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" SINGULAR DIRECTIONS OF WF (u)
AND ITS APPLICATION
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Abstract

- This paper introduces the notion of the singular direction of wave front sets for

* distributions and proves the invariance of the singular direction under the elliptic
equivalent transformation. A kind of Fourier integral operators, which ensure such
invariance, are also investigated. The results obtained are applied to the propagation of
singularities for a class of differential operators with multiple characteristics.

~ As we know, [4] gave the important results about the propagation of
singularities for operators of principal type. [2, 3] investigated the same problem
near multiple characteristics for those of non—pﬁncipal type. The present paper is
to study a class of differential operators of non-principal type, t00. The purpose of
§ 1 is %0 refine the wave front set of distributions and to introduce the notion of
singular direction of WF (u). § 2 is concerned with the invariance of singular
direction under the elliptic equivalent transformation. Unfortunately, singular
direction is not always invariant under the transformation of independent
variables. In §3, a neoéséa,ry condition, in order that singular direction is
invariant, is given and a class of Fourier integral operators, under the action of
whiohAsingular direction is invariant, are studied. §4 and § 5 are devoted to the
propagation of singularities for a class of operatdrs with multiple characteristics.

'§1. Singular Directions of WEF )

Let u€ 2’ (D) Asg is well known, (2o, %) EWF (u) if and oniy if there exish
a (p(m) €05 (R") with @(z0) %0 and a oonical neighbourhood of ¢£°, 1”5(5") =
{£11£/16]1—€°/1€°| | <8} such thab gpu(.f) rapidly decreages in I'5(£°%). Let (my, o e
W P (u). The question naturally asked is whether there exist some part of I';(£°),
K, ) ={|é= 5\.§°+77€I',5(§°), n#0, n; 7° are perpendicular to £° and [n/|n|—
9°/|a°| | <8}, such that (pu rapidly decreases in K,(£°, 7°) for some ¢(w) €05 (R")
with p(@) #0. Indeed, we can introduce the following. :
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Definition 1.1. Let u€ 2(Q) and lot (@0, £%) ET*(Q). We say that 1° is not a
singular direction of WEF (w) at (w0, £%) if there ewist @ conical neighbourhood o_; &,
I'5(£°), and its some part ks(£°, n°) such that

. @) PA+ @D A+ PR ahdn<0y  (L.D)
=280 4nERs ($1,70),n L£0

 for some @(2) €CF(R™) 'wfbth ¢(@0) 0 and some integer | and any integer N. Denote
it by

| WESWF (u) (ao, £°). @
Remark 1. (1. 1) is equivalent fo ,

I () | AL+ ED A+ [P ahdn<Cy  (1.1)
§+AE0+nELs(£0,90) 1l n® ’

for other [ and Oy.

In fact, if (1.1) holds, by choosing new I>l+n/2 and applying Oauohy
inequality to (1.1) the boundness of (1.1") follows 1mmed1ately Assume,
conversely, that (1. 1’) is valid. Because pv €&’ (Q), the growth of gvu(f) at infinity
does not exceed that of some polynomial. It is easy to obtain (1. 1) after a choice of
another big enough . : | - v

Remark 2 Definition /1 1) is also equivalent to that»

)| (L4 €)1t |22 )7 <O (.17
when £ =AE* 4+ € (&2, 1), m LY, |
for some I',(£°), K ,(£°, 7°), some integer | and any integer N. Evidently, (1.1')
implies (1. 1) and (1. 1’).. But the converse proof is too long and is postponed
until § 2. This is an immodiate consequence of Lemma 2. 1.

Remark 3. (1.1) isalways valid for any I, N and any direction 7°1£° if l
(@0, £°) EWF (u). _

Let us consider several examples. If u=H (z,)H (z,4), where H(%) is the
Heaviside function, obviously, (26=0, &= (0, ---, 0, 1)) EWF (u). It is easily seen
that (4" M, 0) ESWF () (@o, £°) with 0/ %0 and (0, 1, 0) ESWF (u) (wo, £%). A
direct computation yields n° €SWF (H (2,)) (o, £°) for any 7°_| £°, whereas for any

7oL &% W ESWEF (u) (w0, £°) if u==;]§H (@,). However, there exist some points (a,

&%) of wave front set without any singular direction, but in contrast there exish
some points (o, {°) of wave front seb with singular directions full of all directions
perpendicular to £°.

Remark 4. If in Definition 1. 1 we demand that @(2) =1 near z,, no change
of Definition 1. 1 will happen.

Remark 8. Tt is not difficult to see that Definition 1.1 i invariant under the
translation and rotation of coordinates. '

Let 7y €77 (R") and let P and @ be pseudoditferential operators defined in some
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neighbourhood of ne, I'(n). According to the definition of [2], we call them
microlocal equivalence and denote them by P~@ if o (P) —c(Q) €8(I (n0)). We
say that P and @ are elliptic equivalence ‘at neg if A PA,~Q for some
- pseudodifferential operafiors A4;, 4, which are elliptic at . Tet P and Q be
pseudodlfferential operat(')rs defined in T° 1(m) <T*(Q,) and T a(ne) CT*(Q,), resp..
Assume that there existh a‘ homogenebus canonical transfofmation % from I'i(m)
onto I'y(ns) and an elliptic Fourier integral operator ab (ni, ma) associated with x
such that FPF-*~Q ab ny. Then we say that P, @ are Fourier equivalence. In this
paper, both of elliptic equivalent transformation and Fourier equivalent
transformation are called the microlocal equivalent transformation. One wonder if
the singular direction of WF(u) is invariant under the microlocal equivalent
transformation. Several propositions in § 2 will answer this question. '

§ 2. Singular Directions and Elliptic
Equivalent Transfomation

Because the properties discussed in this paper are all Jocal, we need only to deal
with the pSeudodiﬁ’eren’aia,l operators or Fourier integral operators defined in some
conical neighbourhood of a concerned point. Therefore, that we write 4 € L™ implies .
that o(4) €8™(I"(n)) where I'(n) is some conical neighbourhood of the point n
under eonsidemtion In the sequal, if no otherwise statement, all psendodifferential
operabors involved are properly supporbed. - |

Lemma 2.1. Let uc D' (R2) with (wo, &%) EWF (u). If 1 eSWF (w) (@0, £°) for

some 1) peaﬂpendfbcuZao to £°, then 1° ESWF (Au) (2o, £%) fozr any A€ L™
' Proof In view of Remark 5, without loss of generalily, we may suppose that
wo=0, £=(0, -, 0, 1). Let p(@), h(a) EO05(R") equal 1near wo. pAu=pdhu+t
. gvA(l R)w. It is evlden’o that g A (1—h)u €0~ near xo. We need therefore, only %o
investigate pAhu. By Definition 1. 1, we can assume that Au (§) satisfies (1. 1). Now
we write

P A (WD) (€) = [ =0 (8)0 (4) (&, i) d | @.1)

f +f ' +[ G OF (x5, n)dn de
RM\T's(E% T's(E\bos(£°,1%) Es($°,7%)

=TI (&) +I1:(&) +Is(6). - (2.2)
From the standard procedure of attacking the oscillatory integral, it follows thab
I, (¢) decreages rapidly in I/ (£9). ' ‘
' Leb us now study I5(€). Since hu& &’ (R"), ]hu(f) l<0(1+ !52[)8 for any { € B"
and some constant C. Take an integer I,> [s] + [m/2] + [n/2] +38.
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(1+!le) RSP AGE

L L et (1+[5|2)"l‘(1+l§ [2>N
TaCeo)\ksgt, %) A+[E=n)A+[E—7 )T

-I- Aa") Mi(I—4,)™ F do dm,
Where ¢'= (&, -+ £,1). Note that (1+ |¢[2)*<2''(1+|n|2)!*! and
[&'=n'[=0(¢'] +[']), §EK6/2(§° ), ?JETa(f")\Ks'(&", 7). (2.8)
Direct computation yields , '
| (1+|§I2)"‘(1+l§’|2)N|12(§)|<0’x - (2.4)
‘when k<N, N <N, and EEK, (£ n). '
It only remains to deal with I5(¢). GhOOSe l'l—-max (b, T+1+ [m/ 2]) Thus
|(1+lflg)“"(l-i—[flg)NIa(E)l |
: [ e ¢ o ) (1 — ) V[ (7 (I 4 )N‘ do dn
» Es(£,m0) . a+ [E 97!2)”‘ ' :
<Or - ‘ (2.5)
when N 1>l’ In gettmg (2 5) we have used the fact thatb hu(n) satisfies (1 1) in
K ;(£° 7°). Now the proof is complete, because (1. 1) implies (1. 1).
Corollary 2.1. (1. 1) implées that (1. 1) is valid in K, (9, n°).
Proof Identity operator I isalso a pseudodifferential operator. Let »°&

SWEF (u) (o, £°). Substituting I for A in proving Lemma 2.2, we can at once
obtain (2. 4), (2. 5) and prove that 7;(£) decreases rapidly in I'y»(£%). So (1. 1") is
proved.

Corollary 2.2. Let u€g’ (.Q) and let AEL™ be ell@ptw at (mo, £9). Assume n° is
perpendicular to £° Then the fact that n° € SW F (u) (%o, £°) implies n° E SWF (Au) (o,
£%). . ‘

Proof Corollary 2. 2 is a direct consequence of Lamma 2.1 and the existence
of parametrix of elliptic pseudodifferential operator A.

§ 3. Singular Directions Under the Coordinate
Transformation and ‘the Fourier
Equivalent Transformation

Before discussing the behavior of singular direction under the coordinate
transformation, we have to introduce the following

‘Lemma 3.1. Lot u€D'(Q) and let BE°ESWEF (u) (wo, &%) where B° is
perpendicular to £° Then there exist positive constanis 8,, 8; such that any (w, &) E
WEF(u) if (o, £) €0s,(wmo) X K5,(£°, BE®) where O, (w) stands for a ball of radius Oy
with xo as its centre.

Proof Lebt BEESWEF () (e, £%). By the definition (1., 1) and Corollary 2. 1 one
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can find a cutoff function g, which does not vanish ih some neighbourhood O;, (o),
such that (1. 1) holds and a cone .Z’a,(fl) c K (&, E°) It § 7\.§°+n€l“5,(§1) with

7] &° Wehave
l7~l<01nl, (8.1)

where C is a constant mdependent of A, n, Thus from (1. 1”) it follows that when
§ 7\‘§0+'5]€r& (§1>J T S 4‘ T '.'_ P ," : ) " :

|¢u\§)|(1+l§.°l2)” I¢U(€)|(1+I7»§°+nI2)N

h <00nst | é)l(1+l7»é°+nlz) ’(1+l?7!)””<0v

Lemma 3. 1-is proyed. - T U ’

Let us consider a ma,ppmg @ m;———yi(fz,—' oty R 1) Bi =Y~ (g/l—}—, +y2
which is a dlffeomorphwm of Rj-onto Rj. Leb u=H (y,,) mth (4o=0, n°= (O
1)) EWF(u). It is evident that @°e:S’WF (u) (yo, 7% for any 6° perpendlcular ’oo
7°. Under the induced mappmg of @, (4o, 1°)—>(mo, £ =(0, 0, -, 0, 1), B*—>E°
(ay/am) (mo)O" and u—a@*u H (m,,-i— 'Zim ) But ""°€SWF((Z5*u) (o, §°) In faot
WF (D) = {(m 5) @+ 2 2f=0, 0#¢ parallel b0 (2m’ 1)} Hence (Oaz(mo)x

K, (&% B°) ﬂWF(@*u) + ¢ for any positive ‘constant 3, and any J;, which means
that B° € OW F(@*u) (ws; €°). This example shows that singular directions are not
always invariant under the coordinate transformation. Next we shall point out that

singularv directions may be invariant under some circumstance.. ,

Definition 1.2. Let y be a diffeomorphism: T*(Q,)DI1(mo, £%)—> Ia(yo, n°)
T*(Q,) with x(@s, %) = (o, 1°) and let y(, E), n(w, &) be homogencous of degree zero
and 1 im &, resp.. z 98 said to be parallel at point me with respect to £°, n° if there ewists
- @ neighbourhood of @e,-0(%0),. such that n(x, £°) =n° for any @€ O (o). .

Remark 1. If x is parallel at @, with respect to &° 7° ib follows that
on/0x(w, £€%) =0 as € O(w,), which implies , :
- det ( on (o, £°) )#0 de’n( %y (b, §°)> R (8.2)
since x is a diffeomorphism.. SRR v :

Let { € R™ and letb I, s‘ﬁand for a plane Wl‘bh C ag its normal Denote by II, » the
projection of the vector v on the plane II,i. e, 1, [ U= v—<fv O /gl

Lemma 3.2. . Let 5 be ahomogeneois d@ﬁeomoa’ph@sm from' IT'(wo, &%) T (2s)
onto I' (3o, 1°) cI*(Qy) with qq(wo, £ =12, y(ws, £°) =vyo and let yx be parallel at zp
with respect to &%, 1°. Then for any O, (mo)x K 55(5" ”0) I (mo, f") where S'OJ_§° there
ewist constants 8y, 9, such that L . :

| YO 5 X K&, B D0 < EnGh, 8, (3.9)
where @ =11, (677/8«5 (o, £9)E° : ,

Proof ESince the oondltlons and conclusions in Lemma 3 2 are invariant under
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the translation and rotation-in bage Space, ‘We. may. assume thab my=gjy=0, &=1°=
©, -, 0, 1). Without difficulty we can prove that the inverse mapping y~* of the
homogeneous diffeomorphism. 4 is .also parallel. at- gg with respect to n°, £°, too.
Application of (3. 2) o %~ gives deb @ /on(yo, %)) % 0, det (8w/0y (@0, £°)) 0. Of
course, x~1: £=£(y, ), Evi—-w(y; ) is also “a,_%inicf)hhf;d"gén;bils'diﬁ'edmorphism from
I (4o, 1°) onto I (@, €°)."One  can find ‘a. conical neighbotrhood “O(gy) xI'(n®) <=
I'(yo, n°), €%y, 1°) as yEO(yo); Under the present coordinates €)= (""y=0 (§j=
1, +, n—=1). By.the homogeneity of £ (y, 1), we have 0= (£%), = 2(&Y3/0m (y, n°) ()
=8(&)3/2m.(y, n°). It follows from det (2¢/5n(yo, 7)) %0 fhat. L
O onse, )40, .9
The key 10 our proof is to find small enough constants 3, and &, such that .
(3. 8) ‘holds. Suppose that (g, ) €04, (o) x K, (0, 6°): Then =
165y, m) | = [(3&/oni(y, m)) )a] OB, ma]  (J=1, o, md), — (8.5)
where constant ‘0 is independent of 4, m. On the other hand, [&.(y, 7)| >
[0&5/2ma(y, )| — 33, | | Using (8.4) and choosing sufficient small 8, and o, we |
canget . = . R R o S
|€.(8, m) | >Cs|ma| when (y, ) €0, (50) x K, (o, €°) (3.6)
for some positive constant C5. From (8.5), (8. 6) it follows immediately that
€' (9, 1) [ <O, | .| when (y, n) €05, (go) X Ko, (3o, 6°).
Choosing 8, small enough we have ¢ (Y, m) € I's,(£°). It only remains 16 show E(y, n)
€K, (& 8. Evidently, £(y, n) #0 when (9, 1) €0s,(4) XK 5,(n% @), since the
mapping x~* is a diffeomorphism parallel at 9o With respect to 7%, £°. Let ug estimate
§'(4, m) /€ (y, n)|. By the definition of @° in the present lemma, (@°);=2n,/8¢,(x,,
€% (8°):. From the fact that o¢’/ oy(y, 1°) =0, &;/0m. (Yo, 1°) =0 (j=1, -, n—1)
we deduce - | - S

© =1 . .
(8)="3 S, ) (e 8.7
Let n=An+1/ € K, (+°, 6°). Then - -
n—=1 r1 ' . L
£ wren =5 & et
' ‘ n=1 r1 ! : o .
Sl e @

Henoce when M+rEER,, . o
- ~lm &y, )/ €y, »)|

= gaf’/am.(yo, ") (6% / lg 3¢’ /om(yo, n°) (6°): l
~B°/| 50, R (5.9)

In getting (3. 9), we have tsed (3. 7). Now we come to the conclusion that one can
choose 3, 3, small enough such that o
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-~ e

If'(y, /€ (y, m) | =8/ |B°}| <8
when (y, 1) €0y, (v0) X K, (7, 6°), which means {(y, ) € Ko (€% &°).
The remainder of the proof is to deal with @(y, n). Because

| 120, )| = ooy 727 ) ==(se. =)
it follows: that o(y, 1) EOaz(wo) when 8, and §, are small enough The proof is
complete : :
Proposﬂuon 3 1. Let uc 9’([2”) with @"eSW F(u) (yo, n®). If the d%ﬁ’e—
omorphism @: 2,—>Qy, with @ (0) =Yo satisfies ' '

(2L @ =(ZL) (o= | |
when @ is in some neighbourhood of @, O(w,), - (8.10)
then E°ESW F (g*w) (@0, £°), where B°=1I14((8y/0w)* (20)6°).
Proof The induced mapping in cotangent bundle of g, " 2=97(y), &=
(8y/ow)*n is parallel at yo with respect to 1%, £€° because of (3. 10) . Remark 5 provides -
that we can assume 2o=1o=0, £%=2°=(0, -+, O, 1) . Under the present circumstance

<05(8 +6,,),

(3..10) may be written as

Y/ 0m;(w) =0, € 0(%) and 9z /3% (y) =0, yE cv(O(mo)) (G=1, -, n—1).

| (8.107)
Let us turn ’oo the study of the behavior of p*u near (2o, £°). Take functions
. . . 2 /:\ ) . . 7

WECE(Q,) (h=1, 2) in such a way that & (xo) %0 and hy (p~x(y))u(n) satisfies (1.1)
for some I's(n®) and K ,(n?, ©°). Other restrictions on hq ‘will be described later.
This is possible since @°ESW F (u) (Yo, 1°)- ‘

/\* . % ] .
hahap*u(§) =<hihap™u, €7 _

A
J , +J +j hau(n) I (€, m)dn
ROATs0)  JTaO\Es(0,0m  J Es(n0,0% A ‘
=11(§>+12(§) +T:(), : E (»3-11)
where hu=h (¢~ (y)) u (y) and

(6, ) = [omteiornnd by (g(0)) |2o/2y 4D 0.

"By the standard procedure of dealing with odeillatory integral, we can find a positive
‘constant 8, such that I (¢) decreases rapidly in I';,(¢%). Consider, now, Is(£). From
TLemma 3. 2 we see that for some O, (%) % K5, (£°, B?), if necessary, taking smaller.
61’ . . ) - .

2" (9(0(20)) x K s(n°, €°)) D04, (w0) X K5,(§% E°) - (8.12)
gince ¢ is parallel at g, with respect to n®, £° Choose ha€ 05 (0s, (mo)) with support
so small that am”/éyj=0 when y€Supp hs(p2(y)) (=1, +--, n—1). Then for any
NeZ,
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(IO | @+ 1€]D)A+ | €]2)r
f Es(n0,8°) g-i(wz(v):zwj;,)m () @+ [E]H 7+ ¢ ]2)¥

I =4))" (hy det(9w/0y))
(1+ : <3w/ay>t§_,ni2)l+N
The special choice of /,y provides

((_2_;)# §>I r;(_‘%a;_:_)‘ ¢ When:y"c' supp hz(qfi_(y)), - (3.14)

.(1+ [£’|?) <const. (1+ 1(%>t §" 2)
oonst. (4 [[(22) e] —o )b
By an argument similar to Lemma 2. 1, we have o ’

ILOIA+HED A+ EmI<o. (5.15)
The remainder of the proof is to study I,(¢). From (3.12), (8. 14) we can
deduce that when ¢ € K, (£°, B®), n€ I's(n2)\Ks(n°, 6% and y€ O(@/o),

o , '
ox[(G) el v ~(5r) &=
which implies that for some constant 0,
(5) e~ |+ 14/1) when £ € K&, 59
and (y, )Esv(o(mo)) X (Ls()\K (% 69)). - (3.18)

dwdn. (8.18)

Thus

On the o’ﬁher hand
(I Aﬂ )f’XP( — 4 (mz(?/) &i— .%?75))

=1+| 79?,/- § —-y" exp(f@(mz(y)fz_-yiﬂi))

/Nt 2 '
=(H( L) | Yo (-itmE—um).  @an
| Combining (8. 16) and (8. 17 ) and repeating the same argument as in dealmg with
I3(€) in Lemma 2. 1 we can geb

[ I.(&) | A+ €)1+ [5'[2)N<O’N when fEKa,(f" ""0)
Proposition 3. 1 1is proved.

Remark 1. Proposition gives the invariance of smgular directions under the
affine transformation of independent variables. :

Remark 2. Consider a local diffeomorphism: Yn="2, V5=0;(@)(j=1, -+, n—1)
with det (8p/0a’ (0, 0)) %0. Then its induoced mapping in ootangent bundle: x,=y,,

i=9;(y), £ =(8y/0a)* is parallel ab yo—0 with respect to == (0, -, 0, 1),
A since (8y/0m)* (2)1° =¢° as @ is in some neighbourhood of @, =0

Propos1t10n 3.2. Let x be a homogeneous canonical tmnsformwtwn Jfrom
T (o, 7°) CT*(Q,) onto I' (m, £°) T*(Q,) and let % be pcmzllel at yo with respect to
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w0, £0. If @ ESWEF (u) (yo, 1), then Tn(8E/0m) (yo, 7°)6° =B ESWF (Fu) (yo, 7°)
for any Fourier: mtegml oper mﬁoa“ assoomted with . L

Proof It suffices to prove the case of 97 §°—(0 l; 0, 1). The parallel
property of x yields det (8¢/am(yo; M °))AFO By ‘he theory ‘of Fourler integral
operators ([5]) one can find a generating funotlon S(a, 77) such -that: the phase
function of Fourier mtegral operator gv(a; y, 97) S (w, .,7) yn a.nd ‘the homogeneous

Sanonical transformation may be written as

¢=08/00(w, m), y= 35/3n(w 'n) - (3.18)
Now the parallel property of x gives = S S A
: Se (s, 1°) =0, Sa,.(-’v 97) =0 - (3-19)

when # is in some ne1ghbourhood of a; G(mo)
The assumption @°ESW F () (o, 7°) provides that there is a. functlon REOT (.Q,,)
with-s=1 as y is in some neighbourhood of yo, O(yo), such that hu (n) satisfies
(1. 1'). for some I’s(7%) and K,(7°% 6°). Furthermore, from (3..19) we have
- deb (Sen(@. 1)) %0, V(z, n) €0 (@) X Ls(n°), S (8.19)
if neoessary, shrmkmg T's(7°). Because F(u)=F (hu) +F((1—h)u) and (a;o, £ E
F(F(1—h)u), it suffices to study F(hu) From Lemma 8. 2 we can get
2(0 (o) x Ks(x, 8)) D0(ae) x K (6% &) - (3.20)
for some O(y) and K, (¢° B°). Without loss of generali’éy, Wwe can assume fhat
(O (%o) X I'3(n°)) 20 (o) % 1’5, (§°) Let y €05 (O (0)). Then '

m &= [ RMTs(r) J' ra(n°>\Ka<n°.@°§ j' Ks(n“.®°)hu (IS, n)dn. ,
SLOFROFLO, 3.21)

where )
I (f ) ?7) ]‘lli (m)a(w ﬂ) gﬂﬁ(w n>—m(;» dm

and a(=w, 1) is the amphtude of the Fourier m‘uegral operator ‘under conmderatwn
Along the familiar line of dealing with. osoﬂlatory integral we can also find another
smaller 8; such that Iy (f) deoreases rapidly in I, (£°). Note thafn Lo

tsce, (L= A (@Ya(a, m) g 2
I(s; n) = J (e =t ) (1+I’S:x(w’4;]) G£l2>;”]ﬂ dz G 22)

(8. 19’) provides thab .

€] =8z, ) | > Const. Inl when (=, 97) GO(%) Xfa(n")
‘B_ecause Borm, (2, 0, 1) =0 and So, (@, 1) =S, (®, 7 /1 1) we have

e llg@r(w '7]) | = ESGI,,,(!D, 9'1)"7:"“8«:'%(” )7

'Sw’m (m, 77) M+ I algw’nn/an (‘U 9 W,/’?n: 1)"'1 dé . (3 23)

T <00nst A . - : (3;24)
In view of the 1nequa11ty R ‘ - " L
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(1+I_§|2) ‘<2'”(1+l§ 8o (2, ?7)12)”'(1+IS (2, 97)!”)"

<Oonst. (1+|€—Su(a, ) [DA+|2|D7 7 (3.25)
and by the same argument as in Lemma 2. 1, we can obtain

| @l e e <o (3.26)
for some I and anyN L A R DRI S KOAME
. Now we procéed to study I 2(5) (3 20) glves

R

Sule, =g, L NCE: )
when € 0(a,), £€EK. 5(£° B°) and n€ Ls(n”)\K 5(77°, @"3 Whlch 1mphes - ‘ -
|8 (2, m) =& =C(&]+]7']) (8.28)

for some positive constant ¢ when z, &, 7 are in the region in questlon In fact, if
there exist sequences of 2,€ 0(zg) and (1, €% € (Iy(n°)\ K (1%, 6°)) x K, (£°, BO)
WIth 1 (nk) | + ] (&5 | ~1 such that o
S @] [Su(m, )= (@ [500>+00), (8.29)
obviously, (f") '—0 (lc—>+oo) If {(4*),} are bounded and nt—sn* € I'y(°)\ K. 5(77 , @0),
then 8, (2", »*)=lm SG'(wk, 7") =1lim(§¥)" = 0. More over, the canonical transfor-
mation x maps- ¢ =8,(z* 7 j, */ 8., (2", 7)) to (o, §°) By ‘the parallel property

of the dlﬁ’eomorphlsm % one’ can come 0. the eonclusmn =8, (2", 7 = (0
0, S, (zv ")), which contrad_wts l(n"’) [+ [( £/ | =1. Let us consider the case ’ohat

{(n”) .} are unbounded. we can assume tha’u (7 ,,—>+oo and (77’") '>g¢€ R"“l\{o}

So (@, 1) =S (% (?7") '/ (97’%, 1 (77") +ﬁ5'm (% (?7’9 ), 1) o
(3.30)

Noting (8. 23) and 2/0% (Sws,). (.'z: 0,1) =0/ 377,.(
k—>=o0 in both sides of (8. 80), we have at once
0 Sa;'qlkm O 1)0
which means #=0 since det (8,,(z", 0)\-=de’n(;S' (2%, 1°)). This also contradicts
the fact that | (%) | 4| (¢%)'| =1. The assertion of (8. 28) is proved. By means of
(8. 28) and the same way as in Lemma 2. 1 it is not difficult $o prove that
LA+ DA+ [ED7<Cn, .

lwhen € K,,(&° B°) for some 1 and any N. The proof of Ploposfm,on 8.2 g
complete. S '

57 >(m , 0, 1) =0, and '191]'bltrllgv

- Corollary 3.1. Let the wssumpmon i Pmoposwtwrn, 8.2 be fulﬁlled If Fourier
imtegral operator F is elliptic at (®0, €% ¥o, 7°) and @0 €ESW F () (yo, “), the«rg EO__§
SWF (Fu) (6, £°). o .,

The proof of Corollary 8. 1 is the same as that in Oorollary 2.2 and need no’i
be repeated. o : ' ‘
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§ 4. Propagatlon of \mgulamtles for a Specml
Differential Operator

The purpose of the presant Seo’olon is to apply the results obtamed prewously
* to the propagatlon of singularities for a special differential operator , ,
Lu=tu+b(2)u=Ff, in Q=0,% QR ’ (4.1)
Here b(a; Y ECs(Q,) and O0€ Q,. We have
Lemma 4.1. Let u, Lu€ L*(Q). If Re b(#) >1/2 as s€ 0, then

—J mm-lf(m M)A, - (4.2)

For the proof of Lemma 4. 1, refer to [6, Lemma 8. 1]. By analogy with [6
Lemma 8. 2], we have o
Lemma 4.2. Let f€L*(Q).. Set no= (w0, t, £% 7°) = (O 0, 0, 1) I f B°E
SWF () (ng), @t follows that thea*e exists @ funot@on hEQCF (Q) with h(wo, tp) %0
satfbsfymg
.6, )| (L [€[3 401+ [€]2)7 <O (4.3
Jor some | and any N, Hemﬁf,‘—-=h(m,' 1) f (@, At) and Oy is éndqpendent of A. Throughout
this section, if no otherwise statememt O is always independent of A. |
Proof It suffices to prove ‘the case thatb for FE€(Q)NLA(Q) there exish
I'3(£° +°) and K,;(£° 7° E°) such that |

fw,ﬂo'go) 12, o) | L+ | €129 L+ [€]2)Vdt dE <O (4.3)

for some ! and any N. Otherwise, we in#estigate @ f instead of f, where ¢ & 07 (2)
with =1 near (@,, t*). Obviously, when » &€ 05 (Q),

A\ u :
i, ) =[hE—n, v~10)f(n, Yamdo

S IS | B~ v=20)}(n, O)dndo
R™MTs(¢0,7%) Ta(6® 7N\ Es(£0,7°,E") Ka(£0,7°,8)

=L(§ ) + 1€, ) +Is(€, 7). o “.9
We have ‘
|A(E~n, 7=10) | <Ox(1+|E=n]*+ |7~ AR (4.5)

since A €05 (Q). Without difficulty, we can derive ‘
=P+ lr—o [*=Cu([€ 2+ 0[P+ v R (4.6)

when (&, %) Epa(£° %), (m, o) BR\I's(§o, v°) and AE [0, 1]. Along the familiar
line it follows at once that I;(£, 7) decreases rapidly in I'5(£°, v°). Inserting (4.5)
into (4. 4), we have

| Za (€, #) '<0sz |/ (n, o) 7y dn do..

o (L+[E—n[2+[7—Oh]
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By means of (4. 8’) and the same argument as in Lemma 2. 1, the mequahty
[Is(¢, ) [ (14 ]2+ A+ ¥ <Oy (4.7)
is obtained immediately. In view of the fact that when ( f, ) €K,/ (£° 7°, B,
(n, o) € T'5(&°, 170) \K;(€°, 3%, BY), the inequality :
|€—n[=0a(|€] +|n]) (4.8)
holds. By a standard procedure we get the estimate of Ig(§, ) similar to (4.7), if
necessary, choosing larger 1.
Lemma 4.3. ILet u, Iu € L*(Q). Assume that Re b(w) >1/2 as a:EQ cmd H"e
SWE(f) (n). Then E°ESW F () (ng).
' Proof TFrom the assumption of this lemma and Lemma 4. 1, it follows that

u(a, §) = J N’“’“if(a: A)dh.

Choose k, %, € 05(Q) in such a way that by = 1 ag (w, t) € Supp hand hf,_ (77, a') satisfies
(4. 8). We then write

hite, =) =Toiu(s, =)= 6= w0, WM, ©) drdoan,  (4.9)

where

Rl W) = [0, ez
the absolute value of which is bounded by | ,
- OxAT (14 [€]2+7) . - - (4.10)
Here 1/2< b*<mm Re b(x) over £2,. This oondﬂsmn ensures J’ Ayt d?u<+ oo, The

regh of the proof is the same as that in Lemma 4. 2 and need not be repeated.

Proposition 4.1. et u, LuELQ(Q) and let Re b(2)>1/2. Assume tnat B°E
SWF(Lu) (no) and (o, t,, B°, AT®) EWF (Lw) foa‘ some T° and any A>0. Then (o,
to, B, AT®) EWF (u) Jor any A>0.

Proof From Lemma 4.3 and the assumption that B ESWF (Lu) (ny), it
follows that 5°ESW F (u) (ne). Lemma 8. 1 shows that there exists an 0,(wo, %,) %
K, (§° 7°, B)cT*(R:) not meeting with WF(u). Evidently, one can find a
constant 4°>0 such that (z,, ,, & B, A°T%) € 0y(mo, to) X K,(&°, 7% B°. It is easily
seen that Hamilton vector field, H, is unradial everywhere at the bicharacteristic
strip v: (wq, to, H° , A7) A>0, Therefore 7 does not meet WF(u) since 7y does not

meet WF (Lu).
§ 5. Applications

Consider a pseudodifferential operator P with
' 0 (P)~pat-pr+poteee



172 YLV OHIN. ANNDOF MATH. & %S0 Vol. 7 Sér.'B

with real pringipal symbol PR . S T
c e py=t? +’e(';ra’t‘ &y, S (6.1)
where.p, is-homogerieous of - degree Ia in+¢, 7. The' fundamental hypothems in- 'ﬁhIS
Section is N L P

e(:o £, 0, q,—) =0, a;ﬂ(m 0,0, %)=0 (_7 1 O 1) (o 2)

Evldently, onE {f 0, 5 (fi, e fn—i) 0}, Hp, is pa.ra,Uel to 5 5 *8 ( 661

26] studied:the mlorolooal eqmvalent transformation about (o 1) Satlsfymg (5 2)
Now Wl‘hhout proof we list the relevant results. = .. - : R RV
Lemma-8.1,. Let (5..1) satisfy. (5. 2). Then , for any (a:o, O O 70) theq*e emst
 conical ne@ghbowrhoools Ii(m, 0, 0, 1;0) CT*( )_,'wrn.d Iy(0, 0, 0, =% CT*(R
homogeneous oanomoal tmnsfowmat@m v 1€ (m f ,“Rz,-)v'—'—é(yi, e Yy M, o0, ) E L
anil & Fowrier: mtegml operator assoviated with 1 sich that e
1. 7,=7, ya=a(t+e(w, t, £/7, 1)) for some a €8°(I'y) with a]E#O
{§. 2 w@thE = {Yn=0, 77 =0}, we have. x(E{‘]I‘f} =2 ﬂfg, N
s, FPF“1~A1 (yuDn +q(y’))Ao fo'r cortain pseudodwﬁerentwl opemtom A1€L
A € L° elliptic at (0, 0, 0, 7°), where _
9 = (pi/7) | =1~ 1+~/_1 “inod real part. (5.4)
‘We shall show that the canonical transformafmon x is parallel at (@o,0) with respect
to (O 'v") Indeed, from 1 it follows at onoe that-dn;/ 0t = {1, m;} =0, 8y;/0t={ns, ¥s}
=0(j=1, -+, n—1). Since 2(3NTy) = z'nrg, 7(2, 1, 0, ¥)=1(, 0, 0, ) =0, |
which 1mp11es ’nhe 4ssertion expected. In view of pr0p081t10n 3. 2, “the sungulaz

RS
CR

direction is 1nvar1ant under the: mmrolooa,l eqmvalen’ﬁ transtorma’mon deﬁned by
‘Lemma 5. 1.. . - .7 7 s PO -
Lemma 5.2. - Lét the prrfmorapal symbol of P, Coe ST v
p=tr"+tve.(, ¢, §) +eg(a>, £ € . (B.5)
where e and, es are real and homogeneous.of ‘degree 1 and 2 in £ If es(o, 0, £) %0,
thete emist the null-bicharacteristics.of P,y (s) and y_(s) défined in (0, si] and [—ss,
Q) for some positive. constant s and. . (s) = (a:i (s) t.(s), fi (s), wi(s))—e(wo, 0, § )
FoodassE00, o L e T
" Proof . Hamilton vector field of P ig noverned by
e

5 —61,;t1r+62,;, 75 = —~t'vei,m—ea,c,
dt d’v’ 9 .
- =2t +tes, T ('v + (ter)w+ea,s). (5.6)

A change of variables: m’=m, f"—'——‘ 5, w=1/%, T '=i'z}é, ‘gives at once the reduction of
(5. 6) to |

IR P

do’
ds

. dg i —T’}LbAs"-Ad-)
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%@’._T(A +40), Ity A dgr, (5.7)
where A;(i=1, 8) are O'°° functlons of @, §’, T, ;1, in the domain wunder
consideration. Take " S : AR

4 _wOJ g § ki ,U: O T“_eﬂ(m(b : ‘fﬂ » L (5 8)

as initial Value Ae is well known (5 8) (5 ‘P admits a umque 0= solution =
2'(s), §=&(9), n=p(s), T=T(s), s€[—s, 8. Hence y.(s)=(@'(s), T(s) u?(s),

£'(s), 1/u(s)) defined in sE(O s1] -and s€[—s;, 0), resp., are just the null-

bicharacteristics of P required. The proof is complete. Next we shall call , (s) the
§*—family of bicharacteristics of P, denoted by 7.(£"). It seems that the ¢*—family
of blcharac’nerlshcs 1s a.nalogous to the f —-—reﬂectlve famﬂy of bmharactens’ﬁlos
in [1]. 7 . :
Theorem 5 1 Let (5 1) samsfy (5 5) Assume tka;t Re \/ 1 pi/*r>3/2 on 2
and ey (2o, O £ )%0 fo'r some £¥E R”’l\{O} If u, PuELQ(.Q) §*E;S'WF(Pu) (a;o, N
"0, £1) and 7. (§) NWEF (Pu) =, then 7. () NWF (u) = F.
. Proof. Evidently, Theorem 5. 1 is an immediate consequence of Lemmas 5.1,
b. 2 and. Proposfﬁlon 4. 1. The details of the proof are omitted. e
, Remark The conchtmn Re \/ 1-p1/%>8/2 on 3 may be expressed by & COOT-
dmate—free form. Indeed 4% is equivalent to. that the ‘real part of the subprmcupal
symbol of ~/~1 P on 2>1.. . I SO

::::::
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