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NON-EXISTENCE OF LIMIT CYCLE AROUND
A WEAK FOCUS OF ORDER THREE FOR
ANY QUADRATIC SYSTEM"

L1 OEENGZHI (%7?&, )**

: Abstract

In 1980 Professor Ye Yanglan proposed a congecture that around a weak focus of
order 3 of any real quadratic differential system there can exist no limit cycle. It is the
purpose of thls paper to gzve a proof of the conJecture by using the method of con(:muous

variation ofa coéfficient.” : - :

- It i @n interesting problem to- determine whether there exists a limit cycle
around a weak focus of order 3 of a quadratio system (H,), because this problem is
closely related to whether: there exist four limit oycles around one singular point of
(B,): In 1976, L. Cerkas™ proved that there can exist no limit cycle around a weak
foous of order 3 of (Ey)when |n| (the absolute value of a coefficient) becomes largs
enough. In 1980, Professor Ye said™: “..... Wang Mingshu and Cai Suilin proved -
indepently that there can exist no limit oycle a,round a Weak focus of order 3 of (Hs)
for the cage of n=0. But up to now none can prove the same conclusion for the case -
of n#0, although it seems right.” The above-mentioned two papers were published
in 1981 (Cai®) and in 1982 (Wang™). A‘fterwa,rds' Du Xingfu™ generalized this
result to the case of n= :F_—Jz"l, +1. In this paper, we'will prove that this conclusion
is true for any case of —oo<n< +oo. Therefore, a proof of prof. Ye's conjecture
will be given. The proof will be divided into ten seotions.

§L Transformation of Equations and Problem: (E:) =
Lienard’s; Limit Cycle= Intersection of Curves

Without loss of generality, we can assume that a guadratio system with a weak
foous of order 3 at the origin is of the form (see [6], Oorollary 8 and Remark 2 of
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Theorem 1)
%—— -—y+ww9+bwy,
dy b—3n @b
9=t Tg o* 4-Bawy +ny?,
moreover ‘ . -
Wa=a®(n—2b) (8n—b) [6(n+8b)a®+ (n—b) (2n+b)*] 0. 2

Obviously, from the first equation of (1), the.straight line 1—bz=0 is a line
without contact. So we only need %o consider a half plane mcludmg the origin: 1—
b2>>0.

By Liu Jun's transformation™ the System (1) can be transformed into an v
equation of Lienard’s type

dw =V —F(2), o
ﬂl:’“é’(‘”),
dq;
Where
(F() =, LG 12028 —my¢—51¢
|- BR[O srone s o2

+ ( b ‘53” —‘2b)w+1},
| H(z) = expf lb +bn§ | | |
The origin remains his position when system (1) is transformed into (38). If there
exists 70 such that g(z) =0, then there exists a singular point P(z, F(z)) of (3)
on the straight line I: »=7. Suppose that system (8) has a limit cyole around the
origin. Then it can not intersect with the line I. In fact, on the line I above the

point P: %—>0, below the point P: %‘;—<Or. On the other hand, a limit cycle of (H,)
can not include two singular points. Therefore, we only need to consider the
interval wo<o<<X, in which vg(#) >0 when £%0. Let G'(=) =J: g(§)d&. We will

prove that in #; — 2, plane two curves defined by ‘
F(o) =F(2:), G(01) =G (@) (2o<t3<0<3:<X), (5)
do not have any intersection point for any a, b and n, so long as the condition (2)
holds. Therefore, system (8) can not have any limif oycle around the origin (See
[81).
Notice that F and & are continuous fuctions with regard to 5. So, if we prove-
that two curves defined by (5) do not intersect for any b+0, then they can not
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have any s—point of intersection for =0 (the defination of s-point i given in .
It implies that system (5) can not have-any limib cyoie a'round the origin. Therefore

wé can suppose b+0, and further supPOSe b=1 (othervnse let m—% z, y=-=- % y in

(8), then 6=1). In this case the system (1), condl’olon (2) and formulas (4) become

ERE

regpect1vely )
| %%f;?/+“$2+“y, o
Vg 1ise ©
—E%——m+ E m+3awy+ny, o
v Wamat(n—2) (Bn—1) Bn+3)a*+ =1 @a+ 1T 20, (@)
and 3 L
w [(1—38n) +5(n—38)a*]2*+8[ (2n+1) +54°]4° ——3(n+3)w+5
» AC ) (I—g)23
Let
OEELCINCIOR FAGLAE
0
Congider AR L S R
By calculation we have S
2
z=1-m, B
B = g,,ﬂ ey, WhoR A0, £,
~ - S | ‘ gﬁkﬁk g=‘1.—m,. o SO | )
. G( ) ~ T0n(me—1) (4%2 1) zgf"ﬂ’ Jem1, ,When n#0, x5, £1,

Where :
[ o= —n(n 1) (2%-}-1), . _
= (1) (4n—3), . ©)
ag=—2n(n+1)(n—-2), = ' : '
[ Bo=5n(n—1) (4n°—1)a?, |
' Bi=—10n(n*—1) (2n—1) (dn—3)a®, |
{ Ba=8(w*—1) (4n°~ 1) [(2—1n) +5(2n— 3)a?], O @0)
U By= = on(nt—1) (2n-1—1) [(7—6n) +5(4n—9)a?],
7 Ba=n(nt1) (4%2 1) [(1—38n) +5(n—3)a?].
By transformahon 2=1-—g, the origin of system (3) becomes pomt (1, 1). We can

conS1der the followmg equations instead of (8) when n%O :l:—l—, +1:

 Fa)=F(z), Gl)=G@) O<t<n<l<zn<Z), - JLy
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where =
: B
F@) = g a;:.z) G(Z)“"Z'm—n;z)—r ST o A (12>

Notice that two curves deﬁned by (11) do not change when we add a constant
to F(2) or G(z) in (12). S0 we can suppose that F(z)+F(25) =0 when we consider
whether the pomt (21, 22) 19 OT DOt the intersection point of the two curves. From
(11) and (12), we have

%Bk’z’{ =<ﬁ>2<n+1)= 76:20 042y
4 o ! ; f - 2 . B
'}1 125 P 2 0525

: =) A = : : :
Qalculating it by uSmg ©) and (10) , and reducmg the non-zero common faoﬁor

n(n?—1) [6(n+3)a®+ (n—1) 2n+1)] (21 —2) (sée (7)), we obfain
H (24, 23) =ho(s1+22) -0 (2] = 23za+25) + Rataza+ha (21 +22) (21 +22)
+?\A4(21+22)2122+7\:5(2122>2;{'7&62122 (B+zazatad) o0
FAg(2428) 2 (2r+2a) Hhs(2122)° =0, (13)
where . , T e
" ho=3n(n—2) (n—1) (4n*~1),
M=—2n(n—1) 2n+1) (6n—T), SR
~~—6(n —1) (n—2) (2n—1) (4n— 8), R
=n?(4n*—1) (Bn—1), ' : RN
d x4=4n<n —1) (4n—38) (6n="), SRR ¢ 1)
d=—6(n2—1) (2n+1) (8n?—15n+8), . -
A h6= —2n(n+1) 2n—1)(8n—1)(4n—38),
1=38(n+1) (4n*—1) (5n* —bn— 3),
7\,8— —12n(n—2) (n+1)2(2n+1) ‘ .
Below (in section 4) we will use (18) instead of the second equaﬂnon ‘of (11)
Notice that (13) and the first equation of (11) do not depend on the parameter a. Tt
means whether or not two curves defined by (11) have mteISecnon pomt is not

related to the conoret value of the coefﬁcnen’s a.
It is our purposa 0 prove that two curves deﬁned by (5) do not intersect when
Ws#0. This oonolutlon ‘hag been proved in papers [8——5] for ’she case of n 0

+ %, +1. When n#0, x ; , =1, for any a,sé() ’ohe two curves deﬁned by (5) are

the same with that defined by (8). Moreover, whether or not two curves have
intersection poin® is not related to the eoncret value of @, and so are the coodinates
~ of the intersection point, if it exists.. The differente between (5) and (8) is only that
when a=0 the ﬁrst equation. of (5) can't define a curve, but (8) can still define two
curves which are oontlnuous with regard to @ If two. curves deﬁned by (8)exo
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intersect, then, as a result of letting @ tend to zero, the two curves defined by (8)¢=0
must intersecﬁ 100. Therefore, we only need to prove two curves defined by (8)s-0

don’t intersect When WS%O and n#0, -_!-%, il

§ 2. Preliminary Study of Curves I's and g

‘When n + 0, :!:i +1, system (8) can be transformed to (11). Let a=0. System

2 3
(11) becomes (still use F; @ to express the functions)
F(zl) %F<Zﬂ), G(Z:[) =G(22) : (O<Zo<h<1<22<z), (16)
where ' : o
FG)-otoziod g fotBuths @)

the {&;} are the same with (9), and
Bo= =8 (n~1) (n—2) (2n—1), |
Bi=2n(n—1) (6n—17), | (18)
(Bs=—n(2n—1)(8n—=1).
We use I'p and I'q to express the two curves defined by (16) in the plane z;—z,.
Iy and I'g have, obviously, a common end 4 (1, 1). We'll say I'p and I'¢ have or
don’t have the intersection point, that means the point is different from the point
A. First, we discuss the relative position of I’y and I'g near the point A. Suppose
I'p and I'g have the expressions z;=gp(z5) and z21=1(22) (We can know from (17)
that this supposition is reasonable near 4). From F (p(z)) = F(25) we have

F' (2
@ (22> = B (¢((zzz) )' °

From-(17) and (9) we have“
| o (F'(1) =0,
F”(l)-n(n - (- 5);

1" @) =n(n*-1) [2(7n+6)],

F®(1) =n(n*—1)[(~ 1)#2 (f— -1 (n+2) (n+3) (n—!—]c 2)

L [@k+1D)n+ (10-1‘—3)] (k=4, 5, ---).
Notmg 2= (22)—>1—0 as 22—>1+0, by uSmg the L’ Hoplta,l’s principle we ‘have
¢ (1) =-1,

P =% <7n+6>,

9" (1) = (7n+6)5’

(D=~ %§-<n+2) (2n+1) (13n+9) + 111_22%(7%6)%
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Similarly
G’'(1) =0, : |
G" (1) =2n(n—1) (2n—1) .5,
G" (1) =2n(n—1) (2n—~1) [~ 2(Tn+6)],
G =2n(n~1) (2n—1) [(—1)*(k—1)] (2n+1) (2n+2)- (2n+k—3)
[(—8k+16)n+6(k—2)] (k=4 5, -+),
and finaly '

576 ' | ' - (20)

: ‘P(k) (1) - llb(k) (1> =O: k=1: 2: 3: ‘4) 5:
{gu“‘) (D)~ O (1) = 2T (2n+ 1) (Bn—1) (n—1) (n—2).

‘We needn’t consider the values n= — ; é, 1,2 (W3=O when n-—-%— or 2). Let

I=(~e, ..i) I= ( L1 I=(£,1), L=(1, 2), I;=(2, +<o). Then (20)

shows I'y and I'¢ have fixed relative (up-low) position in ‘a small neighbourhoo&
of the point 4 when n€ ;. Let us prove I'y and I'¢ have the same property ab
another end of the curves. From (17), (18) and (9) we can get the graphs of I'p
and I'¢ (see Fig. 1). In the cases @—@), obviously, the relative position of TF and
I'q ab another end is fixed, and in the cases @), @ and @ it depend on the values of
zero points of F(z) and G(z). From (17) we can calculate the zero pom’us of F(z)
and G(z): :
£,— (n?—1) <4fn 3)+(—1)*/8(n*—1) (n+3) (3n—1)
dn(n+1) (n—2)
= n(n—1) (6r—T7)+ (=1)*/2n(n—1) (2n+1) (4n—38) k=1, 2).
n(2n—1)(8n—1) ’
Moreover
(§1=ma) (E2—m1)

_ 3n(2n+1)(8n—1) (n— 1) |n— 1|~/6n(n+1) (n+8) (2n+1) (3n-—1) (4n 3)
(n—l—l) (n—2)(8n—1)(2n—1)

e

and
[8n(2n+1) (8n—1)12—6n(n+1) (n+8) (2n+1) (3n—1) (4n—8)
=38n(8n—1) 2n+1) (n—2) (10n*—3n—9). .

“When n>2 (the case (D), &>1>m and (£5—7) (£a~71)>0 hold, o £>7, holds
uniformly for n€ I;. When n<<—38 (the case ®), £a<1<7y and (£1—7) (Ea—74) >0
hold, so £;<"; holds uniformly for n<—3. When 1<n<2 (the case @), £2<0 and
7;<0 hold, (5‘1—772) (2—71) =0 holds only for that m» which 1s the positive zero
point of the equation 10n?—8n—9=0. In this case the calculation shows Eo=1 butb
€15, 50 (§1—",) keeps the same sign for n€ I,. We'll prove in Section 9 that I'p

“and I'g do not intersect when n=—§-— €1, and (20) shows I'g is located up to I'y
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Craphs of ¥(Z) ¢ Graphs of G(2) . Graphs of 'y and I';

| ] - ’ . - . Z4 A, IL .
o} >2 |0 [ 0 : - ! ‘ T
{'® | l<a<z
® Lenca .
3
; ‘@ ‘0<n<%

® ——;—<n<0

] 1
© ~l<ng -E .

2 ‘
—3<n~1 l 1 A L
s =3 N -
- - - e voNUs
@ | -3ga<x~1 . SN e - L re
1 Z 0 A
n==3 n Zin
- lz.‘ —
A — e S
|
n<=3 /\ l I'
. - | [ - b PF ) .
«.2 0 '
ST e Zy
Fig. 1 - ) . i B

near the pom’ﬁ A therefore §1 <Ny holds umformly for nGI & Thus we have proved
’nhafﬁ FF and Iq keep the same relative position at two ends umformly for nc Iy
except the case (3 which will be proved in Sec’ﬁmn 8 (1n the cases @, @ and ®, #
and zs should be exohanged) . e
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§ 3. Continuous Variation of the Coetlicient 7.
Further transformation of the
Problem: Intersection = Contact
S It should be pointed out that when n=—1, 0, ;, the expression (16) can’t define
any curve. In these cases it is impossible to geb (16) from (8) e=0- Direct caleulation
shows the two curves deﬁned by (8)¢=o don't have any intersection- pom’o except the:

; Notmg that for any naéO :l: ;',
by (8)4=0 and by- (16) aTe the same; We can. take two curves of (8) 0=0 for the case of

point 4 when n= —-1 0 il ‘the ‘ourves defined

n=-—1,0, -%—- to define I'y and I'q. Thus, Iz and I'q are two famlhes of pla,na,r

smooth curves dependmg contmuously on the pa,rameter n€l e
Now we can conclude that if there exist ny, ny € Iy snch that I‘F(nk) and T ()

intersect bub I‘k(nk) and Tg(n,,) don’t 1ntersect then there must exist an nkEIk»

(ﬂk\')’b;,,<’l’bk or my<m=<<m) such that I'p(n;) and I'G(n,,) have ab least one contact.

cor

point. But, in general, two families of smooth-curves, defined.in common interval
and depending continuousiy on the same parameter, change relative position from
intersection to non-intersection with theApa,ram-éteI".s variation, the contact position
might not occur because the intersection point 'n@ight vanish at curve’s end.
However, this case can't appeaf for our system because I's and I'¢ have fixed
relative position at two ends (see section 2). .

According to above discussion, once we prove Iy and I'g don’t have any contach
point for n€ I, and there exists an n,; €I such that I’F(fnk) and I'¢(m;) don't’
1ntersaot we can conclude Iy and Iy don’t intersect uniformly for n€I;. We can

choose ny= —1, ny=0, and m—— (see the firgt paragraph of 'bhlS sectlon) The plan

for the resh of this paper is as follows; : :
(a) In Sections 4—7 it will be proved tham I’y and I'q don't have any mter-
section point except 4 for every n€ I, (bk=1-—5).
(1) In Section 8 it will be proved that the relative position of I'y and I'g from

intersection %0 non-intersection must pass contact state when = varia tes
conﬁnuously in I, =<—31-, 1 ) This is the case 3 in'Fig 1. I'y and I'g have the same

asymptotbic line 21 =0 as z,—>+o0, 50 the method in last section is unsmtable
(¢) In Sections 9 and 10 it will be proved that I'r and I'g don’t intersect for

ng= -% and ns=3 respectively.
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§ 4. Further Transforhdation of Eq‘uations" |

In order o prove I'r and I'¢ don't contact, we prove the equations
(Fe)=F(),
G(Zi) G(Zz), .
PACORICY)
9 g(z)
don’t have any solution, where
(f (z) =F (z) =— [(n+1)a0+naiz+ (n—-l) a27] z""“”"
_ '——n(n —1) (1 2) [2(n— 2)z— (2n+1)] "D,
g(z) =@ ()=—=[~ 2n,80+ (2n—1) Bz +2(n—1)Be2"] g+l
=2n(n—1)(2n—1) (1—2)[(8n—1)z=3(n— 2)]2“2"“) :
From the first and third equations of (22) we have L
[ (- 3?7:)22+3(ﬂ—2)] 2(2=n)u+ (2n+1)] ( ) m_ ao_—l—aizg—}?agéﬁ R
AL(A—-3n)z+38(n—2)] [2(2<n)z+ (2n+1)] 2/ oip o2 o0t
By calculation and reducmg the 10N-Z6T0 COMIOn fa,otor (2n+1)2(n— 1) (2a—2) we

O<zm<m<l<m<Z), - - (22)

@)

have

I (Zl, 22) 80 (21 +Za) +51 (21 ~-212a + z‘;’) + e} %129 +83%1?52 (21 +.'32) - 84 (Zj,Zg) 9= O (24\
where : :

=3n(n 2),
d1=—n(8n—1), _ : S
3 3:=—9(n—1)(n-2), . 4 (25) .

3:=8(n—1)(8n—1),
(= —6(n+1)(n—2).
Thus (22) is equlvalent to (see (138))
v F(z1) =F (z2), o SO
¢ H (21,25) =0, (O<zo<zl<1<zg<Z). - (26)
LI (21, 22) =0. D
' First, we manage to find the solutions of last two equations in (26) Then we study
if it satisfys the first one in (26). Let
z1+22-'=u,
. { BoBg=1.
It transforms the domain 0<z<1<za< Joo to 0<v<u—1, and transforms the
point (1, 1) Yo (2, 1). Between two domains i} is a topological transformation. The
last two equations of (26) become ' /
Souu+ (82— 81) v+ 8yu? +S5uv + 8,02 =0,
Aottt (Aa— A1) v+ A 02 + (Ae —20g) ww+ (As 47\«;) v @n
+ MgUP + Agts0 +Auw® + Agv® =0, T
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Z1

A(1, 1) » _: - (2,1 /r
v/ M///

Fig. 2

Let us transform it again by polar coordinates
u=poosf ‘
{ p 0' b (28)
Lo=psginf. T
The domain 0<<o<u—1 is transformed into domain -

) 1 ‘
— ‘2
O<0< 4° 9> c_osﬂ.—sina’ A _ , (.9>

and (27) becomes
S COS 0+ (82 81) cos 9+ (31 cos?f +53 cos 9 sin 6 +8, sm"‘ 9)p =0,
o €08 B+ (Mg —Ay) sin @+ [y c05® A+ (A — 2h3) cos § sin 6+ (7»— —As)8in?dlp  (80)
+ (A cos® 0+h6 cos? @ sin @ +A; cos § sin® 6 +hgsin®6) p?=

§ 5. DecomDOsition of p(k)’

We first consider the case J (6)=81c08?043; cbs g sin€+84 sin?@=0. In order %o
satisfy the first equation of (30), do cos&-\— (62 d1)sin =0 should hold in the same

time. Noting 8050 we have
31(81—8) 21 8300(81—85) + 8480 =0.

: 1 -2
By using (25) we deduce n2(7n—9)7_= 0, so n=—$— and sin 0=7——, cos 9%7—5 .

From the second equation of (30) ‘we obtain p=~/5 . Therefore (29) don’t hold for
9

n=-.
7
Then we consider the case J (§) 0. Solving p from the first equation of (30),
takeing it into the second one of (80) and reducing the common factor 3(n—2)-.
(8n—1), we have ‘

S 4, cost B sin®=4§ =0, (31)
=0

where
Ao=—8(n+1)?(16n°—72n°+ 81n—27),
A;=4(n+1) (80n*—224n®+16n°+153n—54),
- Ag= —2(160n° — 176n* — 841n* +128n* + 11Tn—27),
As=n (1600t —64n® — 239n° — 6n+45), |
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A= —4n2(2n+1) (5n —n— 3),
As=n*(2n+1)7,

4}

Let tg 0—F. Then 0<k<1<0<0<
i Pi= ZAJc“" (215—1)223;1534%0,"

see (29) ), (81) becomes i

where B
Bo=—2(n—3) (n+1)2(4n—3)?,
Bi=n(n+1)(4n—38) (12n°~19n~15), . ;
Bo= —4n°(2n+1) (3n2—2n—8),

By=n? (Qn +1)2. ‘

i) If k—-— then cosf = \/—5~, sin 9———\/—5—. From-the first equation of (80) ‘we

'~ can obtain p= \/ (usulg ne - ) (29) don’t hold
if) If n= 2 ‘then Bo—Bl-—O B,>0 and B;>0. Equatlon P(lc) O has only

4 I
one positive root Ia=—;‘— So (80) don't have solution in domam (29).
iif) If n=38, then B,=0, P(k)=27(2k—1)2(12k—7)2.- When Ic=—'—j—, ‘cos =
12 7 ~/198 7
NETE, sin, § = Tiew P v 3and v=-r. Sozi——(3 Vv 2), 22——(3+‘\/ ).

In thls case F(zl) F(%z), but G(zl) %G(zg) (by dlrect calculamon) (22) don’t
“hold. e -

IV) if, n%i énd n+8, then we caﬂ décdﬁaﬁoéé’ P(lc) mthxs v‘va,j o

Z R
P (k) = Bo(2h— 12— ) (b— ), (32)

when o
" 2(n-8)7 ™ (n-’rl)(é’cn 3)

- §6. The Case of k=ha

In this cage . - T . Lo e :

1 80cos6‘+(82-81)sm9 1 o

cosf—sm@ 81003267+8300393m6+84sm20 | cos@—sinfd

1 [ do 4 (3= 81)10 :} . :

cos @ 81 + 83[6 +84,]62 1—-k T=k¥ .

1 90(n—8) . - : oo

" e0sf (n—86) (2n? Z2In+9) " R : (38)

Deno’oe the roots of equatlon 2m2—21n+9=0 by N10 and 7Ngg (0< 110<0.5, nge >10).

p—

(88) shows p> only 1f n<n10 or n>n20 or 3<n<6 On the other hand,

cos 6 sin 6
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b6 order o satisty 0<ki<1(0<6< ), it should holds that n>6 or n<0. Therefors,
(29) holds only if n>nge or n<<0. .
When k= Ic = we fhave p= 1 _2(n—3)(@n—9)

d
~3(n -3)’ cosf 2P —21n+9 _a‘,n =
. f _ . =2(71—-3)(,‘2(41—-9)
; [w=dtm=poost 2n?—21n+9 -
* ¥ % . P n 2%-9 2 -
0¥ =girs=psin §=F, ——-—-—————-———~2n< 217%)_*_9“.

SO RN ...:i R .

s A (DN T _ (n—8)(2n—9)+(—1)’3+/(n—9) (Tn—9) (i1, 2
i 2 T o —2In+9 0 =LA

| (34)
~ “First, we prove F(z)F (z§)<0 When ngy<<n<0 and n# —-—13T(fngo is the ’negative;'

oot ‘of equation 10n—8n—9=0, —0.82<ng< — 0.81). Therefore the firgh equation

of (26) doesn’t hold. We only need to prove (£:—#1) (a—22) >0 (see the graph of

F(z) in Fig. 1). From (34) and (21) we have '

(€1—2D) (€o—23)

_ 38 —1)(n+3)(3n—~1)(2n 9)( n— 9) (98n —63n —144n+81\
2n(n+1)(n—2) (2n° —21n+9) \
The denomnnator ig positive for —1<n<<0. Moreover

(83" =1) (n+3) (3n—1) 2n—9) (Tn— 9))2 (98n® — 68n? —144n4-81)2
_-nQ(n)>O ‘when n30<n<0 and n# — ' o

3

11 11’
where Q(n) = (11n+3)2(Tn—9) (10n*—3n—9) (see Fig 8). The double root of Q(n}
=0, n= 131 corresponds o the case of zj =¢; (y 1 2), which

Q)
will be dJsoussed in Seofion 7. When n=ng, we have F(z1)% ‘ /
F(z) =
Then, we prove F(z}) +F (z) when n>nay or n<ngo. Lot
*\n—1" -
oo~ (G eiel vo-(3)” el
Then F (27) =F (%) is equivalent to &(n) =¥ (n). From (9) and :
(84) we obtain (for n>ngo or n<ngo)- . Fig.3

B(i) =- 12n~8|~/Tn~9] —8(n—1)~/T2n—9]
|2n—8[~/[Tn—9 .—J{—3(n—1)~/[2n—-9 "

) “~( In=8|~/[2n—9]+38~/[Tn—9 )

Note @ (n)<0 and ¥ (n)>0 for n>na, and moreover @(ng)>0, @(+o0)=

2T =82 . L 639 ,
ST +3\/3"%‘9’°> ~0and ¥ (+ >,_,,Efi(1 o DN R 9)
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™3 V1T < & (+o00). Therefore @(n) =% (n) doesn't ha,ve any solution for n>>na (see 3
Flg 4).

|
J
( )
f V(n)
0 n.zo g n ‘ '1 ”Lo 0 ——-ﬂ‘
Fig. 4 . , . Fig. 5

Similarly, @ (n)>0 and ¥’(n) <0 for n<ng, and @(ngp—0) = +oco, B(—o0) =

2T @ (nae<0)< 00 and W (~e0) =T >0 —co) . Therefore, &(n) =

¥ (n) has a unique root for n<<mg. It is eagy to verify that this case corresponds o
n=~1 (Fig. 5), but I's(~1) and I'¢(—1) don’t intersect.

§7. The Case of b=k

" By caleulations (similar to (83)) we have

_ 1 1 (n+3)(4n—38)
P osf— sinf  cosf 2n(n—2) (2rP—3) ’

T nt1) (dn=3)
Thus, (29) becomes

(n+3)(4ﬁ 8) n{2n+1)
_ 2n(n—2) (2n2—38) (+1)(4fn 3)

So we only need to oons1der the domains n>2 or n< —3 or -—%<n<0 On the other

>0 and 0< <1.

hand _
. o )
U= o =peosf= —1,
. » g
%% FH_HE : £ **A Oo
' '3

Comparing it with (21) we can know z;" =&;(j=1, 2). Therefore, the first equation
of (22) holds constantly: F (21")=F (2*) =0; and it is impossible o obtain (26) from
(22). we rewrite the last two equations of (22) as

8o 2y = BotBunt Bk _ (22)
S =g e~ () ©
and ,
_ RC—n)z+(Cn+1)][(A- 3n)z +8(n—2)7 | 21 \". 20Y,
T, z)= [2(2-n)zj+(2n+1)] [(1= 3n)z:+3(n—2)] z2“<'z§‘) o (36)
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From (21) and (18) ‘we can deduce

s<§1,§s>—8§;§:j; @D

where S o ,
(5,=8(8n—1) (14715“-’:—.91,ﬂ —22n+ 3) )
83=388n—8Tn—3,

o w=38(n"~1)(n+8)(Bn—1).
Similarly

T(fl’f‘*‘)‘“‘t;‘}Z'*ﬁ' B ¢ O

Wheré
{t1—3(3n—1) (13n —2n— 23),

=25(n—1),
and ¢

= |

= 39
' z;—é, &y + '\/ ( )
where oy = —n(n—1) (2n+1). From (85) and (36) by using (87), (88) and (39), we
have

)
2g

C s—suvw =<t1~tg&/E )9( a—~w )2 lot 1y — g/ w (40)
stV w Nttty w / Vet w e+ o/ w
Noting w#0, from (40) we deduce
' $11ra—Sar3=0. o B (41) -

It is easy to obtain o o
3= (t1-Hta0) 2w+ (byos +12) %,
ra=2(t1+%a0y) (bro+baw), ,
gty =2(2n+1) (2508 —27Tn? —Tn—38),
tioy +taw=6(n—1) (8n—1) (2n+1) (13n°—12n—38).
Taking the above results into (41), we have
n(2n+1)3(n—2)3(n—1)2(n+8)2(n+1) (8n—1) (11n+8) =0.

In the domains which need to be cosidered <n>2 or n< —3 or ———%—<n< 0) there
exists only one root n = — 13:'[ But, by direct caleulation, G'(1) #G(£a) when n=
131 Hence (22) doesn’t have any solution for b=,

Thus, we have proved comple‘nely that I'gand I'g don’t contaob for any n€ I
(k=1—5)..

§ 8. The Case of —é—<n<1

Now we return to the case @ in Fig. 1 and prove that the relative position of
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I'y and I'¢ must pass the contact state if they variate continuously from intérsection

10 non-intersection with the variation of n& (—3—, 1 ) In this case I'y and I'¢ can be

expressed by z;=@(22) and 21—1.!!(22> for 2€[1, +oo), and they have the: same

asymptotic line z; =0 as zg—~>+<>o It is known that T P <§) and .Z"G< 1) don’t inter-

2
sect (see the begmmng of section 8). Now assume there.exists an n€ ( é , 1 ) such

that I'F(n) and I'g(n) intersect. 'I‘ake ni, X8 2 = né (74, n2]C ;', ) Aocordiﬂg

%o (20) there exists an >0 such fhat I‘g is located below to I'y uniformly for nE
[n1, na], 0<z—1<e. If I'p.and -I'q intersect - (nob eontact) for some n, then there
exists at least one point (24, 2,) such that T’ crosses I'pupwards at this point, that
is <p "(22) <ty (23). Hence (24, 2,) satisfies '
= (FG)=F(), -

) - lee=e@, . 4429‘
R F ISP N T
U Sf(a) ~ gz

By using the deduetlve method W]:uch was used from (22) to (30) , a,nd l<:n <1,

1-2,>0 and 1—2,<0, we obtain from (42) L L
h(6)=8¢cosf+(81— 81)Sm6’+(5100829+83cos€sm6+34sm20)p>0 (43)

Since A(0) =8y+d1p and 80~3n(n~2)< 81\ —ny(8ny;—1)<0 When 1 <m<

5

EX 3

<ng<1. Hence there exists a 6>O such that ~(6)<0 for 0<F<f. Therefore, in a
sector 0<A<<f on the u~v plane. (see Fig. 2) it is 1mpos.91b1e for T'g to cross I's
upwards (I'y and T'g are images of I‘F and I'q respectlvely) TF and T'¢ have the
same asymptotic live v =0 as u—> +o0. So for ne [ni, ny]. there emsts a T>0 such

that I'z and T keep in the sector 0<9<9 for u>T. Now 1et n vana‘be from 7 to

512 Then the intersection points.of Ix a,nd. I’G can va,msh only in the interval 2+s
<u<T Hence their-critical state must be the contact position of Iy and FG aswell
as of I'y and I'g oorrespondingly '

5o 1’F<—§l> and I's (%) Do Not Intersect

Suppose it is the oontrary Then (16) has a solutlon When 1<n<2 (16) is
equivalent fo ‘
{G(zi) G‘(Zs),

H (21, 22) =0 o S
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Take n= -g—It is easy to obfain. G(z)=1ii%—ﬁi Henoe the first equation of (44):

becomes o ‘ ' S e

'(Z1+Zg)2~2122+22;?g(§1TI‘,ZQ) —.ﬁ7(12122)‘?=0._, . e (4:5)

Calculating H (2, 72) from (13) and"(lé):-(lét- n=%—), arid uding the transformations
in Section 4, we can transform (45) and the second equation of (44) inte
—sin §+ (cos® 6 +2 cosfsin 6 - 7s1n90)p =0, o

! =2c080+9sinf+ (—4cos’d —18 cosﬁsm€+45sm26)p | j T (8

+ (14 cos® §— 35 cos? § sin 6 — 10 cos B sin? §+ 50 sint §) p? = ' e

Solving the first equation to obtain p, and taking it into the second one of (46), we

deduce (let k=tg §) o o _

- (2k— 1')3(21c+1)(11k+2) =0. .

Acoordlng to (29), we only rioed o consider lc=—1— But from (29) and (46)

L sm& ' V RN
P= cos”f)+200s9sm9 7sm20 cosf—sinf "’

It shows k>—%— Therefore, (46) doesn’t have any posmve solutlon for p sa’msfymg

(29).

§10 FF (3) and I (3) Do Not Intersect

Suppose it is the contrary. ‘Then the followmg equa,tlons (instead of (16)) have
a solution.

F(21) =F(29),
‘ {H (21, 2a) =0.
When n=38, F(z) =—6(7—122+4:?)2*. From the first one of (47) we obtain
T(21422) (B +28) — 122120 (28 +2420 +28) +4(21+22) (2122)* —0. - (48)
The discussion is similar %o the last section. Transform (48) and the second one of
(47) to

(47)

14 cosf sin §—12sin2@— (7 cos® §—12 cos? f sin -+ 4 cos § sin®§) p =0,

85 cos § +84 sin § — (154 cos® § — 248 cos § sin § +80sin?#) p ~ (49)
+ (140 cos® § — 480 cos® @ sin § +560 cos @ sin® # — 224 cos® 9) pP=

Then we obtain

(2k—1)3(12k—"7)2(28k*— 64k +35) =0.

7 16+ /11 7
T3 ks,e = -7 The case of k= T has

been discussed in Section 5, iii). From the first equatlon of (49) we know that in

Its four different roots are kl—-l ko=

order to satisfy 0<0<— and p>0, we need to have fp = e 3=~ 2  Hence ks, ki are

A .
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not fit. Finally, from the first equation of. (49) and (29) we obtain £>1 . So k, is
2 '

uot fit $oo.
Summing up above ten sec’clons we obtain

Theorem. There is no limit cycle around a weak focus of order 8 for any
quadratic system. '

The author ‘w‘is_hes 1o expréss hig sincere gratitude to Gao Waixin, Prof Cai

Suilin and the examiners for their valuable advice.
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