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NONLINEAR INITIAL-BOUNDARY VALUE
PROBLEM FOR QUASILINEAR
HYPERBOLIC SYSTEM®

Li DENING (ZF7T)*"

Abstract

" “Consider the nonlinear initial-boundary value problem for quasilinear hyperboﬁc
system: C o : '
. { atu=§}A,(u)a;,u+E(u)u+F, in (0,T) % &,
*
u(0)=0, P(w)u|s0=g. '
Lot k2 [ ]+6 (P, ) € H*(B,; Q) % H*(B,; ), and their traces at 1=0 are zero
up to the order k—1.
If for u=0, the problem («) at t=01is a Kreiss hyperbolic system, and the boundary
conditions satisfy the uniformly Lopatinsky criteria, then there exists a 7>0 such that
(*) has a unique H" soluton in (0, 7).

In the Appendlx for symmetric hyperbolic systems, a comparlson between ' the
uniformly Lopatinsky condition and the stable admissible condition is given.

§ 1. Introduction

In his paper™, H-O. Kreiss discussed the geﬁeral initialboundary value
problem for strictly hyperbolic sysbem, - employmg the method of microlocal
analysis. Since then, there have been a lot of developments in this du'ec’ﬁmn In
[13j, J. Ralston generalized the resulb ‘of Kreiss to the problem with complex
coefficients; in [9], J. Rauch proved the semigroup estimate of high order with
non-zero initial data, and the existenoce of differentiable solution; afterwards, in
[10], J. Rauch & F. Massey loosened the restriction thab the traces of data at t=0
should be zero, and they only required the natural compatiability. In their paper
[6], A. Majda & S. Osher discussed the problem with uniformly characteristical
boundary On the other hand, Ohen Shuxing and Zheng Sougmu discussed, in [2,

Manuscrived received Febmary 13, 1984 ,
* The result of this paper had’ been presented at the seminar of PDE, Mathematics Institute, Fudan
University, June, 1983. - .
*E Depertment of Mathemahcs a.nd Mechanics, Na.ngmg Institute of Technology, Na,nng, .Tlangsu, _



148 ' CHIN. ANN. OF MATH. A Vol. 7 Ser. B

8, 12], respectively, the linear boundary value problems for symmetric quasilinear
hyperbolic system, within the framework of admissible boundary conditions for
- positive symmetric system. |
In this papef, we want to genera‘lﬁze the above noncharacteristic uniform
Lopatinsky boundary value problém for hyperbolic system to the situation with
nonlinear boundary condltlons and of quasilinear system. For such " problems, we
prove the local uniqueness and existence of differentiable solutions (Theorem 2).
In our proof, the Newtoman iteration is not used for the boundary term, so the
- method ig different from MaJda 8in [8] and can be used to simplify the proof in
[8]. |
' In fact, using the technique of Beals and Reed in their recent paper [1], the
restriction on %, can be relaxed to

ko>| “;'1 ]+s.

- Well not go into the details of the proof here. In the author’s another paper on

the boundary value problems of quasilinear hyperbolic-parabolic coupled systom,
we have the similar regults’and gix}e the complete proof.
At first, we are going to give a simple description of the results for linear
problems, obtained in the articles cited above. .

Consider the following initial-boundary value problem for lmear hyperbolic
system:

a,u?Aiaf,,uﬂu.z: APou-+Hu+F, 130, 2,>0,
J: .

u(w,0) =F, i

Puls0=g, o
where A, B are m X m matrices, A;=diag (4}, 42), 41<0is an I x 1 matrix, 42>0
is an (m—1) x (m—1) matrix. Besides, we suppose that the elements of the above

1.1)

matrices are all smooth functions of (¢,4), and are constants when [t] + || >Ry,
Define ' :

MG 2 s w0) =Afl<s—¢} ﬁ A;w,),
=2 .

where w= (ws,***,w,) € By_y, s=1+i&, 10, ‘ .

. Definition 1.1. The system of equations in (1.1) will be called Kreiss'
 hyperbolic system if the following conditions are satisfied:

For every fiwed (o, mo, So=6¢0, wo) EQX.S, S = {(s, ®); |s[2+ |w|?2=1, Re s>

'O}, there's a neighborhood in which there ewists a smooth invertible matria T (¢, ,s, w)
such that TMT-*=diag (M-, M), where M;(t, @, s, ©) at (t, o, o, o) are
emactlry the Jordan blocks of M (ty, zo, iéo, wo), and M 1 (¢, o, i§, ®) is a pure
» émaginary matric when the e'z/gen'value of M; (to, @o, o, wo) is pure imaginary.
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Remark. Specifically, strictly hyperbolic systems are Kreiss' hyperbolic
systems (of.. [5]); besides, the symmetric hyperbolic systems encountered in
physics are Kreiss’ hyperbolic systems (ef. [7]).

When Re s>>0, the matrix M (s, @) hasl eigenvalues with negative real part,
and (m—1) eigenvalues with positive real part (ef [5]). Let V' (s, ) be the I—
dimensional linear space spanned by the eigen—vectors‘ corresponding to the
eigenvalues with negative real part of M (s, ®).

Definition 1.2. The initial-boundary value problem (1.1) will be called Kreiss'
well-posed 4f (1.1) is Kreiss' hyperbolic system, and for every (t, 0, ), 38>0 such
that

PG, 2)o(s, o) [ =8]0(s, 0)], ' C(1.2)
- where the constant & is un@form for all ve V (s, ®), Re s>0, Islﬂ-F low|?=1.
 For linear problem (1.1), we have the following '
Theorem 1. Let (1.1) be Kreiss well-posed. T hen

V(f, F, 9) € H*(@) x H*([0, T] x 2) x H*([0, T'] x2Q)

satq,sfymg the natural compatiable conditions up to the order k—1 at the corner pO’th
_3"70 >0 such that when =m0, (1.1) has a umque strong sohat@on

(u, v) € QG'([O, T1; H7(@)) x H* ([0, T] % 00)
satisfying the following energy @mquala,ty

’§) Ha;u(t) " —‘hDo’I+n"uﬂ709[0tt]Xn!ﬂ+ 2 H mu”%—ﬁ[‘)bfjxaa!ﬂ

\\ 1 , ,
<O <—,n‘ |F (3, c0.t1%0, 0+ | F 3. 200+ Ngll%,ro,nxm.»), 1.8)

where t<<T. When T =00, the first term on the left part of (1.8) disappears. And
the respective norms are defined by

IIQD“ky oyn = 2 rcj'n-'rﬁh l .Dk’qp l 2,-2nt do,

Iyl +%al <

where D denotes the inner differeniiation im o.

Remark 1. Tt is pointed out in [5] $hat for the probiem (1.1) with constant
coefficients, the condition (1.2) of the Kreiss well-posedness is necessary for the
estimate (1.3) to hold.

Remark 2. By localization and changing the localized domain to half-space,
we can congider the initial-boundary value problems in a bounded domain with

sufficient smooth boundary, and we have the same result correSpondmg o
Theorem 1.
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§ 2. Nonlinear 'Boundary Value Problem for
Quasilinear System, Main Result

\ Let Q be a bounded domain in R, with sufﬁclently smooth boundary 3.(2
Consider the initial-boundary value problem of quasilinear hyperbolic system:

6¢u=§ A,-@.,;u—i—Eu-%—F, B ‘ _
u(0) =0, R C B
‘ Pulsn=g. o
Here A;(t, , w), E(f, , u) are m X m matrices, P (¢, , ) is an X m matrix, the
elements of which are smooth functions with reSpect fo all the arguments and

depending only on # when {>T,. Wlthout loss of generahty, Wwe may agsume that
F, g are independant of w.

Let bo=2 [ 5 } +86, k=>Fko. In the followmg, we always assume (7, g) € H¥ (R"‘

X Q) x H(R*x2Q), and the traces of F and ¢ at t=0 are all zero up %o the order
k—1. For more gerieral condition u(O) =f#0, (f, F, g) satisfying the compatiable
condition of order &— 1, at the corner point, we can change it to the situation stated
above. But by doing 80; we may lose one order of differentiability.

Theorem 2 (Main Theorem) If for u=0, problem (2.1) is @ Kreiss well—
posed inttial-boundary value problem, then Ih>0 such that in [0, 21, (2.1) kas a
unique differentiable solution u€ H* ([0, h] X Q), which is a classical solution.

_ Theorem 3. I f for =0, (2.1) is Kreiss weleosed then ¥V 2>>0, 3 &;>0 such
that forr any (F,g) samsfymg the compaliable condition and
| |7 150 co,x80 07+ 19 s c0rmyo, < 81,
problem (2.1) has a unique solution w€ H ([0, h] x Q).
~ Aoccording to Theorem 8, we may also consider the umqueness and emstence of

solution for large h, near any given smooth solution.

§ 3. The Estimate with H ’? Coe*fﬁcients

In order to prove the above theorems, we'll practise iteration. By this, it is
necessary o consider the Kreiss initial~boundary value problem with coefficients
in H* and the dependency on its coefficients of the energy inequaliby of order £. _

Since the boundary is assumed to be smooth, and the composition of H*
function with 01—hémeomorphism (which belongs to H* at the sametime) ‘is again
an H* function, we need only analyze the energy estimate (1.3) for localized
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problem with its boundary defined by #,=0. When ¢=>T,, the localized problem is
a linear problem and has nothing to do with our iteration. So it remaing to consider
the following problem:

| o= jzn](Aj—;-a,-) Bupi+ (B+e)u+F, §>0, 5,0, |
=1 . . .
u(0) =0, : | ‘ - | (3.1)
(P+p)u|e-o=9.

Here u€ H* A;, H, P are constant matrices when [t[ +|#|>2Ry; a;; o, and p are
perturbations in H; (F , ) are the same asg in (2).

Proposﬂ:lon 3.1. Let k>2 [ ]+6 and (3. 1) be K'Tefbss well—posed when a;, ¢, »

vanish. T hen Je>0 such that of | @]k, 0, %000 [€] 1 0,09x00 1+ [P 00 oy o2, n<<6, (8.1)
s agm/n -@ Kreiss well-posed problem, and the constants C and 1o in the energy
inequality (1.8) depend only of the H* norm of A;, B, P, and are mdependent of ay, ¢,
Proof Let B(t, «, s, @) be the Kreis’s symmetrilizer for the problem (8.1).
Asin [7], R isof HY with respect to-(t, »).. Here HY is the uniformly H* space,
defined in [4]. Without confusion, we’ll denote by R the pseudo—dlﬂ’erentlal
operator of order zero with n—welghted symbol R(s, w). ‘ '

Set w=¢™"u. Applying the operator R to the equa,tlon (3 1) and takmg L2
inner product with w in (0, c0) X Q, we have

Re (w, Rpw) =Re (w, RA (atw nw — ﬁzAiaij)) —Re(w, RA-1Ew)
= 7

—Re(w, Re™™F). ,
. Since R is a Hermite matrix, B— R* ig an opertor of order —1. I't is easily seen
that

-

2Re (w, Ropw) < Re(w Ruw) Im1=0+"—"’w"0,(0y°°)x99

Whlle R ig the operator of order 0, it is a bouunded operator in I2. So
| (w, BA™*Ew) | <Cw[3, 0,-x0,
| (w, RAe™F) | <G"’w"o.(o,m)xa” e""F |6, (0,-y%0

<8on| w3, 0, =)x0 +';7' [ f’f—"tF 13, 0, pxa-

It is easily seen that the constants O and do depend only on the 1oca1 H¥* norms
of the coefficients. So we have o

(w, Rw) |¢,=O+Re<'w, RA™ (9-74-6,—]2:’ A,éw ) w)

<don[w[3, 01xa -i-%ll e F (5, 0 erxat ;70—11 0|3, o rx00- (3.2)

In what follows, we want to make use of the Lemma 4.2 in- [71, which statos
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that if 5=>2 Lﬁ

5 ] -+ 6, the operator 1i’A‘1<97-i-6+——\i2 Afaa,) differs from the oparetor
3=

with the symbol B(s, w) A7 (s—q) ﬁAjmj) by an operator R), which is a bounded
. j=2 '

operator in I? and has its norm bounded unilormly with respect to ». From the
definition of R and the Sharp Garding inequality, we have

Re (R(S, Ct))A-J‘(S—'I; 1_22445(0; ))?817’).[,
and when 7>>1,

Re <'w RA‘l(*n+6, EA!ac_,;) )>‘§2—77"w"o,(o.o;)xo’_

where the posﬂuve constant &; depeneds only on the local H* norms of the
coefficients. : :

For fixed (Zo, o), let R=R (to, o, 8, ). -From the definition of R(s, ®) in
[6], we have :

F @ Bu) |ao=3 [0, ) EGs, 0)iGs, o) @ da

>[4 s, @)1= 18-, @) [ do, (3.3)

where (s, ®) =, (s, ®)+w_(s, ») is the decomposition of w(s, ®) with respect
to the eigen-spaces of M (i, o, s, @) corresponding to the eigenvalues with
positive and negtive real part respectively. Since R is continuous in (£, z), taking
the localized neighborhood small enough, we have
(w, Bw) <(w, Rw) + ] w3, (0, c0yxa0, - (3.4)
where ¢ is sufficiently small.
Similarly, without loss of generality, we way assume the matrix P to be
constant. ' |

Making Fourier transform of the boundary oond1t10n, we gel
N
Puw=¢ “Tg(s, ), i.e.
A~
P1w++P2w =e¢ g,
From the Krelss well-posedness, det Py5=0. So one has

(s, ®) = P5'emg(s, @) — Pi*Prid,. (3.8)
~Taking the parameter » in (3.8) sufficiently large, we have -

%(w,ﬁw)amo}%ﬂ j (xib |2+ |ib- |2~ 2| P5%e~g— P5*Peivy |*)d¢ do

=C1 w3, o, yx00 — Ca]e™g "% (0, 02) X0+
From this, one gels the energy inequality of order zero straightly, with the
constants O and 7, depending only on the local H” norms of the coefficients.
Now we turn to the energy inequality of order 4.
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Differentiating the problem (3.1) with respect to (¢, #) ¥ times, one gets the
new problem with unknowns D*. The pri;:\cipal part of the new system is a block-
wise diagonal matrix, every block being equal to the principal part of the original
gystem. So we can construct a new symmetrilizer which is block—wise diagonal,
every block being equal to the symmetrilizer R(s, »). Then proceeding as with the
" estimate of order zer'o, we can get the energy inequality of order k.

Among the terms of the lower order in the new system, the one containing
normal differentiation 9,w can be expressed by the one containing only the
tangential differentiation by making use of the original system. So, generally, the
terms of the lower order can be written ag ' :

(Dle)(Dk"u’); lkil<k? ]kﬁl<k; lki+k2l<k°

Evidently, one of |k;| and lkgl musth 'be<-l2f—.- Oonsequently, one of the terms

D"@Q and D*; is uniformly continuous and bounded, which can be esfimated by
its continuous maximal norm, and so by its local H* norm.

Thus we have the H¥ estimate of the fangential differentiations of w. By the
non-characteristics of the boundary &Q, we can geb the estimate of the mormal
differentiation of w. This concludes the proof.

§ 4. The Solution of the Quasilinear Problem

We are now %o prove the existence and uniqueness of the local differentiable
solution of the nonlinear initial-boundary value problem (2.1) for the quasilinear
hyperbolic system. The basic method is linearized iteration. Noting thab the right
side of the problem (2.1), i. e. (F, g¢), isindependant of u, by the energy ine— V
quality obtained in § 8, we can use the usual method of iteration %o handle the
boundary condition, without applying the Newtonian iteration used by A. Majda
in [8], and thus simplify the proof of the Theorem. In [10], it has been mentioned
that the nonlinear boundary value conditions can be handled by the simple iter—
ation. Bub to the author’s knowledge, the proof has never been given. In fact, if
we retain u in (7, g), i.e. in the deduction of the energy inequality we consider
only the principal part of the system, -it’ll be nécessary to apply the Newtonian
~ iteration used by A. Majda in [8].

For the simplicity of notation , in thig paragraph we’ll always write

"u"kv [0y AIXQy g = "u";’fnh'fn " U/" k'EOyh]XQDﬂI [ U { Brhsns

@) s =TulEma+ 12
Now congider the linearized problem of (2.1):
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'at+U=ﬁil'Aj(u)a,,.U+E(u>UEL(u)U+F,

. J=1. . . . ] . .
v@©=0 - o (£.1)
rQ_g. -

Denote by % (e, h) the seb

%‘(s h)= {(u u); || (u, w) | [k,,,,,,\e, ’ohe traces at ¢= 0 are
zero up Yo the order & — -1},

For ﬁxed 7, the n—weighted norms of (u, %) are equivalent to the usual Soboley
norms. Aocordlng to the assumphon in Theorem 2, the problem (2.1) is Kreiss
Well—posed when %=0. So with & sufficiently small, the (u, w) in F (s, h)
guarantees the well-posedness of problem (4.1). By the result of linear problem
~and Proposition 3.1, (4.1) has a unique_solution
U, U) € H*([0, h] x Q) x H*([0, &] % 80)
satlsfymg the energy inequality |

Z 18iU (3) ﬂz—j,n.q‘f"?"U" vtrg |U| ,t.q<0k (""”F”k’tm_}' Iglk.t.q) (4.2)
Here t<h, and the constant O\ may depend on 7. ‘

Fixing 7 and taking A sufficiently small, we have

Ou (21Tt L9120 )< E

From it o
”UI%!7W7)+ {'Ui%!h’n<8.

Thus the resolvent operator .7~ of (4.1), J: (u, w)>(U, U), isamap from
% (¢, h) into F (s, h). So we can simply take (uo, %) = (0, 0) to guarantee that all
the iteration could be practised within a common interval of € [0, n].
To prove the convergence of the iteration, let
7 (’46»—1,.\”2;’-1) =y, W), V=t —uyy, (¥=1, 2, ).

So @, satisfy :
Ovy31— L) vps1 = (L(u) — L(tty-1) Y, -
2,4+1(0) =0, ) | . (4.8)
P(?-Z,,) WV+119§= (P('l-l:,,) 4?(’?&,,_0)%,. o
Noticing that P(u,) —P(%,_1) =0(|%,—%,_4|), for v,,1 Wwe have the estimate
] " (UV+1: 'Uv+1) [ "k Lhm\0<”(vv”k—i’hm”uvHIMMJ'I' ['D Ik—l hsn]'u’v Ik—iyhyﬂ)
In deriving the above energy estimate, we have used the fact that when

k>[”;'1 ] +1,

H* i3 a Banach algebra, so that

"wv”k,hm<0 ”u"k,h,n"’v"mhm
Because the traces of v and v at =0 are zero of order k 1 the constant O’ ig inde—
‘ pendant of small &. ’
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For & sufficiently small, sO < é , We get from the estimate of w,44:

fl (Vyia,. ’U»+1> Bt 0 << —“I (’Uv: 'v,,) Ne=1,10 7o

From this we know that the consequence (u,, w,) converges to a (u, ) m '
CHVI([0, ] x Q) x HF([0; ] x8Q).
Since {(u, %)}C (s, b), we have (v, u) EZ (s, h) CH* ([0, 4] % Q) x H*([0, &]
x0Q). (u, w) is the fixed pomt of the resolvent operator 7, i. e. the solution of |
(2.1). o
- The proof of uniqueness is similar, Suppose D) and (uay ug) are two
solutions of (2.1). Let D=1y — Ua. Then » Sa,’msﬁes
90— L(ua)v= (L(ua) ~ L(uz))uz,
2(0) =0,
_ P (’“1)’”[99'* (P (u2) — P () tia.
- And for v the following estimate is valid: \
I (»,v) IIik_i,h.,,<C’(Il’vﬂ -1,7»,7;"%2 2 a0 Eetn | o |t )
So for & sufficiently small ‘we have (v, w)= (O 0). This ﬁnlshes the proof of
Theorem 2,
Theorem 3 may be proved similarly, Taking notice of (4.2), when &<1, one
easily sees that the map .7 is an injective one from % (s, h) to B(e, h).. To prove
the convergence and uniqueness, one needs only to take & .éuﬁicieptly small,

§ 5. Application

As the application of Theorem 2, we consider the Euler equation in hydrody-
namics 'which depicts the uns’ﬁationary flow of ideal gas:

U -
1 P
Uy ‘
1 Iy + o Uy Ou, W
1 1 Us
(po)® P (po)*®
» 1 _ Uy _
u, B _ s u : -
" P ? P
o+ uz' ) a,;ﬂw -+ Us 3¢,’w
_1_ - Ug _:L Us
P (pc)® P (pe)®
- Usg _| = Us
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Here w= (w1, U, us, p, 8)%, (u1, ua, us) denotes the velogity of the gas, p is the
pressure, s ig the entropy, p is the density, and ¢ is the speed of sound.

This is a quasilinear hyperbolic symmetric system, and as pointed out by A.
Majda in [7], its linearized equation is a Kreiss’ hyperbolic system (cf. Definition
1.1). In [2], Chen Shuxing has considered the homogeneous initial-boundary value
problem in the domain [0, 7] x Q for this system. He has Prdved the existence and
uniqueness of local differentiable solution for the stable admissible boundary value -
problems. Now, é,pplying the Theorem 2 of the present paper, we know that when

- the boundary conditions are nonlinear and satisfy only a more general Kreiss well-
posed condition, the local differentiable solution is also exisbent and unique. From
the view point of physics, the usual linear boundary condifions are rather the
approximations of nonlinear relations. Our Theorem 2 ascertains that such
approximations don’t make any difference upon the exigtence and the uniqueness
of the local differentiable solution. :

On the other hand, it is worth pointing out that the Kreiss Well—posedness ig
the necessary condition for the energy estimate (1.8) to be valid in the case of the

- constant coefficient., Since generally the stable admissible boundary conditions and
the Kreiss’ condition are nob equivalent (cf. Appendix), the initial-boundary value
problems which could be treated by Theorem 2 are wider than within the
framework of stable admissibliitiy.

§ 6. Appendix: Comparison Between the Kreis’s
Well-Posedness and the Stable Admissibility

Here, we want to discuss the relation between the Kreis’ 8 well-posedness and
the stable admissibility of the noncharacberistic initialboundary value problems
for the Kreiss symmetric hyperbolic system. |

Proposition 5.1. For the noncharacterisiic imitial-boundary value problem of
the symmetric hyperbolic system with two imdependent variables (it is neoessamly a
Kreiss hyperbolic system) the stable admissibility is equivalent to the Kreiss well-
posedness , ' '
Proof In this case, the principal part of the system can be wrilten as du-+
Ad.u, while matrix A can be assumed.to be diagonal, A=diag (ay,-- wl,; @ri1,"*y Um),
where G,e* wl>0 Qi1 @y <0, :

Let the boundary conditions on =0 be written ag M %|s-0=g. Suppose V to
be the subspace spanned by the former | com ponents of vector u. It ig easily seen
that the stable admissible conditions and the Kreiss well—posed ones are all the

Same, i. e.
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| Mv|=8]v], VoET.
This concludes the proof. - ‘

Proposition 5. 2. For the noncharacteristic initial-boundary value problem of
the symmetric- hyperbolic system with two umknowns, the stable admissibility is
equivalent to the Kreiss well-posedness.

Proof Without loss of generality, we can confine our consideration to the
following problem:

{ 6tu=A6¢u+i Bidyu+Bu+F, >0, 1>0,

u(0) =0, P"'|¢=0"g:
Where A=diag (-1, x), >0, Pu=u; —au,, and

B l:ls b;]'
a b! G )

It is readily affirmed that the boundary conditions are stable admissible iff
la] <~/

We' 11 examine the Kreiss well-posedness. Denote

n
= :2=1 Bjow;,

(6.1

similarly are defined I+, b+ and a-w. Leb ,u,=—1—. Then one can compute}

—sﬂ—@bm %ba) 1
=ib-op (s-'@mw)/uaj'
The eigenvector of M (s, w), corresponding the eigenvalue A. with negative

M(s, ) =A-1(31~@B.w)=[

real part, is .
' v_=(ibw, hot+s—il-w),
with

A= — (?—M)s+gw~(wu—l) _[( (1-M>S+gw'(wu—l) )”

L
+ (0:8)?u+ (s—il-o) (s-—-q}w-m)u]z.

If b-w=0, then M (s, ») is a diagonal matrix, its eigenvector corresponding o |
the eigenvalue with negative real part will be (1.0)%, and we'll always have |Pu|
0.

Ifbo.w+#0, substituting the above v_ into uy —au,, we have Po=0 iff

ibew—a(h-+s—ilw) =0,
iff e}b‘w—!—fi,ay(n)—a\/(b‘co)”,w——'y‘?(ﬂ)=O, (5.3)

where

7(70 _ (a,w+l) - (1+u)( 7;?7+§)

Evzdently, (6.8) can hold only When 7=0 and (b a)) U — 72(0) <0. When
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(b.m2)‘,.¢,—-72 (0) =0, we have |a] —-—j—T— \/— When (5. Co)zpb 7%0)<0, according

%o the convention that we'll take the ‘quadratic roob Wlth posﬁnve real pard for n>

0, we know that ~/(b-w)? w—y (0) is a positive imaginary if 9?(0)>0, and

N (bew)?u—>2(0) is a negative imaginary if 7*(0)<0. We are going to consider the

sibuation with 7*(0)>0 (the situation with y*(0)<0 can be discussed snnllarly).-

Then (5. 3) is equivalent to: b« a)+a:7(0) —a/75(0) — (b-w)2u=0. So we have
—b-w

HORNIORGOES
Let X= 7(0) . Noticing the definifion of , we can gee that X may take any

[0-] 1

- Teal value when (£, ») varies on the umt sphere Now that lee] = )—m-;——-_——;, we

should have X >J w. Since X —/X*—p X*—p is a monotonously decreasing function
of X, and X =~/ is the minimal point of the function ||, we have [a[ > \/_

i e. |a|>~/x .80 the condition for Kreiss Well—posedness is also [a[ <\/ % . This
ends the proof. ‘

Generally speaking, the stable admissibility is not equivalent to the Kreiss
well-posedness. It could be shown by the following example:

| -1 ‘ 1
o, u= -1 6§u+ 1 SZ + Bu= F t>0 x>0, (54)
1 11 '
Lu(0) =0, Uy — Oigthg | g0 = g1, Ua— gl | =0 = Ga.
Now we have '
‘ -s .0 i
M, 0)=| 0 -5 iw
T I |
with its eigenvalue —s, ++/$+2w°. When w#0, the three eigenvalues are
different. When w=0, M (s, ®) is already a diagonal matrix. So (5.4) is a Kreiss
hyperbolic symmetric system.

The eigenvectors of the M(s, co) corresponding to the eigenvalues with
negative real part, are v;=(1, —1, 0) , 3= (iw, i, s—~/5+20%)*. Substituting -
- them into the boundary condltmn, Wwe can calculate that the Krelss Well—pOSedness'
will be determined by ' ‘

(a1+as) (s— /8 +20%) # 20, |52+ |w|?= 1 Re s=0.
- I n==0 £2<2w? the above condition is evldently satisfied. If £2>2w? the mva,hdlty
of the above condltlon means -
- for £>0, (ai—l—az) 2w(§ m -1
; for £<0, (og+ay) =2w(&{+ \/52-»20)2-’)‘-1. R
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From thig, one gets |a1+a2|>\/7. So for (5.4), the condition for the Kreiss
well-posedness is [ay+ay| <o/ 2. The sa’ﬁable admissible condition i easily proved
0 be of+af <1, which is evidently stronger than the Kreiss condition.

[1]
£2]
ra)
[4]
[5]
(6]
L71
[81]
£91
[10]
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