THE BEHAVIOR OF SOLUTIONS IN THE VICINITY
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DIFF ERENTIAL EQUATIONS
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Abstract

* By usmg the exponential dichotomy," this paper investigates the’ behavior of Solutlonsf
" in the vwmlty ‘'of 2 bounded.solution to the autonomots differential system: -

f(m) LR L ,,<~1)
Suppose r= u(t) is a nontrlwal bounded solutlon of system (1) By dlscussmg the

I

eqmvalent equatlons of system @y .
1 + f1 (p, 9)

s
d . o P e Dy
o o A@pTe @
with respect to the moving orthonormal transformation '
: - a=ul@) +s(p,. o
the author proves tha.t if linear system correspondmg to (2) admlts exponentlal dmhotomy, o
then the given bounded solution #=u(¢) should be periodic. The author also discusses the
stadility of the obtained periodic solution. Fmally, this pa.per dlscusses perturbation of the
bounded solution. of autonomous system(l)

§ 1. Introduction

‘We consider the n~dimensional autonomous system

| L2 —f(@) (1.1)
é:nd the perturbed sjrs’ﬁém | .

— (&) +eF (), | | .2

where f(2), F(;b) are continuously differentiable in the domain D, an open set in

R", and n>2.

For system (1.1), the theory abou’s the behavmr of solutlons in the vicinity of

a periodic golution or equilibrium point has been well developed. There are also a

few papers discussing the behavior of solutions in the vicinity of an almost periodie
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solution, 2, HoWever, the purpose of this paper-is to discuss similar problems in
the vieinity of a more common invariant set, the orbit of a bounded solution.

In section 2 we well introduce. a simple method for the oonstruotlon of a
moving orthonormal system along a bounded orbit; then the equations of orblts
mth‘arespeot to the moving orthonormal System W111 be derived and some -of their
properties will be described. o A

In section 3 we will provide sufficient oondltlons for the exlstenoe of periodio
solution to nonlinear autonomous system of arbitary dimension. It is well known
that the classical answer to this question is given by the Poincare-Bendizson
Theorem which holds only for 2-dimensional system. When the dimension of the
system:dg Jarger than two, there is no common method. J. Cronin points out’™ that
if an n-dimensional nonlinear autonomous system of ordinary differential equations
bhas g-pounded solution with a-certain asymptotio stability property, this solution
approaohes a pel'lOle solufion. G. R. Sell points outm ‘that under cerfain conditions

' the almost porlodlc SO].'Il'blOD of system (1.1) isa perwdm one. In this paper we do
not need the assumption of stability property. The main result is Thecrem’ 3.1,
which says that under cerfain conditions the bounded solution of system (1.1) is a
penodlc solution. We will also oons:tder the stablhty of this obtamed periodic
solution. : ; o

In section 4 we will consider the perturbed system (1 2). We will obtam
results smular to those i in seotlon 3 ' '

§ 2. Movmg Orthonormal Systems Along
a Bounded Orblt

The search for orbits of autonomous -systems is a problem in the geometry of
- the phase space. Therefore, it is convenient t0 use a moving coordinate system
along an orbit. | ,

Definition 1. Solution u(%) of system (1.1) is bounded - ‘if there ewists a number
M>0 such that if t€ R and u(f) is defined, then u(t) € By, the dlosed ball ‘in R with

center O and radius M. . _ .
.~ Buppose w=u(t) is a bounded solution of system. (1.1) and there exists a
: nelghborhood Us(u(?)) of u(t) such that there ig no singular pom’ﬁ in the seb
d u;(u(®)) = {&: |o—u(t) |<d}=D,-. ‘

"ﬁhen there ems’ﬁs a number m>0 such that o ', L ,
Hf(“’)ﬂ>m) ‘”EUé(u<t>): B _(2-1)

- ‘where l<] is defined as

o] =~ei+ai+- +af,
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w=001(D1, Ta, ***, Tn)-
By the theory of linear equations and the conditions @a. 2) (2 1), there exist n—1
n~dimensional non-zero vectors

e1(6), 62(9), oo E,._i(é?), fER,
each of which is orthogonal to vector f (tv((?)) By Schmidt’s method, we have the
orthonormal system A :
- @@, 62(@.9):_"’:‘.9';-1(6)}
about the (n—1)-dimensional subspace perpendioular to the unit vector
@)= 1f'—“53<az%> o

The results are summarized as follows..

Theorem 2.1. Suppose the autonomous ‘system  (1.1), én which Sf(@) s
continuously d@ﬁemntwble im the domain D, has a bounded orrb'bt C: o=u(?), satfbsfy@ng

(2.1). Then there is always & cmttmuously dfbﬁ'efrentwble momng orthogonal« coozrdmate
System e o ‘

, {2(8), ?1(0‘);v.52<8>;"‘f;» 3n71<0)}
along C, where o - o
' (w(@))
It is evident that when n=2,' we: have the moving orthogonal coordinate
system ' S o X
(@, s@F | o
where s(8) = (—05(8), v1(6)), v1(f), v2(f) are the components of the vector v»(6).
Now we consider the same equatlons of sys’nem (1.1) with respect to the
moving orthonormal system. Take the transfozma’ﬁmn
‘ —”(9) +8(9)p, T A (2.2)
where ’ R
8(9) (6109)’ 62(8>? ) en—1<g))y
~ p=col(py, pa, **7P-1)-
Subs’ultu’omg (2 2) 1nt0 (1.1), we have

- @O +®) p> 0 s O% —f(%;(é?),—l;sr(é’)p),
that is ' '
(u @)+ @0, s(en =f<u<e> +s@p). @B

. ..dt B
Because
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Hw®, sonli=| 1. |- @) Esmso,

oy

there exists a small number & such:that the nxn matrix
(u(@) +¢'(&)p, 8(9))

is not singular when l]pu<8 Therefore, (2.2) is a 'regular transformation when

el <8, and both of 2L d9 and 22 can be expressed as the function of p, 6 and i

Multiplying v*(6) and s*(6) jltl both-sidé of (2.8); we have, respectively,
di 1+f,<p, o (29
‘and
» | A(g)p—!-fz(p, .. ey
Let us subsﬁtute (2 4) into (2. 5), then we have o | |
B A@e+Talp, O). - @8

(2.4) and (2.8) is nb’ohing but the equivalent equations of system (1.1) with
- respect to the moving orthonormal. system ‘where
o R f1;f2€01 S e
Ilfi(p, O1=0el), 172(0.8)|=0Upl?), (=)
A (@) is a continuous, bounded, (n—1) X (n—1) matrix defined in R.

§3 Perlodlc polutlon

We consider equation (2.6). By discarding the terms of hlgher order we have
the equation for normal vanamon of the solution as follows

d —A@)p. o (8.1)

‘Theoren 8.1, Ifs= u(t) is @ mntm'vwl boundzd solution of (1. 1) satisfying
(2.1) and linear system (8.1) admfbts ewponentwl dwhotomy, then w(t) 6s @ periodic
solution of system (L.1), : ' o

Proof The proofisa conSequenoe of the follo wing tbree Lemmas .

Definition 2. A bounded solution u(t) of system (1.1) 4s ésolated if there is a
neighborkood of u(t) s'wck that tlw system has no othetr solution lying in this
neighborhood. . ' - ‘ :

Lemal I f the linear systerm (8. 1) admits exponential dichotomy, then cmy
bounded solution u(¥) of system (1.1) is isolated. ‘ SINEE
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Proof Let B denote the set which is congtructed by all continuous, bounded,
(n—1)-dimensional vector functions defined in R. For p& B, take -

le] =§g§|lp(9) I 2

and for a given positive number dp< 9, let

={p€B|[pl<3o},
then B,, is-a bounded, closed set in Banach space B. By the condition of Lemma 1,

We may Suppose "X (6) is a fundamental soluﬁmn matrlx of linear sys’oem (3.1) such

that '
| X (&) PX(s) ll<BeXP(—a(0'—S)), 8>3,

X0 IT-P X | <Bexp(a6-)), <5 (3.2)
where &, B are positive constants, P is a progeomon such that P?=P. ' |
By equation (2.6), for arbltrary (n 1)-dimensional vector funciion p& Bs,,
take the mapping : o ‘
| T:0—>Tp,
: Whmh is defined by - : ‘ _
To@®)=| X O PX©Fa(e(s), 8)ds= j "X (@) I-PYX 0 Fap(s), 5)ds.

Let 3, be suﬂicnently small such that

' | K8, 2B/a= <1,
where the posmve number K (3 ) is the Lipschitz oonstant of f a(p, 0) Wlth resPeot
0 p. We have :

Te@) <[ _Bexp(~alf e, Dl

[ e (e@- ) IFae), Dl
<BE @[ _exp(—a(@—s)]e()ds +[j”exp<a<o—s>>‘up<é>u«zs]
 <pEn e[ _omp(—a@-nio+ [ emle@—a] |

: =K (8)) 2B/ a8o<do.
On the other hand, for g€ Bs,, We have

NZo@-T,@ <[ _exp(-a8-)IFa(o(@), H=Fals), lds
+ 8, expla@-) 17, D=Falo@, &
S G EORECIE

+fj exp@\e-snnp(s) y(s)ﬂ

< BR O lo—gl e e e
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Therefore, 7' ig a contraction mapping in B;,. By the Fixed Point Theorem, we
may suppose p, is its unique fixed point in B;,. Thus, in’ the ‘neighborhood
Us,(w(?)) of u(?), system (1.1) hés the bounded solution
- e=u(d) +s(8)po(6), HER,
where o
| ool =suplee@® <. o |
. Bﬁf, by TO;O; we have po(6) =0, 9CR. That is to éay, system (1.1 l_ia.s one and
only one bounded solution z=u(?) in the neighborhood Ug(d(i)) of u(?). This
completes the proof of Lemma 1, . . . ... .. "
Lemma 2. If the bounded solution &=u(t) of system: (1.1) is isolated, then o=
u(t) is @ recurrent soluiiont™ of system (1.1), and

STu()]=RE®T, -

Su()]={s€R|o=u(t), t€ R}. _ g :
Proof  Let Q[u(+)] denote the set of w-limit points of u(t). Since r=u(t) is
bounded on R, then Q2[u(t)]+@. The set Q[u ()] is invariant, closed and compact,
and hence contains a minimal set, which is closed and hence compact. Every
trajectory of a compact minimal set ig recurrent'®. Ag shown above, u(?) is isolated
bounded solution, therefore u(%) is recurrent. Then STu(2)] is a compact minimal
set and is constructed by recl_llrrent' ti‘ajectérigs.]By, the condition that w(¢) is

where

isolated, we have |
STu(®)1=8u(®]1.
- This complets the proof of Lemma 2. - - I : o .
Lemma 3. Ir w=u(t) is a nontrivial recurrent solution of system (1.1) and

S[u®] -Su®I,
then s=u(t) is a periodic solution of system (1.1).

Pmobf Refer to Theorem 2.85 in [7]. -

Now we consider the stability. of the periodic solution &=wu(f).’ Obviously, if
system (3.1) admits only exponential dichotomy, _then the trivial solution of
equation (2.6) is usually of conditional stability. Hence u(?) is. usually of
conditiona, Ly, orbital stability (thus, the obtained periodiec solution u(t) may be

unstable). If system (8.1) is of exponential asymptotic stability, then we can prove
that the trivial solution of equation (2.6) is also of exponential asymptotic stability.
Therefore, d(t} is of aéymptot{oaliy orbital stability. Thus, we have the following
theorem, e T AN 7 |
Theorem 3. 2, Suppoge_system (8.1) has exponential d@cﬁotomy and k is the rank
of projection P in (8.2), we have - .
(D if k=n—1 (that is, P=1I), thei (i) is°0f asympistically orbital stability,
(2) if 0<k<n—1, then u(t) is of conditional orbital istability (that is, unsiable). |
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M. Urabe™ points out that if u(t) is periodic and the trivial solution of :system
(8.1) is expoentially asymptotically stable, then u(t) is of asymptotically orbital
stability with asymptotic phase. By Theorem 3.1 and Theorem 3.2, we have the;
following corollary. o I

Corollary. If the trivial solumon of wawaa" system. (3.1) 4s ewponentially
esymptotically stable, then u(f) is a periodic solution of asymptotically orbital stability
with asymptbtq}c phase. -

§ 4. Perturbation of Autonomous System

Now we consider the perturbed system (1.2) of the. given aumtonomous system.
(L.1). By the method of section 2, we may Obtain the eQung,lent equations of system
1.2

dag _

| (4.1)
"ﬂ':A(G)p—l—G‘(p,ﬂ, €) '
- with respect o the moving orthonormal system, where
L Q, Gel,
[QL=0Clpl +&), [@1=0Clpl*+&) (o0, 8 »0).
If s=u(t) is a nontrivial bounded solution of (1.1) and linear system (3.1) admits
exponential dichotomy, then w(z) is periodic by section 8. Therefore, in the Viéimty
of u(t), system (1. 2) has umque perlodle solu‘blon o= u(t ¢). Thus, we haVe the
| following theorem. ‘ ' ' ‘ o
Theorem 4.1. If s=u(f) is a nonirivial bounded s’olutalon of system (1.1)
satisfying (2.1) and linear system (3.1) admits ewponmmal d@chotOmy, then system
a. 2) has umgue pemodw solution 4 (¢, &) im the wc@mty of v=u(t) end. . .. ° :
‘ U " I_unu(t &) =u(f). .o v Y
~Proof - 'We conmder the equivalent equation (4.1) of system’ . 2) Smoe linea,rji‘
system (8.1) admits exponentzal dichotomy, then by Theorem 3 1 u(t) isa perlodlo:

solu’omn of (1 1). Thus, A(H), G(p, 0, s) in equatlon »_ ) )
fa@pra 00 2),;

and s(#) are all perlodlc functmnu W1th resPeot to 8. Therefore, for suﬁlclently
small >0, system (4 .2) has a unique periodic solution 5(f, &) and

ICAD) =[in @) PX1(5)G(p(s), ¢, &)ds

~[TxOE-PX @6, s ds.
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Thus, we have ,
|81 =0(e), £—0;
and system (1.2) has the periodioc solution ;
v=u(f, &) =u(f) +s(9)p(€ s)
By the first equatlon of (4.1), we have
0=0(t, &) =t+0(e), 0.
Henoce
w=u(t &)
and : : : B
'ﬁma(t &) =u(t).
This complete the proof of Theorem 4.1.

In order to discusy the stability of the periodic’ solution (t e), wé may use the
“ROUGHNESS” of exponential dichotomy™ to consider the equivalent equation of
system (1.2) with respect to the new transformatuon ;

X=u(, &)+, &)p, -
where $(8, p) i8 the new nx (n—1) matrix which is constructed by n—1 orthogonal
vectors with respect to % (6, &) (the method of construction is similar to that of
section 2). Here, we give the result without proof. ' ’ A ' ‘4

Theoren 4.2. Sz@pose system (3. 1) admits exponential d'z/chotomy and k is the
rank of progjection Pin (3.2). We have

(1) if k=n—1, then u(t 8) s of asymptomcauy o'rbfz,tal stability 'wfbih as'ymptomc
phase.

(2) if 0<< k<n—1 then u(t g)bs of cond@twnal orrbfbtal stabfalrbty
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