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QUALITATIVE ANALYSIS ON F ITZHUGH’S
' NERVE CONDUCTION EQUATION*
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Abstract
The existence of limit cycles of Fitzhugh's nerve -conduction equation (1) was studied
in [1-4], but only a small range of parameter was considered. In this paper the authors

establish a result (Theorem A) by usmg the qua.h’catwe method of 0. D. E., “whicn .
» 1mproves the results in [1-4] consuierably

By Fitzhugh’s‘pérvecbndiloﬁon equatibﬁ we mean the gystem’ -

A2, =+t — —l—w%,. 7

@ 3 ;
- dw ‘ o @

e —-p(w @1 bas), |

where o, aER, b, p€ (0, 1). By the blfurca,tlon ’nheory some branohmg values for
which system (1) creates limit cycle are investigated in [1-4]. For convenience of
comparing their results with ours, we summarize those results in onr usual
terminology as follows: Let v; and vs be the first and second focal values of the
unique singular point respectively. Then (i) system (1) has a stable limit cycle if
'0<'v1<<1 and v;<<0; (ii) system (1) has an unstable limit eycle if 0< —wv;<«1 and
9;>0. Here o, is an undetermined small parameter and the crifical wvalues of
pa,rameter corr98pondmg to the existence and non-existence have not been found
out completely. Moreover, although [8] pointed out that (1) mlght oreaﬁe two limit
cycles, it'did not indicate in detail when this would happen : L
The main result of th;s paper is the following

Theorem A. (a) I f v,<0, then system (1) has no limit cycle and the umique
finite singular point is globwl asymptotic stable; (b) If either v;>0 or v;=0, 93>0,
‘then system (1) has evactly one stable limit oyele; (¢) If 0<— 911 and vs>0, then
system (1) has at least two limit cycles, ‘one being stable and the other unstable. In case
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v, <<0 with absolute value large enough, e. g. vi<—8(1—pb), system (1) has no limit
cycle. ' ' . '
‘ Obviously the results (i) and (ii).cited above are only part of (b) and (¢). In
Theorem A all the bifurcation values are discovered except for those corresponding
to the existence of a ‘semi-gtable limit eycle. Furthermore we may suppose that
there exist exactly ‘_ﬁvq limit cycles in case (), which r_em_a_uihﬂ 0 be confirmed,

§ 1. The Existence of Limit Cycle

It 1s easy 150 see that ‘the coordlnate #; of the finite smgular pom’s (w1, mz) of -

systom (1) is determined by S(ml)A:vl—’r?r(%-—l)wl 3<a+ ) —0. Since & (zy) =

807 +8 (—l——1> >0, the equation S(z;) =0 has a unique real root denoted by #10=

b

z4(a) and the coordinate o, of this singular point is 4s=(a — 10)/0. The characteristio
equation at (@19, @a0) i8 A2— (1—pb— wfo)h-i-pv— pb -l—hpb'd;fo —0. Since p— pb -+ pbats>>
p(1=08)>0, (@10, T20) i8 an eleﬁnentary singular point of index +1. Let v;=1—pb
.—a;lo, then the singular point is unstable if v,>>0 and stable if v;<<0. The case v;=0
gives rise o the determination of center or foous wﬂsh vy, the first focal value.

S Tet X= =iy —@y0, ¥ = mg’_wgo We can move the orlgm to the Smgular point and
system (1) beoomes :

| dg (1 mm)X+Y mez‘——g’—X3
. @)
: -~ f'_PX pbY . e T

We may assume w39=>0, or othervnse by set‘ﬁmg X -—a»-—X Y—? Y. and —mm—-ml we
will have 1>>0 without changing the form of (2)

[2] and [4] have caloulated the focal values. Bub the caloulation in [2] wag
wrong, which led to some mistakes in the result related %0 the case w3=0. Our
caloulation yields the following lemma, which agrees with [4]

Lemmal. The ﬁfrst second, and third focal mlues of the smgulczfr point (0, 0)
of (2) are

v1=1—bp—al, /03—26 ~1=b%, v5=— 19°b’° <0, OB
respectively, where wo=~/p— b2p> p—bﬂpg >0. |

- The proof is left out. ) |

Lemma 2. System (2) has only two singular pomts at infinity. B(1, 0, 0) is an
unstable elementary node; A(0, 1, 0) is @ high order singular point with index —1, or
more spevifically, a 4-branch saddle point. In a ne@ghboWhood of 4, all the positive
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half-orbits go far away f-rom A emcept that- two positive half-orbits om tbe eguatorr
approach A. Therefore all the poswtwe half-orbits of (2) aré bounded. '

Pa"ocf LetU=Y/X, Z= 1/X dt= Z”dT system (2) is tra,nsfromed into
4z 1- s 2
= z[ = +w10Z (1 a;m)Z - Uz,

v _ 1, N @
77 =5 UtoulZ—pZ* = U2~ 1- wm)UZQ vz,

The singular point B(Z = O U=0) with 1ts homogeneous coordmate (1 0, O) is an
unstable elementa,ry node

Agam let V= X /Y Z = 1/Y di= Ve dT'. System (2) is ’sransfromed mto

aZ

L=V ) AP, .
% — 704 (pb+1— wm)VZ2—w10V"‘Z———-V3+pT“‘Z2AQ |

The singular point 4(Z =0, V' =0). with its homogeneous coordinate 0,1, 0) is &
high order singular pomt L follows from Pomcar 's sphere mdex theorem that the
index of 4 is —1. o :

- COonstructing a Dulac function B(Z, V)= (2 +40b)V —1, we have (BP),+
(BQ)y=2Z"+ (10Z +V )2 +higher term. Therefore, there is no ‘closed orbit or
singular closed orbit in some sufficient small neighbourhood of A, and consequently,
no elliptic region is linked to A. From Bendixson index theorem j=14-(¢e—h)/2, we
can see that besides the paraboho reglons there are exaeﬁly four hy‘perbolas in the
neighbourhood of 4. Moreover there are at most two characteristic directions at A:
Z=0, V>0 and Z=0, ¥ <0 From the first expression in (5) we can see that dZ/dT’
and Z Nha'v*e the ‘same sign when ¥'>><b. Therefore no positive half-orbits which
pass through the points in the half—plane V>—b (except for the line Z=0) will
 enter info 4, and thus there is just one positive half-orbit, i. e. the equator,
entering into A along each characteristic direction. In addition, there are at least two
negative half-orbits entering into 4, which constitute the boundary of the
hyperbolic region. Also B is an uns’oable node so all the positive half-orbits are
'bounded The lemma, is thus proved.

Theorem 1. 1) I f v1>0 or 2) @f fvi—O 03>O then system (2) has at least one
“stable limit cycle, 8) if v:>0, 0< —0 k1, then system (2) has at lewst two Tomit
cycles, one bemg unsmble while the other stable. K

Proof Both in case 1) and oase 2) , the umque smgular point O is unstable. By
Lemma 2 all the posfﬁlve half-orbits are bounded. It follows from the generahzed
" Poinoaré-Bendixson annular region theorem that system (2) has at least one stable
limit cyele When the parameters run from fv3>0 fv1-—0 to 'v3>0 0< —v1k1, the
sta.blhty of the singular point O ohanges from unstable to stable. ‘Hence an unstable
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* limit cycle occurs around the origin O.-But the original sﬁable limit. cycle rema,ms.
Therefore the system hag at least two limit oycles . N -

Remark 1. In case 10=0 that system (2) has af Ieast one limit cycle for
vi+1—a—pb= i pb>0 is always satlsﬁed Therefore we only need o consider the
case w19>0 in the subsequent discussion on the non-existence of limit cycle,

'§ 2. The Non-Existence of Limit' Cycle
Theorem 2. If v1=0 and v3<X0, then system 2) hczs no l@mq/t eycle.

Proof By ‘the transformation &= X y=pbX +Y gystem (2) is changed into a
Liénard equation ‘ :

&y @), We—g@, ®

where N o :
- F(#)=—0:0+010° +w3/3 ‘ o )

g(z) = p{[l b(1—a%) ]a+ bwyex® +bas3/3} o o ®

We shall make use of the Lemma 2 quoted in [5]. For this purpose We are o

see if the two curves _ o S o
F(z)=F(), - - (®

- . G@=4@ : - (19)
intersect in the regmn DA {(w, y); <0, y>0}, where G(s) is given by '

G(m)AJ' (m)dm p{ [1 b(1—a3)]a? +lba;ma; —!—i—bm}

12
By the transformation {=—z—y, n=—2+y, (9), (10) and D can be changed mto
| P=hE, - )
, bQw—E)P=4¢(§) - , Lo @2y
and . v | E R _ : : :
o DiA{(, m); E+0>0, é—9<0}, (13)
respectively, where : : B : - - _
h(€) =120, +12m40¢ — 882, o o (14
P(€) =12[1—b(1—2%) 1€ —6bw1f® +55°. (15)

- Noting that v;=0 and 2:,>0, we can' see ‘that (11) represen‘qé»an ellipse which is-
symmetric with respect to £-axis and is located on the right side of n—axis. The part
“of the ellipse ingide D has its projection 0<€<8wi, on &—axis. On the other hand,

by eliminating = from (11) and (12) we obfai_n 6&? — 6bw106 +6v3=0. When v3<0,

neither of its roots lies in the interval (0, 8z). This implies that (11) and (12) deo

_not intersect in Dy, -or eqmvalently, (9) and (10) do not intersect in D. It follows

_from Lemma 2 in [5] that system (2) hasg 1o limit cycle.
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Let us now turn o the case v1<<0.

Theorem 3. If8a%+4v:<0, i.e. 'ul<—’3(1~pb), then system (2)' has no la)mrz)t
cyole. :
Proof TFirst we note that the expressions (6) through (15) in Theorem 2
remain valid for »;<0. The ellipse (11) intersects the boundary of Dy, i. e. £=1, at
two points. Their {—coordinates £; and £s are determined by the equatlon

: = £2— 8w —8v3=0. o (16)
If 823, +4'vl<0, then (16) has no real root or has a unique multiple root. Therefore
(11) has no loci inside Dy, and hence (11) and ’12) do nob intersect in Dj. This
implies that (2) has no limit cycle, which completes the proof. -

- If 8x%+4v,>0, the situation is a little complicated and we have -
Theorem 4. Suppose v;<0 and 3z3o+4v1>0. Denote

¢(§) bfa Gbmlofg +6(2b£010+pb2 1)5 +‘12b$10’01 : (17) :
Let £3 be the smaller root of equation ¢’ (§) =0 K '
&1 =2a19— ~2(1—pb?) /b (18)

cmd §1 be the smaller root of equwtwn (16): |
fi——' [311710 \/ 9m1o+12’01] - | (19)

Then system._(2) has no limit oycle if any one of the followmg conditions (w) §1<§1,
(b) €1>&1, p(§) <O, s satisfied. ,
Pfroof We are to prove that (9) and (10) do not mtersec’ﬁ in - D To this end,
we consider first the section of (10) inside D, or eqmvalently, ‘the section of (12)
inside D;. From (15) we have ((0) =0, ¢/'(§) =38 [b£2— 4bwsoé +4(1-b(1—2%))],
and it is easy 1o check that ¢'(§)>0. Therefore =¢}v‘(§)bié an increasing function with
the same sign as ¢, and hence only for 0<§ <2m10, can the section of (12) be inside
On the oﬁher s1de 1’5 is already known that the §—ooordmate of the Seotlon of
(11) inside D; must be in the mterval (51, 52), where &1, and & are the roots of
(16). Therefore it is sufficient o show that ‘(11) and (12) do not intersect when
£1<€<2a10. Combining (11) and (12) to eliminate %, we obtain 2 cubic” equation
@(£) =0, where @ () is given by (17). <p(§) may be rewritten into ’she form ‘
0 (&) =b (&2 B10f — 8vy) (€ — 3w10) +3(D +p62 2)§+3bwmful, (20
or

¢(§ f) (5 941710) +4<Pb2 1)¢ +4w10(3b 1 21052 baﬁo) (21)
E‘rom (20) and the hypotheSes 0<b<1, 0<p<1, £;>>0, 10>0, v1<0, we have

?(51) 3(6 —i'pb2 2)§1+3bw10’01<0
" But from (21) we can see thab
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P (2010) = 410 (3b — 8 — baty) <0,
' p(+0o0) = oo, .
Thus in the 1nterva1 (51, Zmﬂ,) only one of the followmg ﬁhree cases for gp(g) =0
may- happen:. (i) on real root;: ~(i1) a unique root.of multiplicity two; (iii) two
distinct real roots. Cases (i). and (ii) are equivalent to that (9) and (10) have no
common point, or have just one tac—point but do. not cross. In both cases system -
(2) has no limit oycle. But under the conditions of this theorem, only case (1) or’
case (ii) will happen. This completes thé proof. S '
Corollary. .If v:<0, v;<<0, then. (2) has no limit oycle
Proof By Theorem 8, we need only: consider the case 3af+4v;>0. With
simple manipulation it can be shown- that- §1<2m10—~2«/ 1- pb<§1, and -thus the
couclusion follows. L R T A

§ 3 The Umqueness of the lelt Cycle

‘In this section we always assume v1>0 or wy=0 and v3>0. Under ﬁhesa
conditions we shall show that the Liénard equa’mon (6) has at most one limlt eyele
'I‘hen by combining Theorem 1, the ‘unigueness-of limit cycle is obtained.

- The equahon F(z)= 0 (see (7)) hag three roots 41—-3- —:v10+ J @30 + -—-':)1 ]> 0,

4y =—g—[ -mm— \/m10+ —'01]<O and 0 The roots of F’(w) -0 are 81—— —-cz;lo—l—\/l p

and ds=—m19— VI=pb pb. It is easy fo see 82<O<81, and 61—0 only when 'vin

- Lemma 3. System (6) has a unique stable limit cycle if G (4) <G (4y).

Pfroof -By Theorem 2'in [7], we need only 'to verify .the following four
couditions. : -

\ Lo ‘ - ‘
Since zg(w) = pba? (% +a;10w+w?o—l— —%~—1>, it follows immediately that

_ (1) a;g(m) >0 (m#O), _gnd G‘(+oo) 4o, »
The condlhon G(Ag) <G(Al) 1mplles fvi>0 Hence the TWO roots of F’(m) 0 satlsfy
82<0<81, and we ‘have h ,
" (2) F'(x)<0 when 32<m<51, F’(m) >0 when w<62 or a;>81
Obwously we can see

(8) F(+00)>F(~o0).
Fmally ,412<82<0 meansg G(62> <G(Az) Also we assert that G'(8,) >G(81), for

~&10+ VI=pb —pb
JCICREICS J O RO

Hence we obtain
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(4> maX[G(Sg), G(Sl)]<mm[(¥(d2) G(Ai)]
The lemma is then a consequence-of Theorem 2 in [7],

Remark 2. G()isan even function, If @4,=0, then 4,—= —4y. In this case
G(Al) =G(4), and by Lemma 8 we can see that system (6) has a unique stable
Limit cycle, In Wha,t follows we are mterested only in the case ©1,>0.

Lemma 4. Suppose G'(ds) >G(41). Then i) the limit eycle of system (6) must,
encompass the pomt (44, 0); 11) System (6) has at most one Z@fm@t cyele which containg
the point (4, 0) inside or on it. If such & limit cycle does ezist, it is stable.

Proof. 1) Let =z,(z) represent the mverse functlon of 2=G(a) ((—1)*! 4
0). By ®mmmmmos transformation z—u, (@) (= 1 2), system (6) ig changed into

g_y.—_za(z)—y, 2>0, i=1, 2, (B

where Fy(z) = F(a;, (2)). In this way, each closed orbit I of system (6) can be divided
into two arcs, Ly and L,, located on #>0 and 4<X0 respectively, I is an mtegral
curve of equation (H;) (é=1, 2). Clearly, G(4) is a positive root of Fy(Z)=0.
Hence Fy(2)<<0<F,3(z) for 0<2<G(4y), that is to say, Fyi(2) and Fy(z) do not
intersect. Therefore if system (6) has a limit cycle, the hmﬂ: oyole will never lie

entirely in the strip region — oo <4y, and thus it must econtain the point (4, 0)
‘within. ‘ 7 ) e e »

For ii) we need’ only to shbw that the limit cycle L must be stable if the pdint
(4a, 0) lies inside or on it. 'I‘o do this, if is sufficient to show § F’ (a;) dt >0, whlch

is equivalent to

J‘L '+L F'(z) dy J F'(z)dy— J F (z) dy>0 : (28)

Let 2y, be the rightest point on L; (i=1, 2). Clearly, _
2w >G (4) (soo Figure 1). If >>G(4y), then Fy(2)>0and ¥l m F‘Z\"‘”
Fi(2)>0; If 0<2<G(4y), then Fy(z)>0; If z>G(4y),
then F,(2)<0 and F}(z) <0, Therefore F1(2) <Fi(ax)
when 0<\z<zy, and F, (2) >Fy(2y,) when 0<z<zy,. By G(dn)
Lemma 1 in [8] we see easily that (28) holds and the /
proof is completed. '

Lemma 5. Suppose G-(4,) >GQ(4y). Then system (6)
has at most one limit oycle in the strip region dy<w< oo, : .
The timit cycle must be stable if it emists. ‘ : v Fig. 1

.<Zl|g' 7, (2”3)

Proof We shall vesify the following four conditions alone, and this lemma
can be derived immediately by applying Theorem 2 in [8].

1) zg(=) >0, for 50,

"~ 2) There exists an =0 suoh that F1(2)<0<F2(z) for 0<z<<a, but Fy(z)%
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Fs(2) for 0<z<1; Fi(2) >0 for z>a; Fi(z) <0 for'Fg(z)‘ <0. _
8") F(y) f(v)/9(y) is nendecreasing in 4;<y< +oo; where f(y) =F'(y).
4'). For every 00, the curves F(z) =F(y) and G(z) =G(y) +c have at mosi
on - s-intersection point in the region D'A{(z, y); 4<2<0, &<y},
Condition 1) has already been cheoked in the proof of Lemma 3. 'For 2) it is
enough 1o take a= G’(Ai) (if v =0, take a=0). To verify 3), let us observe that
[F WS @) ] _ P(l-pb’)_z/f qy) +F (y)@(y)
g(ﬂ) AR 2(@/) e

where :
d?(y) pbfﬁ(y) +f’(y)g(y) ~f (y)g' (z/)
=pb[—-g/4+—-w1o?l3+<-3wm+ %“1"”"1)3/%
- —258104)1?/—}"1)1-{—’01 (5510 + i_l):l PR | - (24)

Therefore 11; 1s Suﬁiclent to show ) (0) >0 When y>Al Through snnple mampulafmon
we have o : -

. @’(y) pb[g y +8a;10{y +2(3$%o+——1 V1 y 25610’01]
If w1—0 then dy=0 and &(0) =0: Algo -+ o7 - 7 ST RIIT L

TW) =] 58+ B2 ko -1

o ._ . o 64 1
The criterion of the quadratic expression in bragket -3—-(1~——b-)<0 “Hence &'(y)>0,

when >0, which iihplies @ (y)>0 when y>0. If »,>0, then it is easy to see that
@'(y) =0 has either one posfmve root and two negamve roots or: simply one pogsitive
roob. Let 45 denote the posmve root of @' (y) —0. we have @' (y) <0 for yE (O Ys)
and @’ (y) >O for ye (ys, +=c0). In addition we may check o

@,(Ai) (6&310+ %“‘2"}'6’0’1 )41—25010"01

.:—Ai[(——wlo ‘/w10+ 'vi) +ﬂ oot 134 '1)1-!'——%-—2} <o,

*-from whmh we assert y3<A1 Thus @’(y) >O When y=>4. Smoe )
RN @(Al) <w10+ %—1+®1)A§+fvl+fv1 <m10+ %—-—1)>O
we ‘have @(y) >0 when y>A1 Oombmmg the above dlsoussmn we know that
condltlon 33 holds.. : oo T o R ,“ s
We now prooeed to condition 4'). By using the transiorma,hon € —ip— y, n—
.—@-+y agiin section 2, the region D’, the curves: F(m) F(y) and G(m) G(y) +o
are changed reﬁpeotlvely infori: L7 o -

Dl—{(f, n); 0<§+n< 242, 2Al<77 g},
EE T SR N n=h(f), S o {28)
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~ and ~ '
PR bQCww—EnP =Y ()n—c, - @8
for A(§) and l[;(f) soe (14) and (15). Since ¢(0) =0, '

P’ (€) =8[b€2 — 4bwyof +4(1—b(1—afo))]1>0
and 7> 4,>0, wé can see that (26) makes sense only for £>0. Ehmmatmg ?72 from
(25) and (26) we ‘have _ L
Mmp(¢)+e=0, . - - @1
where p(£) is given by (17) Note that g(— c0)= — o0, ¢(+ 0)=+00, p(0)=12z100;
>0, (8w10) = 8w1o(4b +20b% — 6 ba20)<0, @(2w10)=4m1¢(88—8— baly)<<0. This means
that @(£) =0 has two and only two positive roots £,>£:>>0, and ¢({)<0 when £€
(&1, &) (see Figure 2) 'On the other hand, {=—2s—y<— (Ai+A2) 840 in Dl and
3m10<§2 Therefore we need only Verlfy ‘that (25) and (27) have only one common
point in the region {(5, 17), EI<§<3w10, 97>A1} In D we rewrite (25) and
(27) as L ,

=)= f‘“h(f) . (25
and U v S
=@ =—5 (5) @7

- Olearly, n=mn:(£) is the upper-half part of an elhpse ‘with (2:510, 0) as its
center, 2~/ 3 /&3 +v; and 2+/T5 + vy as its half long—axis and ha:lf short-axis. Thus
7}1 (§) >0 when &< £<2i¢ 7i(£)<0 when 2w1,<&<8mi0; M1(£) <0 when £<{<8me.

Furhher 2(5)“ c(pg((?) s and the equamon @ () =0 has two roofs

5* 210 J2(1 pb‘) /b and §2~2a;10+\/_—————2(1 002/
When §1<§<§2, we ha,ve @ (f) <0. It is easy $0 See §*<§71, 3a;10<§*; and so m(f) <0

whon &< €<8au0. A0, 75(&) = "[‘P@S”;;ﬁ)( 925”'2@ )1 ey 65 —12b230. Solvmg

the equahon (p '(5) 0 we obtain &= Qmio ‘Thus @' (€) >O When 9m10<§<8m10, and:
consequently 73 (&) >0 when 210§ <8w10. : ; :

We will now discuss separately m three gituations.
i) Lot co= —2¢(8z10) / 7o(8%10). If ¢ =0y, then the curves n=1,({) and 77 =€)
m‘berseot at f 3:010 In addﬁnon from the fact that

T 144w, (,ob2
[771(5) o (f)] t=20 = T (30 (p(35010)

and 77($) <O 'n (§) =0 When 2w10<§<3mm, we know n,(&) >, {(8w10) >n2(3a;10)> k

7p(€) and then 7: (£) < (§) for 2m10<&< 8m19. Moreover we can see 7} (§) >0>n5 (&)
for 5 € (51, 2m10) Thus in thls interval we have 7, (E ) >m (¢ ), Whloh means that the
ourves n= 7)1(5) and 97 = 7)g (§) Will not intorsect again When 51 § <oa;10 (see Fm‘ure
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2}[

- 23y

7z a\yg; , o =)

Fig. 2 N Fig. "3

1) For ¢>¢o, it is obv1ous that n=n1(§) and n=ns(&) do not intersect.
iii) As for c<<co, in a way similar to i), it can be shown that n=mn & and
n=n3(§) intersect only once in either 210 E< 8wy OT El< E<20. ,
To sum up, we have proved that the curves n=1,(§) and n=7s(¢) have at most
one common point in DY, or equivalently, () — F(y) and G:(z) =G (y) +¢ have at
most one common point in D’ for every ¢>0. The proof is then completed.
Combining Lemmas 8—5 and Theorem 1, we have
Theorem 5. If éither v4>>0 of v,=0 and v3>0 then system (2) has a unique
limit cycle and the limit cyole is stable. , :
Proof Note that system (2) is equivalent to system (6) It G(Ag) <G(4,), then.;
Theorem 5 follows immediately from Lemma 8. If ,G(A2)>G‘ (4y), then by Theorem 1
we know that ther exists at least one stable limit eyele But Lemma 4 and Lemma 5
indicate that there is at most one such limit oycle that the p01nt (44, 0) lieg inside
or on it, and there is at most one such limit eyele that the point (4s, 0) lies outside
it. If they do exist, they must be stable. Therefore these two limit cycles will never
exist simultaneously, that is to say, system‘(z) has a unique stable limit oycle, and.
the proof is thus completed. |

§ 4. Conclusion Remark

So far we have proved Theorems 1—5. Combining these ieéults, we obtain
Theorem A. - - S |
We know that the coordinate @10 =w1(a) of the singular point satisfies

m§o+3<%-—1'> 10— 3 (a—'l——g—')%O,' 80 a—-%—-mm—i- (%——-1) Tyg— —z-éa(wm)

and

d(i - =@+ (—61—-1)>0 ThlS means that o= a(mio) is a monotone mcreasmg
1

function with respect t0 @4 and a—> oo ag w39—> 0. Therefore there is a one—to-"
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one correspondence between Q=R X R X (0, 1) x (0, 1) in parameter space (a % b

»

p) and some region Q' in parameter space (@, @19, w1, vs). The condmons in
, Theorem A are sta’oed in terms of parameters (a, @i, v1, vs). Evidently, it can be
stated in terms of parameters (a, @, b, p) as well. For example the condition ;>0
or —~/1=bp <@1< ~/I—bp can be ohanged into an equlvalent form a(—~/1=0bp)
<a<a(~/I=0bp) and so forth
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