%qﬁ}'cﬁ’ by (18), (17), we have | o .
: L<P(B)<exp(—~Ch). | (18)

. To' deal with J! o, define a set T, containing all pomts Z, sahsfymg the
follewing condition: “For each sphere S CR? such that #(S) >k,., if
SNA{Xy, o) X} ={X, -, X}, |
then the number of elements in {Y,,, oy Vol Satlsfyihg the inequality

Y¢,<m(X¢,,‘—é—+30) o
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is not smaller than — 1(1—1—30) the number of elements in {Y iy o0 Yok satmfymb

the inequality Y; (X i —%—&J is also not Smaller than 5 Z(1+80)” Where 80

is the number appearing in condition 3° of Theorem 1. Note .that- the number of
diffrent sets formed by S {Xy, -+, X,} with all possible sphere-S, doés not. exceed:

n,

By the definition of m(m,‘p)s‘ and use (5), it'is not difficult to show . that ithere
exists constant 0> 0. not depending on X*={X,, +: X,}, such thab:under the
condition of given X, if a sphere § satisfies 4 (S)>F,; then the conditional proba
bility that § fulfils the requirement specified in the definition of T,,;ishod.:smallés
than 1—exp(—0Ck,). 00n81dermg 'bhlS and the remark made in, the end (of the. lasﬂi
paragragh, we geb

. P(T,| X" )>(1— e‘“"")”"’>1 n9d6'°""
Hence P(T,)>1—n¢"%. Since log n/k,—0, woé get
P(T,)=1—exp(—OFk,). (19}
(Notice the meaning of the symbol € explained earliery. : -~ ° . R
According to (I) 5 and k,/n—>0, it is easily seon from the Hoeffding inequality
that - : o _ ‘ 7 N
P(T¢,) <exp(—0n), for n sufficiently large, - (205 "
where T',, denotes the event “## (8, jo) >k,,, for any # belonging to the support of
@ with Hw">:r” ' -
Now We have:

Jow<P(T%) +P(T;,)+P(T NTw N {E[lfﬂk,, (X Z)\1 (g,,_w(x ) IZ,J >——})

: (21)
By the definition of T,., T,.,, m(w p) and G(m 8) , one hag for Z,€T,.NT,, that ‘_
|ém, (2, Z,) | <G (2, &), |@]|>r and n large. | " (22)“7
Further from (I) 4, it follows that there exists constant M. 1 such that
&, (&, Z) |<M,, |o|<r, Z,€T.NT,, and n large. (23

From (22), (28) and noticing that

A PU(Zi-Z°) <5616'+P<(g:)>)
we getb '

Bl|éa (X, z>|z(," 650 (X) | Z,1< j G(s, 80)dQ(z) +5Mye18

when 54 =¢, Z,&€T,NT,, and n large. By oondl’olon 3° of Theorem 1, choogse 5
sufficiently large, we can make the integral on the right hand side not exceed &/10.

Fix this r and hence M, ig also ﬁxed take 316( 503[ ), we get undelj the above
conditions (g* ¢, Z,€T,NT, and n large) that '
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B (X, Z2) | Iap-a5e(X) | Z,] <e/B<5/4.
Therefore, on noticing that {Z*% ¢} S, and (13), (19)—(21), we obtain
- <P (T%) +P(T%) +P(85) <exp(—Ok,). (24)
Now turn to Jy,. Define a set 7" formed by all Z, satisfying the followmg
condition: “For each sphere SR such that # (5) >Fk,, if
’ , Sn{Xi; ) n} {Xn) ) th}y
then the number of elements in {¥7,, ---, ¥, Satlsfymg the inequality Y,,j>§ (X))
—¢/6 is larger than 1/2, and the number of elements in {Y7, +--, ¥} satisfying the
inequality ¥, <¢(X,,)+¢/6 is also large than 1/2”. Qonsidering the choice of By in
(II), the definition of Sfuse(®), the fact that in the deﬁm’mon of By we haue b<
é, the definition of ¥\, V%, W(G), &%, and the fach that
{X (@), -, Xu(a)} W (G5 )c:V.
for s€GHEG— g:, we can show that
P(T®)>1—exp(—OFk,)
rby an argumen’ﬁ similar o that employed in dealing with 7,. Hence, 1f we put
T®={Z,: for each st € Z fﬁ x €V, for some i=1, -, m, -

| 'we have 1nf§(a>') —-——<§,,k” (w, Z,) < Sup E(@)+— },

;We shall have T‘z)DT,(,D, and therefore
P(IP)=P(TLP)=>1—exp(— O’k,.) (25) -
Since sup{|£(2) —£ () |: w €V, & EV}<e/6, for Z,ETP and wegj—-@f, we have
1£(&) & (&, Z)|<e/3.
Hence for Z, T we have
' B[ (X, Z2) - f(XHI@'—g:)(X)[Zn] <e/3.
From this and (25) we get : }

. J1.<1—P(T?) <exp(—Ck,). (26)
~ Finally, summing up (14), (18), (24) and (26), we gob (3). This congludes the
| proof of the first half of the theorem. |

AV). To prove the remaining part of Theorem 1, supposae‘that a sequehoe of
positive integers {k,} is given to satisfy k,—>o0, k./n—>0. Take a sequence of posi’oive

integers ny<ma< -+ such that il kv/n;<<1. Choose @ such that

Ek /n,< 1 <1,

§=1
a<~/2. Define a one-dimensional densfoy function f qatlsfylng the following
oondfﬁlons :

1. AL. f(o)dw=ak,/ n;, =1, 2, -5, . | | , -
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2. j:f(m)dm=1~w g B/

3. fis everywhere continuous on (—oo, o).
Now take d=1, and define a two-dimensional random vector (X, Y) such that X
has a marginal density f, and the conditional distribution F (y|z) of ¥ given X =0
satisfies the following four conditions: (a). F(y|z), as a function of (z, ), i
continuous everywhere on R%. (b). F (y{m}, as a function of y for fixed «, _is '
strictlyinoreasing. (¢). For all & we have -

Pla)=%, POl2) =%, F(~1|2)= 1-£.

| )= L
. 7 ( T, lw) 2
for v € (26, 2+1), ¢=1, 2, - It is easily seen that such a (X, ¥) satisfies all
conditions 1° ~4° of Theorem 1. ‘ R

@. .

v Denote again by Z,={(X,, ¥,), i=1, +--, n} the random sample drawn from
(X, Y), Xn={Xy, - X} Deﬁne 'the event s T

B;—{a b, < H{(2¢, 2'z/+1)}<cv2km} i=1, 2

(Remember that 4 (@) is the number of elements of the set Gﬂ X ”) Noticing’ (27)
and employmg the Hoeffding inequality, one sees easily that ‘
g_g@_P(B;) =1. . . ' : (28‘}

Denote the elements of the set X™M (24, 2+1) by Xu, -+, Xu, and their
oorrespondmg Y-values are denoted by ¥, -, Y,Ni Put
K= {Y.j>fmi/k,.,, g=1, -+, N;},
G,=B.NK, i=1, 2, -
Then by condition d of F (y|x), we see that for X™ & By:
P XM =(1a) (L) a0 | (29)

where 0= (—:2[— wg) - .

On the other hand, by the definition of kNN and the three conditions satisfied
by the deneity f, it is easily seen that {X,,(x), -, Xu, (®)}T(26, 2i4+1) and
Enin, (&, Zn,) =m0/ ki, for © € (24, 2'13+1) and Z, € G;. Hence ‘

214
mk"‘ (Zﬂ') >.[ 24 [ f”;"m (CU Zﬂs) 0 If(w> dw>7}a>7‘/
for Z, € Gy. From this and (28), (29), also noticing that P(G;)=>07"P (B) we get
hm 1 sup {0 P (Hop,,(Z0,) >s) }>1m1 sup{O’“"’P (&, )}>]Jm P(B; ) =1. (30)

Since g can be chosen arbitrarily near ~/ 2, (4) follows from (80). This proves the
latter conclusion of Theorem 1. The proof is completed. '
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§ 3. Some Remarks

1 If the condltmn 3¢ of Theorem 11is replaced by the Wea,ker ons’

SO @ <ee (@)
and' riaiittatd the other condnﬁlons then' the probablhty P(H ey (Z,,)>s) may nob
Eend®e’ zerlo. '

Choose the(X,Y) as in § 2 V), but modlfy the condlhons cand d 1mposed on

F(y|e) to: “F(O]w) ———, F(@m/k,.,[w) F(rbn¢/(2k,.,) |o) +F (— ing / (4kn,) |z) —

F (—in/ (8k,,) |@) =1—Fk;? for o € (24, 2@—{—1) , =1, 2, -...” Then the condition (31)
~ and the conditions 1°, 2°, 4° of Theorem 1 are satisfied. But an argument
§imilar t0.thode employed in: § 2 ( IV) yields ' ' ‘

11m P(H,.,km (Z,)=¢) =1, for any ¢>0.-

£

Y Vs bounded we have the followmg _ _ »
Theorem 2. Mainiain the conditions 1°, 2° of Theorem 1, and modify the

conditions 8°, 4° as:follows: 3. Y s bounded. 4. For suﬁicwntly small a>0 and
- suffioiently large A; the-set {z: a<f(w) <A} differs Jfrom anm open set by only a Lebesgue
nullset. Suppose that k,—>oo, 70,./%%0 Then for ang given e>0 there ewists >0
(dep@ndmg on e) such that . .
. - S P(H.u, (Z )>s) O(e’“‘) .
| Thxs can be proveel by oombmmg the methods of Beok [3] and the present
paper. Details are not presented here. ,' :

3. Even if ¥ is bounded one cannot es’ﬁa,bhsh in general a rate faster than the
‘bype of O(e™"). :

Ezample Take d=1. Deﬁne (X, Y), Whose dlS‘fiI‘lbU.thIl F(w, y) is as follows:
X has a marginal density (1— Ia;l)I( 1.1 (w), and the conditional dls’ﬁrlbutlon

F(y|o) is R(w—1, x+1). Here we have [Yl <2. Notlomg that

One g(e%é'P(Y}g/Q, b=1, -, n5=48”“. But l§(a:) [<1. Henoe
P (H ity (L) >—;—) >.4‘8_"' - é‘”",. C= log 48.
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