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THE NUMBER OF NONTRIVIAL SOLUTIONS
TO HAMMERSTEIN NONLINEAR
INTEGRAL EQUATIONS
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Abstract

In this paper, the author improves some results of Rabinowitz about the existence of
infinitely many nontrivial solutions to Hammerstein nonlinear integral equations and
gives some applications to the two-point boundary value problems for nonlinear ordinary

differential eguations.

§ 1. Introduction

-In this paper, we improve some results obtained by P. H. Rabinowitz in [1].
Oonsider the Hammerstein nonlinear integral equation :

p(@) = k(@ 0@ 0@)Ay=Lp(@), @
where G is a measurable set in Fuclidean space' R” with 0<mes @< +oco and
S (=, w) satisfies the Caratheodory condition, i. e. f(#, u) i3 measurable with respect

10 @ on @ for every u€ (—o0, +o0) and is continuous with respect 0 w on (—oo

satigfies

+o0) for almost all z€G. Suppose that kernel k(w, y) is measurable on G‘x G and

UG (s, ¥) |? dwdy< +oo " @ |
for some p>2. Then the linear integral operator
Kp@) = ke, 1)o@y ONE

1.1

is completely continuous from L¢(G@) into L?(G), where —1;—}-7!— =1, 1<g<2<p.

The following conditions are used:

L(@), i. e.

(Py) symmetric kernel k(v,y) satisfies (2) and is strictly posutlve—deﬁmte on

Ko, ¢)=fefek(m; z})w(w)sv(y)dwdy>0,> Vo€ L&), p#8, @ ‘
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where 6 denotes the null-element;
(Q1) there exist >0 and 5>0 such that

--._ S w) |<akblulPt, Vo€E, —eo<u<too; . (5)
(Qg) ‘there emst 0<1<1/2 and M >0 such that _' ' , T
F(m u) j‘ f(w, fv)dfu<1:uf(m u) V[u[>M v EG, - (6)
(@s) f (m u) —0 as u—0 un1form1y in me G’ )
Qo f(m u) S 25400 a8 U—>00 umformly in wEG - (®
(Qs) f(cc, u) isoddinw i.e. -

o f(w, :—‘—'u)——f(w u), Vo €EQ, —ookuLdos, - ®

P. H. Rabinowitz has proved: - - ’ R

(I) i (Py), (Q)(Qs) are Sa,hsﬁed then the mtegral equatlon (1) has ab
least one nontrivial solution in L?(&) (see [1] Theorem 5.8); o

(ID) if (P1), (Qu)—(Qs) are satisfied, then the integral equation (1) has
infinitely many nontrivial soldtions in I#(@) (seo [1] Theorem 5.9).

But many important kernels (for example, Green functions of some boundary
Value problems) do nob Sa,tlsfy condifion (Py). We shall weaken oondlﬁon (Py) to
overcome this shortcoming, We shall also weaken copdltlons (Qs) and (Qu). In §2
and § 8, we shall deal with the case of positive—definite kernels and quasi~positive—~
definite kernels. respectively- and in § 4 we shall give some applications. to the
two—point boundary value problems for nonlinear ordinary differential equations. -

§2. Case of Positive-definite Kernels

Definition 1. 1) k(a, y) s called an L? Icemel if k(w, y) is mewsumble on
G @, mes{ (&, y) €Gx G |k(a, y)#0}>o cmd '

H[za(m y)]zda;dy<+oo S (10)

(i) I? kernel k(m, y) 4s said to be positive-definite (quasi—positive~definite) if
k(w, ) is symmetric and oll its mon—zero eigenvalues are poswtwe (only has ﬁmte'
number of negative eigenvalues); ST _

- (iii) L kernel k(w, y) 4s said to be strictly posrz,twe-deﬁmte of it ds srymmetmo and
sat@sﬁes

&, 9 =] [ b, DI@P@)aay>0, VEL (@), po. (1D

- Remark 1. Tiis well known (see [8]) that L? symmetrlc kérnel lc(w y) ig
positive—definite if and only if . Lo :
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(&, §) - j [ 2, De@I@)ddy=0, VET(E).
i. e. K is a positive operator. Hence obServmg L2(G) cLe (G) (sunce mes G < + oo
and 1<<¢g<2), we have : : ; S S
k(w, y) satisfies (P1)=>lc(m, y) is strictly posmlve—deﬁmte
} =k (=, y) is positive-definite. (12)
Lemma 1. Suppose that k(w,.y) is positive-definite. Denote the sequéence of
etgenvalues and corresponding sequence of orthonormal efzi_qenfumt@ms of Ic(w y) by { M|

7\:1>7\v2/ >0} and {Lp} respectwely Let Ho—{z,bELQ(G) |K24: 6} and Hl—Ho,

whefre Kz 3 denotes the poswmw square froot operator of K and Hg denotes tlw orthogomb
complement (in L (&) of He. Then '

(i) Ho={$ €I |Eyp=0}; - '

(i) Hyi= Im i. e. Hy is the closed subsgoace spanned by x,bi, 411, cons

(iil) Hy+ {0} (hence, K has at least one efz,gewvalue) - '

Pr oof @) follows 1mmed1ately from the equa,hty

(K9, 'ﬁ) (K% Kz!#) Ile'H

To prove (11), it is sufﬁomnt to show -

T Ee N T
It is well known that - R o
K= 2?» I VETAG). e

Therefore, ) € L{s, g, -~ }* implies (P, Pn) =0 (n=1, 2, ---), and by‘.(lél)', K 4}=9,
hence ) € Ho by (i); conversely, & H, implies S

= K= S0,y )
and SO

; 0= (K, thm) = (i, ) <m 1,2, ),
hence, on account of A, >0, ¢€L{¢1, g, - bt

Finally, if H;={f}, then Hy=IL*(@). It follows from (i) that K=6 and;
therefore k(x, ) =0 p.p. on G x G, in oontradlctlon with Deﬁmtmn 1. Henoe (113)
holds and the Lemma, is proved. '

Remark 2. It follows from (11) of Lemma, 1 that a posrblve—deﬁm’ﬁe kernel
E(w, y) is s’nrmtly posmve—deﬁmte if and only if it sequenee of orthonormal
e1genfunet10ns {P,} is oomplete in L2 (G) :

In this paragraph, {\,} (M=he>--->0) and {a} always denote the sequence of
eigenvalues and the corresponding sequence of orthonormal elgenfunotlons of the
positive—definite kernel k(w, y) respectively.

The following conditions are used: 7

(P2) k(w, y) is positive—definite and satisfies (2)for some p>2;
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Q:) there exist £0>0 and §>0 such that

f(a;, u><h }— , VO0<|u|<8, 2€G; | (15)
@ ) there exist 0<so<A; and B>0 such that
Sz, w) 1 7 S o
, w ?kl—so! V|u| >R, 2€G; 3 6)
) S (‘Z @ —>ay(x) as u—>0 uniformly in #€ @, where a() satisfies sup ao (@)
) . . . L . ] . z& X
?\'1 o o e
@ L(%_i‘_)..-ml (2) as u—>o0 uniformly in # € G, where a; (@) satisfies ,in(‘; a, (@)
. . ze
>7\;—

Obviously, (Py)=>(Py), (@s)=>(5)=>(Qs) and @=>@=>@).

Theorem 1. If the conditions (Pa), (Qu), (Q2), (Q:) and (Q) are satisfied,
then the imtegral equation (1) has at least one nontrivial solution in L#(&).

Progf We have A=Kf, where K is the linear integral operator (3) and f is
the operator fo(«) = (2, ¢()). From (Ps) and (Qi) we know (see[3, 6]) that K
is completely continuous from L2(@) into L*(G) and from L‘I(G) into I2(G)

<1 +———1> and f is bounded and continuous from I (@) into L‘l (G‘), moreover,

‘we have K=HH?*, Where H=K i is completely com:muous from L“‘ (G) into L* (@)
and H* denotes the adjoint operator of H, which is completey continuous from
L&) into L2(@). Tt is well known (see[6]) that functional

T =2, =, F@ B, W@ D
is a O* functional in L?(@) and its Fréchet dérivative is
() = - H'fHY. (18)

Let Hgand H; be the closed subspaces of L*(@) in Lemma 1. By Lemma 1, H;+# {0}
and H;=H¢. Since

(E*fHY, = (FHY, D) =(fH), EB)=0, VELH®, hEHo  (19)
it follows that H*fH € H, for all € L*(@), henoce, we can regard H*fH as an
operator from H; into H4 and (18) holds again for all ¥"€ H; wLen we regard 7' as-
" a functional only on Hj. In the following, we verify that the functional 7" (on
H,) sabisfies all conditions of the Mountain Pass Lemma, i. e. the conditions (I.),
(Iy) and (Is) of Theorem 2.1 in [1] (bhis theorem is also true for finite-dimensional
space, see[2]). A '

Fn:stly, we verify (I). (Q') 1mphes

F(o, u)<< Viu| <3, €@ ) (20)

2
2 (7\:1 -+ 80) ’
and (@) implies
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Flo,w)<alul +2luf?, Vo€, —o<u<tos. (1)
Hence, there exists 61>O sueh that.ﬂ-

Flo, 1)< EOTT—T

‘Thus, for ¥ € Hy, we have | , .
JG F (=, H¢>dm<2_(7\,_1%—*—)_j [Hl;b(m)]gdfv—(-bij [ Hi (o) |? de

S 1 '
2(7» Fgo)

1 , ) | | | ,

<:—l——>uKu [P +bal H s e

2(M+e . ‘
M.l 2 ys? - (23
~ gy WP B E L 1, | (28)
where ||, denotes.the norm in L (@) and [IK | .denotes the norm of operator K

(from L2(G‘) into LQ(G‘)), which Sa‘olsﬁes [[K [ -—7\,1 (See [81). From (17) and (23) R
we have. 7 . in

+bilu[ , VoEd —co<u< oo, (22)

HK2¢!IQ+61[IH¢II"

T binﬂvnp-~u¢ua¥- V€ . (9

‘Henoce, on account of p>2, there exists sufficiently small >0 such that

{ @ ($)>0, Vi € B,\{6}, (25
inf T () =¢,>0,
’ ] Y EIR, . ) ’
where B,={{) € Hy| || <r}, i.e. condition (7,) is satisfied.
Secondly, we verify (I,). Consider thereal continuous function
. 2 R
(1) =¥ () =5 [l = | (a4 Hpr)do
e RN AT (26)

here we have used the known e@uali‘oy Hf;=K %lk1= N Y. 0hoosing 0<t1<ta<<

*ty t—>+00 and putting D,={o€Q| %, ~/A; |P1(2)|>R}, we have G\D,={0€@Q
|t ~ 21| Y1 (2) | <R} and D,=D® D2, DPNDP=¢, where DL ={w€ G|t~
‘$1(2)=>R} and DP={z€ G |1, \/_1¢t1(m) —RY}. By (@), we know

Y Vu>R, €8,
— & :

flo,w)<—2%—, Vu<-R, €8,
o M—g’ T

hence
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[, 7 g, (4] ™ 504

of, a4 gt yan)

- , i ta VI ta(@) v

o ‘ +j A\Dy m[ ) f\m, qJ) v : :
) | 1 (nVER®  ydy I [n
: : : | — . daol. . d
o ,>jng’ &w[}e M—& Jop “Jo /=, v) |do

E -E vdo __J' ‘ jo _

. JDW "de..'WTw'(z) e o dw __Ri fl=m, v)|dv
NN

. —,"G{ﬁ”dmjén |f (2, »)|dv

Ce 1. .
= mj oy (,t?‘?“i [ {m)] °~R*)dw

=, aaf 17 v lde

I 1 2__ P2
+ Sy (Bl (@~ B

. ___j zvj | f(=, 'v> [d'u—-J‘G\ j {f(m, v) Idv
e : so)j’ <t27“1[¢’1(w)32 R®)dz
_f j f@ o) [dq)

>’2@%‘ﬂ [ (0)1 dem I, @

where

e[ B 2 g :
M- .[2@,1_60>+2 aB+2. R ]mgse_
is a constant. Putting D={s€ G |{u1(z) #0}, we have

[ wi(wn‘é’dw-[ [4:(e) 1 e nmns

D,cD,c--- U D,=D and mes D —>mes D. Hence there exwts N o>0 Such that

f [%(m)]mwj [¢1(w)]2dw~—2%"i—=1f = Vn>No. ,,' (281
It follows from (26), (27) and (28) that o | co
D(t,) —-——-—j F(a,t \/h1¢1)dw< m t2+M1, Vn‘>No,w. (29)

hence @(%,)—>— o (n—aoo) On ‘the other hand, (25) 1mp11es O (r) =P (r1)=>c,>0,
it follows therefore from the contmmty of @ (t) that there exists r<¢"<+oco such

that & (") =T (t";) =0 and, thus, (Is) is Satmﬁed by taking e=t"{ (6%9 W (e}
=0). . ‘
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Finally, we Venfy (Is). In fac’s we can prove that ¥ satisfies the (P. 8.
condition. Let {h,}CH; with ¥ () [<,8 (n=1, 2, ---) and ¥’'(h,)—>¢. Putting
Q.= {wEGI | Hba(w) | =M}, we find from (@), (21) and (Qa)- thab

,9>’£F(h)—-—]1h |2 = j (s, Hh,.)dw
Sglhi- [, 7, Hh..)vdwazk
>l||h,,u2 - q,-j (=, Hhﬂ)ﬂhn'oz_oa;ﬂfﬂ' |
__[lh |]2—7:J (@, Hb) Hhydo—M,, SRR )]

where M 2 and M, are constants independent of n. By Vlrtue of (18) , We have
(@ (), hy) = (ha— Ef Hhay ) = [lul®— (FHhsy HE)

=l i j f@ Hh)Hhds, RN
it follows from (80) and (31) that |
,3><_—1,-)']h 1247 (P (B)y h)— M5

><5;—-w)llhn112_vllw'(h,.)n-ﬂ"ﬂ_Ms (=12 ),  (32)

hence, {h,} is bounded. Since H. 1 is a Hilbert space, there existy a subsequence {4, }
C{h.}, Wthh converges weakly 1o an element ko€ Hj, hence, on account of the
complete contmuﬂzy of H, | Hh,, Hho I ,,——>O It follows therefore from (31) and the
continuity of operator f that

Vil e, Hho) Hhoda= (fTihe, Hlo). | 89)

On the other hand; we have B
C (hm,), ho) = = (Pim,— -H'fH b,y ho) = (hm,, ho) — (thw H ﬁo)
Letting k—>00, we obtain :
- Nkol®= (fHho, Hhy). - (84)
From (83) and (84), we find | &,,|—>|ke|, hence |A,,—ke]—0, and (Is) is satisfied.
By Theorem 2.1 in [1], ¥ has a critical point ¢*€ H; with ¢* %4, i. e.
T =g - HYEG =0 |
Putting p*=Hy* € L?(G), we find .
Ag” ngv = HH'fHY" ~Hy* =",

i.e. " is a solution of (1) in L"(G) If p*= 6? i. e. K"’n,l: =0, then \*€ H,. Bu{; "
€ H4, hence y*=6. This is a contradm’mon Thus, we have ? *#£0 and our theorem

is proved.
Remark 8. Ewdently, Theorem 1 ig an improvement of Theorem 5. 8 in [1].

Theorem 2. If thg cond@f?/ons F(Pg), (Q;), (Q), (@), (Q) and (Qs) are
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satisfied and k (s, y) has infinitely many eigéenvalues, then the 'mtegml eguwt@on (1) has
infinitely many nontrivial sobutions in LP(G).

Proof We again use the notations in the proof of Theorem 1. Since: k(z, y)
has infinitely many eigenvalues, it follows from (ii) of Lemma 1 that H, is
infinite-dimensional.” We verify that “the functional ¥ (on Hy) satisfles all
conditions (Iy), (Is) (I.) and (I5) of Theorem 2.8 in [1] Conditions (I4) a,nd
(Ig) have been already verified in the proof of Theorem . By (Q5) we have .

F(os, —w)=F (o, u), Vo€GF, —oo<u<+wm,
hence, W' (~¢) = @If(xb) for all y€ Hy and (I,) is satisfied. Finally, we venfy (I5).
Suppose that (I5) is not satisfied. Then, there exist a ﬁmte—-dlmensmnal subSpaoe X
of H; and KEX, l]h*ﬂ-—-)»-}-oo such ‘that _ ,
‘ Zlf(h*)>0 (n=1,2, ). ' | (85)

| Puttingt = || A,| and t{:,,————h*EX we have b= tllln, l{¢n||—1 and ¢,—>-+oo0, Smoe

X ig finite-dimensional, {glr,b} contains a convergent subsequence W11;hout loss of
generality, we may assume that i itself converges to some '€ X, i.e. |Ui—y*|
—0. Obviously, || =1. The _oontinuity of operator H imp]ies |

MHM—HWL=GIH%@)1wq@pm)_w B D)

hence, {H a,b,l (z)} oontams a subsequenoe which" converges to H P (2) almost
everywhere on G. Without loss of generality, we may' assume that H 1[Jn(a7) itself
oonverges to Hy*(») almost everywhere on @. Obviously, Hy*+48 (othermse

Kz 211; = H*=0 implies y*H,. Bub *E€ X C Hj, hence * —-=0,-in contradiction with

|4 =1). Putting Vo=Hy (n=1, 2, ), vo=Hy*, Go={2E€G|vo(2)+0 and v, (o).
i

—>0o(2)} and ao= J- [ve(2)]? dw) , We have mes Go>0 and ao>0 By (Qé), there

" exists R>0 such that

ﬂth vulsRe€q. 1 @n

Similar to (27), we can deduee the followmg mequallty | o |
[ 76, Hh;)dm=J F(5, tw)do | |

>._. t"’j [0, (w)jﬂdm Mooy

where D, = {meG{t |on(@) | >R} (n=1, 2, ) and |

(e B g

isa constant. Using H6lder inequality and obbcrvmg (86), we find
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(1 ot o
<([,. [m(w)—vo(m)]ﬂozw) ([ 1B -m @ i)
< (mes G)f"f(jG | Hy(2) — Hi*s) |ndm)1,o (nr00),

- hence, there exists Ny>0 such that

1

I 1 '. A ' .
z Z ‘
(.. [@..(w)]f"dw) >([, w@)%da) =3, we>E. (39
Puttmg D= r'\D;, and D*= QD”’ we have DicD;cD;c.--cD* D, :D* and mes

D;—>mesD*, henoe there exigty No>0 such that

(J [fvo(su)]”dw) /(J [fvo(w)]zdw)l. . (J. l}v(,(as):l“olw)1 .—%—4, Vn>N2 (40)
It is easy %0 see that G D", hence

S

( o), tfvo@ﬁdw) .. @
It follows from (39), (40) and (41) that T -

(I [fv,,(a;)]?dm) >-§-, \7’%>N maX{N 1, Ng} _' (42)
By (88) and (42), we have o R
T < |4~ (- = ———2"-+M* Vo>,
hence @ (h,;)—>— oo (n—>o0), which contradicts (35). Thus, (I5) is satisfied.

By Theorem 2.8 and Corollary 2.9 in [1], we know that @ .has infinitely .
many nontrivial critical points ¢;" (n=1, 2, :-) in Hy. Similar to the proof of -
Theorem 1, gj=Hii* € L*(@) (n=1, 2, «--) are nontrivial solutions of equation (1);
moreover, we have gD,ﬁéQ?m, Vn#m (Smoe if @*= g%, for some n, m with n#m, then

K? (T ~n) =0, and therefore lpn ¢rm EH o; bub Yi*— :fEH 1,hence ¢ — i =0,
and it igs a contrachetlon) Thus, our proof is complete. o
‘Remark 4. Evidently, Theorem 2 ig an improvement of Theorem 5.9 in [1].
‘Remark 5. It is easy to give some elementary functions f(=, ), which Sa’ﬁlsfy
all conditions of Theorem 2; for example , _
| f(w’ u’) = En]aku’gkhl) ﬂ>2, CZ”>O,0}1<—7\1—_—, - | v' (43)
_ . 4
: ( = 1+u
(for function (48) we take p=2n and for (44) take p=4). We only verify thé
condition (@.). For function (43) we have « ' ' N
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- b g V@ ek 1 -
f fa, o)~ g8 S BTt T mmer Y@

1
3

for sufficiently large |u|, hence we may choose 7 =———r 2 1_ 1 <O<7< ) for function

(44), we have

[3
J’f(a;, v)do= -—44———1n(1+u“) B4
ut ut 1 £ 1
R TG T ‘”’3‘“3“’3'“f<“ “)
| 1

for sufficiently large |u|, hence we may choose’ v==> 5

Remark 6. It is easy to see from the proof of Thecrems 1 and 2 that  the
condition (2) in (P,) can be replaced by the. Weéker_ oondition: operator K is
completely continuous from L4 @ mto (@) (p +%— )

' Remark 7. We must pomt ou’o that Theorem 2.8 a,nd Oorollary 2.9 in o]
bold only when Banach space E is infinite—dimensional. For example, it is easy to
verify that the real function (i.e. functional on RY)

fawy=u(ew-L), wer @
satisfies all conditions (I1), (Is), (Iy) and (Iy) (also (I5)) of Theorem 2.8 in [1],

but f has only two nontrivial critical points. Thus,» the hypothesis “k(z, y) has
infinitely many eigenvalues” in Theorem 2 can not be omitted. - "

§ 3. Case of Qi_léisi—PositiVefDefiﬁte Kernels

The following conditions are used: _
(Ps) k(=, y) is quasi—positive~definite and satisfies (2) for some p>2; .
(Q*) there exist g,>0" (eo< A®) and >0 such that

few 1 V0<lu|<8 wEG " @)

w ?\.*—}-
where A* denotes the largest negative elgenvalue of k(=, y)
(Q4) there exist >0 and B>>0 such that

f(m u)>n V|u|=R, #€@Q. B - (47)
Theorem 3. If the cowd@twns (Ps), (@), (@), (Qs) and (Q4) are satisfied,

then the integral equatwn (1) has at least one nontrivial solution in L?(G).

Proof Let the sequence of eigenvalues of (@, y) be {~%Ao, —Az, ***, —Amy Amsz,
Mgz, =}, Where 0<Ao<hy< e <A, Ami1=>Apeas>+->>0, hence A*= —Ao. Choose a
number u satisfying 0<pw<My and put K;=KR;, where Ry= (K +uI)™! and I
denotes the identical operator. By Lemme 1.1 ;in [8], we know that K is also a
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linear integral operator generated by some L? kernel ki(#, y) with sequence of
7&0 7‘»1 "' ' 7\.,,, Km+1 Km-l-s
M—p’ M—p’ 7 Ap—p’ Ampit i’ Amgatp’
eigenvalues are positive, ki (2, ) is a positive—definiet kernel with largest eigenvalue
Ao
Ao—
also a oompleter contmuous operator from Lt (G) into L’(G) <_p -l-—;-—-l)

eigenvalues{ .- } Since all these

Ao = Moreover from the proof of Theorem 1.1 in [8], we know that K, is

N oW we cons1der the Hammerstem mtegral equation

¢ (2) =J(Gk1(.w, N1, @)y, NGO

where | 7 , ' ,

fula, ©) =upf (s, v, 49)

and prove that ks (a, ) and f, (%, u) satisfy all conditions of Theorem 1. In fact,

: (Ql) for f(=, u) implies (Q:) forfi(w, u), and, observing Remark 6, (Pg) is satisfied
for ka(=, y). By (Qa) for f(=, u), we have

Fi(z, )= fu(a, w)dv=—2—+ﬁbF(w u><—-+mum w), Vlu|>M, €6
- R | ‘ - (50)
Cboosing 71‘ such thatb T < 171<-1‘— aﬁd (—1- —7y ) /w(r1—7) <, we find by (@2

u?

uf(fb u) f(m u)>77> 71 /ﬂ*("l 1), V"M?R IIJEG (51)‘ _
It follows from (50) and (51) tha,t :

. Fi(, u\<—§—+umf(m u) <z + prauf (o, u)

. - =vufi (s, w), V§u|>M1-max{M R}, s€G, (52)
hence, (Qg) is Satlsﬁed for Ji(=z, u). Smce ' '
B g B omp 1 g

we can: ohoose 2 Sufﬁcwntly small number & such that 0< 61<2\.0 and

: , : S P & .1...‘1:. 5
I D . E 1 7\;0—60<?\a0+61<?\r_3“f.81."< ) ( 3)
Thus, (@) and (Q2) imply ,.
fi(w ) _ f(fv u)< By 1

1+ 1+A g0 1 Ko—eo<k’5+sif
VO< [u] <9, v€ @ » (54)

Sew) gy SOy i L >R €@, (55)
u u v ?\;0'7‘ &4

hence, (@%) and (Q.) are satisfied for fy (@, u).
By Theorem 1 we know that the integral equation (48) has ab least one
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_nontrivial solution q)*(w) EL7(@) and from the proof of Theorem 1.1 in [3] we
‘know that ¢* () is also a solutlon of equation ). Our proof is oomplete S

" Theorem 4. I f ‘conditions (Pg) (Qi) (Qg) (Q ) (Qu) and (Qs) are scztfbsﬁed
‘and & (@, y) has infinitely many efbgenmlues then the mt@gml equation (1) has fmﬁmtely
,_marroy nontrivial sclutions in' L2(Q). _ . .

Preof We again use the no’oa‘ulons in the proof of ’I‘heorem 3. We prove that
ks (w, y) and f; (z,-4) satlsfy all oondltlons of Theorem 2. In fact, srnee the sequence
o Ar
Mo— i’ A —
} is also infinite, i. e. lcl(a; y) has infinitely many

Xy
b

{—2o, =M1, o0, — A, K,,H_i, Amaa, ** }1s mﬁmﬁe the sequenoe {

.?\Jm N 7\*m+1 7\,m+2 T e
A= Amprt 1" Mmoot
eigenvalues. Moreover, (QQ and (Q5) for S (=, u) 1mp1y (Q,Q and (Qs) for fi(:v u)

respeotlv ely

fi(m u) __14.”, f(m u) —> =00 ag y—>co- umformly in mEG‘

fl(m —u)=—u+/«bf(w, —u) = —u— wf (=, u)-—'—fi(w u),”

:  Vo€l, —ootu<l+oo. o
Condﬂnons (Pg) , (Qi) (Qg) and (Qg) (for ki(w, y) and fi(w, u)) have been (a,lready
proved) in the proof of Theorem 8, hence, by virtue of Theorem 2, the equation
(48) has infinitely many nontrivial solutions gh(n=1, 2, ---) in I?(G) and from
the proof of Theorem 1.1 in [3] these @n (n 1 2, ) are also solutions of equation
(1) Our theorem is proved. : S | ‘

Remark 8. It is easy to give some elementary functions f(s, u), which

satisfy all conditions of Theorem 4; for example; function’ (43) (’-’replaeing condition

Ly <—%— by ;1< 73 ) and function (44) are such elementary funetions

Remark 9. Theorems 2 and 4 show that u31ng vama’olonal method in critical
point theory we can obtain the existence of infinitely many solutions of integral
equation (1), which can not be deduced by topological method; but, when we
mves’mgate the number of nontrivial solutions of equation (1) by topological
method, the positive-definite property or quam—pomtwe—deﬁmte proper‘oy of Ic(m, y)
is not required (See [4, 5]). : : :

' §4. Applications

In this paragraph, we give some applications of Theorems 1 and 2 to the bwo-
point boundary value problem for the nonlinear ordinary differential equation

- du _ ..
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Theorem 5. If f(as ) s contimuous n 0e<<1, —co<u<+oo and satisfies

(Qi) (for some tp>2) (Qa), (@) and (Q w%th G=10, 1] and ki——iﬂ, then the

pmblem (56) has at least one nondrivial solution in O2[0, 1].
: Theorem 8. "If f(w, u) is conmnuous in O<x<1 —oo<u<+oo and satisfies

(@) ( for some p>2) (Qz) (Q) (QQ amol (Q5) with G [O 1] amd hi———l—- Athen”

5

the problem (56) ha;s infinitely many nontmvml solut@ons in 02 [0 1] U
Proof of Theorems 5 and 6 It ig well known that the. ‘solution. (m 02 [O 1]\ of

problem (56) is equwalent to the solution (m oro, 1]) of the Hammerstemﬂ
integral equation

e -foe s unan e
where G'(#, ) is the corresponding Green function

e )= {w(l y), »<y,

y(1<w)," w>y

By i !‘_ £ E
S

}<n 1, 2 Y did
the correspending orthonormal elgenfuno’ﬁlons are {~/ 2" sin nws} - (n -1, 2 L) :

hence, G'(w, y) is a positive-definite kernel Wlth mﬁmtely many elgenvalues By
the continuity of G (=, y), we have - : : :

J‘ J |G (@, y) |? de dy< +oo,

hence, G(m Y) Satlsﬁes condition (P,). It follows therefore from Theorems 1 and 2
that equation (57) has at least one nontrivial solution in IL# [0, 1] in the case of
Theorem 5 and has infinitely many nontrivial solutions in I? [0, 1] in the case of
'Theorem 6. We remain to prove that every solution u*(x)€ L*[0, 1] of equation
(87) must belong to C[0, 1]. In fach, (@) implies f(w, u*(s)) € L0, 1]

Tt is also well known that the eigenvalues of G, v are{ 5

(%+—;‘-=1>, it follows therefore by the continuity of Q(s, y) that the function

1
w @)= @@, v) Fu, v @))dy
belongs to C[0, 1. Our proof is complete.

Remark 10. Using Theorem 6 to func’mons (43) and (44) in partioular, we
cbtain the following conclusions:

(a) two-point boundary value problem
2. n :
{- gwiz = kZl a1t 0o,
u(0)=u(1) =0

(where n>2, 4,>0 and a;<x?) hag infinitely many nontrlwal solutions in 02 [0, 1]
(b) two-point bounda,ry value problem

(88)
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9 o 1 Ny .
A —%mig—_i—_‘:d—;—u?, o<e<l, (59)
%(0) =u(1) =0 | o

has infinitely many nontrivial solutionsin O?[0; 1].

- Remark 11. Since the sequence of orthonormal "eigenfunctions {\/ 2 sinnww}
(n -1, 2, «++) of G(az, y) is not complete in L*[0, 1], by Remark 2, G(w, y) is not
ibrlctly posfolve—deﬁmte and therefore by (12) G(w, y) does nob satisfy condition
Pi), moreover, condition (@) is weaker than (Qg) (for example, function (44)
pti sfies {Qs) but does nob samsfy (Qs) and function (43) satisfies (@) ‘but nob (Qs)
when a;%0). Hence, 'Theorems 5 and 6 (in partlcular conelusions (a) and (b)
mentioned above) can not be deduced from the resul’os (I) and (IT) of P. H.
Rabinowitz mentloned at the begmnmg of this paper.
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