OSCILLATORY CRITERIA FOR n-ORDER NONLINEAR FUNCTIONAL DIFFERENTIAL INEQUALITIES AND EQUATIONS WITH CONTINUOUS DISTRIBUTED DEVIATING ARGUMENTS

RUAN JIONG (阮 烱)*

Abstract

This paper deals with more general *n*-order nonlinear functional differential inequalities with continuous distributed deviating arguments and equations of this type.

The author obtains some oscillatory criteria and generalizes and modifies some results given by Lu-San Chen and Chen-Chih Yeh.

§ 1. Introduction

In the last few years several results about the oscillatory criteria for n-order nonlinear functional differential inequalities with finite deviating arguments have been obtained, e. g. see [1, 2]. The purpose of this paper is to obtain some oscillatory criteria for more general n-order nonlinear functional differential inequalities with continuous distributed deviating arguments and to give some results for equations of this type. We generalize and modify some results in [2, 3].

In this paper we consider the following inequalities

$$u(t) \Big[L_n u(t) + \int_a^b F(t, \xi, u[G_1(t, \xi)], u[G_2(t, \xi)], \dots, u[G_m(t, \xi)]) d\sigma(\xi)$$

$$-h(t) \Big] \leq 0,$$
(1.1)

and

$$u(t) \left[L_{n}u(t) - \int_{a}^{b} F(t, \xi, u[G_{1}(t, \xi)], u[G_{2}(t, \xi)], \dots, u[G_{m}(t, \xi)]) d\sigma(\xi) - p(t) \right] \geqslant 0,$$
(1.2)

where $n \ge 2$ and L_n is an operator defined by

$$L_{0}u(t) = u(t), L_{i}u(t) = \frac{1}{r_{i}(t)}(L_{i-1}u(t))',$$

$$r_{i}(t) > 0 (i = 1, 2, \dots, n), r_{n}(t) = 1.$$
(1.3)

Manuscript received January 14, 1984. Revised April 21, 1984.

^{*} Department of Mathematics, Fudan University, Shanghai, China.

Also we study equations

$$L_{n}u(t) + \int_{a}^{b} F(t, \xi, u[G_{1}(t, \xi)], u[G_{2}(t, \xi)], \dots, u[G_{m}(t, \xi)]) d\sigma(\xi) = h(t),$$

$$(1.1)'$$

$$L_{n}u(t) - \int_{a}^{b} F(t, \xi, u[G_{1}(t, \xi)], u[G_{2}(t, \xi)], \dots, u[G_{m}(t, \xi)]) d\sigma(\xi) = h(t).$$

$$(1.2)'$$

A function u(t) which satisfies some inequality as (1.1), (1.2) or some equation as (1.1)', (1.2)' is said to be oscillatory if it has an unbounded set of zeros but $u(t) \not\equiv 0$ for all $t \geqslant T$, where T is an appropriate constant. Otherwise it is called nonoscillatory.

Throughout this paper, we suppose:

 $f(R_1)$ $F(t, \xi, x_1, \dots, x_m) \in C[R_+ \times [a, b] \times R^m, R], F(t, \xi_1, x_1, \dots, x_m) \not\equiv 0$ for all $t \geqslant t_1$, where t_1 is an appropriate constant. If $x_i > 0$ $(i=1, 2, \dots, m)$, then $F(t, \xi, x_1, \dots, x_m)$ is positive and non-decreasing with respect to x_1, \dots, x_m for all $t \geqslant 0$, $\xi \in [a, b]$. If n is even, then

$$F(t, \xi, x_1, \dots, x_m) \leq -F(t, \xi, x_1, \dots, -x_m), \text{ for all } x_i > 0,$$

 $t \geq 0, \xi \in [a, b], (i=1, 2, \dots, m).$ (1.4)

If n is odd, then

$$F(t, \, \xi, \, x_1, \, \cdots, \, x_m) \geqslant -F(t, \, \xi, \, -x_1, \, \cdots, \, -x_m), \quad \text{for all } x_i > 0,$$

$$t \geqslant 0 \, (i = 1, \, 2, \, \cdots, \, m). \tag{1.5}$$

(R₂)
$$r_i(t) \in C[R_+, R_+ - \{0\}], \int_0^\infty r_i(t) dt = \infty (i=1, 2, \dots, n-1).$$
 (1.6)

(R₈)
$$G_i(t, \xi) \in C[R_+ \times [a, b], R], \lim_{t \to +\infty} G_i(t, \xi) = \infty \ (\xi \in [a, b]).$$

- (R₄) The integrals in inequalities are Stieltjes integrals.
- (R₅) $h(t) \in C[R_+, R]$ and there exists an oscillatory solution p(t) such that

$$L_n p(t) = h(t), \lim_{t \to +\infty} p(t) = 0,$$
 (1.7)

where $R_{+} = [0, +\infty)$ and $R = (-\infty, +\infty)$.

For convenience, we define $W_i(t) \in C[R_+, R_+]$, $i=1, 2, \dots, n-1$, as follows:

$$W_{1}(t) = \int_{0}^{t} r_{1}(s) ds,$$

$$W_{i}(t) = \int_{0}^{t} r_{i}(s) W_{i-1}(s) ds, \ i = 2, 3, \dots, n-1.$$
(1.8)

In section 2 of this paper we give some results for inequalies of even order. In section 3 we give some results for inequalies of odd order. In section 4 we give some results for equations of this type. In section 5 we give some examples.

§ 2. Oscillatory Criteria for Inequalies (1.1), (1.2) of Even Order

In order to obtain our main results we need the following lemma, which is a simple generalization of results given by Philos^[43]. The proof of this Lemma is omitted here.

Lemma. Let u be a positive function defined on an interval $[T, \infty)$, $T \geqslant 0$. If $L_n u$ is of constant sign on $[T, \infty)$, then there exists a $T_0 \geqslant T$ and an integer K, $0 \leqslant K$ $\leqslant n$, with n+K odd for $L_n u \leqslant 0$ or n+K even for $L_n u \geqslant 0$, such that

$$1 \leq k \leq n-1, \ L_i u(t) > 0, \quad i = 0, 1, \dots, k-1,$$

$$(-1)^{k+i} L_i u(t) > 0, \qquad i = k, k+1, \dots, n-1;$$

$$(2.1)$$

$$k=0, (-1)^{i}L_{i}u(t)>0, \quad i=0, 1, \dots, n-1;$$

 $k=n, L_{i}u(t)>0, \quad i=0, 1, \dots, n-1.$ (2.2)

Theorem 1. If n is even and

$$\int_{a}^{\infty} W_{n-1}(t) \left[\int_{a}^{b} F(t, \xi, c, \dots, c) d\sigma(\xi) \right] dt = \pm \infty$$
 (2.3)

for any nonzero constant c, then every bounded solution of (1.1) is oscillatory.

Proof As in [2], we can see that if u(t) is a bounded positive nonoscillatory solution of (1.1), then

$$L_n x(t) + \int_a^b F(t, \xi, u[G_1(t, \xi)], u[G_2(t, \xi)], \dots, u[G_m(t, \xi)]) d\sigma(\xi) \leq 0,$$

where x(t) = u(t) - p(t) and p(t) satisfies the condition (R_5) . Obviously, we have $L_n x(t) < 0$ and x(t) > 0 for t large enough. By Lemma 1, we have $k = 1, 3, \dots, n-1$, but for $k \ge 3$, we can obtain $\lim_{t \to +\infty} x(t) = +\infty$, this contradicts the fact that x(t) is bounded.

So we only have k=1, and $(-1)^{i+1}L_ix(t)>0$ for $i=1, 2, \dots, n-1$. Specially, when i=1, we have x'(t)>0 for t large enough.

Therefore

$$A(t) = \sum_{i=1}^{n-1} (-1)^{i+1} W_i(t) L_i x(t) \ge 0,$$

$$x(t) = K + A(t) - \int_{-\pi}^{t} W_{n-1}(s) L_{n}x(s) ds$$

$$\geqslant K + \int_{T}^{t} W_{n-1}(s) \left[\int_{a}^{b} F(s, \xi, u[G_{1}(s, \xi)], \cdots, u[G_{m}(s, \xi) d\sigma(\xi)] ds, \right]$$

where K = x(T) - A(T). We have $u(t) = x(t) + p(t) \geqslant x(T) - |p(t)|$ for $t \geqslant T$. Because $\lim_{t \to +\infty} p(t) = 0$, there exists $T^* \geqslant T$ such that $|p(t)| \leqslant \frac{1}{2} x(T)$ for $t \geqslant T^*$. So we have

$$u(t) \geqslant x(T) - \frac{1}{2} x(T) = \frac{1}{2} x(T) = C, \quad (t \geqslant T^*).$$

Because $\lim_{t\to+\infty} G_i(t,\,\xi) = +\infty$, for $\xi \in [a,\,b]$, $i=1,\,2,\,\cdots$, m, there exists $T^{**} > T^*$, when $t \ge T^{**}$, $G_i(t,\,\xi) \ge T^*$ for $\xi \in [a,\,b]$. Hence for $t \ge T^{**}$,

$$x\left(t\right)\!\geqslant\!\!K+\!\int_{T^{*}}^{t}W_{n-1}(\mathbf{s})\left[\int_{a}^{b}\!\!F(\mathbf{s},\,\xi,\,c,\,\cdots,\,c)\,d\sigma\left(\xi\right)\,\right]\!\!d\mathbf{s}\to+\infty$$

as $t \to +\infty$, which contradicts the fact that x(t) is bounded. For u(t) is a bounded negative nonoscillatory solution of (1.1), we only need notice that (1.4) and (1.5) hold, we can similarly obtain a contradiction. Thus our proof is complete.

Remark. In [2], it is supposed that

$$\lim_{t\to 0} L_i p(t) = 0$$
 for $i=0, 1, \dots, n-1$.

But from this one can not obtain $u'(t) = x'(t) + p'(t) \ge 0$, because there exists p(t) and x(t) such that $p'(x_n) < 0$ and $|p'(t_n)| > x'(t_n)$ i. e. $u'(t_n) = x'(t_n) - |p'(t_n)| < 0$ for some $\{t_n, n=1, 2, \cdots\}$. In fact there exists x(t) such that $\lim_{t_n \to +\infty} x'(t_n) = 0$ for some $\{t_n, n=1, 2, \cdots\}$. So there is something wrong in the proof of Theorem 1 in [2]. In fact as in this paper we only need

$$\lim_{t\to+\infty}L_0\,p(t)=\lim_{t\to+\infty}p(t)=0.$$

In this paper we give a modified and simple condition to complete the proof of Theorem 1.

Theorem 2. If n is even and the condition (2.3) holds, then every bounded solution of (1.2) either oscillates or tends to zero as $t \rightarrow +\infty$.

Proof If there exists u(t) which is a bounded positive nonoscillatory solution of (1.2) and $\lim_{t\to+\infty} u(t)\neq 0$, then as in [2], we can see that $L_nx(t)>0$, where x(t)=u(t)-p(t) is positive eventually. So we have $(-1)^iL_ix(t)>0$ $(i=1,\ 2,\ \cdots,\ n-1)$ and $\sum_{i=1}^{n-1} (-1)^{i+1}W_i(t)L_ix(t)\leq 0$ for t large enough. Hence

$$x(t) \leq K - \int_{T}^{t} W_{n-1}(s) \int_{s}^{b} F(s, \xi, u[G_{1}(s, \xi)], \dots, u[G_{m}(s, \xi)] d\sigma(\xi) ds,$$

where $K = x(T) - \sum_{i=1}^{n-1} (-1)^{i+1}W_i(T)L_ix(T)$. Notice x'(t) < 0, so the limit $\lim_{t \to +\infty} x(t) = C^* = x(\infty)$ exists, and $C^* > 0$. Also $C^* > 0$, because if $C^* = 0$, then $\lim_{t \to +\infty} u(t) = \lim_{t \to +\infty} x(t) + \lim_{t \to +\infty} p(t)$, i. e. this leads to a contraduction to $\lim_{t \to +\infty} u(t) \neq 0$. So for t > T we have $u(t) = x(t) + p(t) > x(\infty) + p(t) > C^* - |p(t)|$.

From
$$\lim_{t\to +\infty} p(t) = 0$$
 we can see that there exists T such that, for $t \geqslant T^*$, $|p(t)| < C^*/2$.

Hence $u(t) > C^*/2 = C$. So we have

$$x(t) \leq K - \int_{T}^{t} W_{n-1}(s) \left[\int_{a}^{b} F(s, \xi, c, \dots, c) d\sigma(\xi) \right] ds \to -\infty$$

as $t \to +\infty$, which contradicts the boundedness of x(t).

Likewise, we can prove that there cannot exist a bounded negative solution u(t)

of (1.2), $\lim u(t) \neq 0$. The proof of Theorem 2 is complete.

Remark. As the remark of Theorem 1, we easily see that from the condition $\lim_{x\to +\infty} L_t p(t) = 0$ $(i=0, 1, \dots, n-1), u'(t) < 0$ can not be obtained. So there is something wrong in the proof of Theorem 3 in [2]. In this paper we only need $\lim_{t\to +\infty} p(t) = 0$ to obtain $u(t) > C \neq 0$ $(t \gg T^*)$, i. e. we give a modified and simple condition to complete the proof of Theorem 2.

Also we see that u(t) - p(t) is a decreasing function

§ 3. Oscillatory Criteria for inequalities (1.1), (1.2) of Odd Order

For inequalities (1.1), (1.2) of odd order, we have following results:

Theorem 3. Suppose n is odd. If the condition (2.3) holds, then every bounded solution of (1.1) either oscillates or tends to zero as $t \rightarrow +\infty$.

The proof of Theorem 3 is similar to that of Theorem 1.

Theorem 4. Suppose n is odd. If the condition (2.3) holds, then every bounded solution of (1.1) either oscillates or tends to zero as $t \to +\infty$.

The proof of Theorem 4 is similar to that of Theorem 2.

§ 4. Oscillatory Criteria for Equations (1.1)', (1.2)'

Theorem 5. Suppose n is even. If the condition (2.3) holds, then every bounded solution of (1.1)' is oscillatory.

Proof Notice that

$$L_{n}u(t) + \int_{a}^{b} F(t, \xi, u[G_{1}(t, \xi)], \dots, u[G_{m}(t, \xi)]) d\sigma(\xi) - h(t) \leq 0$$

has no eventually bounded positive solution and

$$L_n u(t) + \int_a^b F(t, \xi, u[G_1(t, \xi)], \dots, u[G_m(t, \xi)]) d\sigma(\xi) - h(t) \ge 0$$

has no eventually bounded negative solution. So we can see that every bounded solution of (1.1)' is oscillatory. The proof of Theorem 5 is complete.

Similarly, we can prove following Theorems.

Theorem 6. Suppose n is odd. If the condition (2.3) holds, then every bounded solution of (1.1)' either oscillates or tends to zero as $t \rightarrow +\infty$.

Theorem 7. Suppose n is even. If the condition (2.3) holds, then every bounded solution of (1.2)' either oscillates or tends to zero as $t \to +\infty$.

Theorem 8. Suppose n is odd. If the condition (2.3) holds, then every bounded solution of (1.2)' is oscillatory.

§ 5. Some Examples

Example 1.

$$u^{(3)}(t) + \int_{-1}^{1} \frac{\xi^{2}}{t} \left[u^{3}(t+\xi) + u^{3}(t-\xi) \right] d\xi = 2(\sin t + \cos t) e^{-t}. \tag{5.1}$$

Obviously, $F(t, \xi, u[G(t, \xi)])$ satisfies hypothesis (R_1) and $p(t) = \sin t e^{-t}$ satisfies $p^{(3)}(t) = 2(\sin t + \cos t)e^{-t}$, $\lim_{t \to +\infty} p(t) = 0$. Notice, $W_2(t) = \frac{t^2}{2}$,

$$\int_{0}^{\infty} \frac{t^{2}}{2} \int_{0}^{1} \frac{\xi^{2}}{t} (c^{3} + c^{3}) d\xi dt = \infty.$$

So the condition (2.3) is satisfied. By Theorem 6, we can see that every bounded solution of (5.1) either oscillates or tends to zero as $t \to +\infty$.

Example 2.

$$u^{(3)}(t) - \int_{-1}^{1} \frac{\xi^{2}}{t} [u^{3}(t+\xi) + u^{3}(t-\xi)] d\xi = 2 (\sin t + \cos t) e^{-t}$$
 (5.2)

By Theorem 8, we can prove that every bounded solution of (5.2) is oscillatory. Example 3.

$$u^{(4)}(t) + \int_{-1}^{1} \frac{\xi^{2}}{t} [u^{3}(t+\xi) + u^{3}(t-\xi)] d\xi = -4\sin te^{-t}$$
 (5.3)

Notice $p(t) = \sin t e^{-t}$ satisfies $p^{(4)}(t) = -4\sin t e^{-t}$, $\lim_{t \to +\infty} p(t) = 0$, p(t) is oscillatory, $W_3(t) = \int_0^\infty \frac{t^3}{6}$, $\int_0^1 \frac{\xi^2}{t} (c^3 + c^3) d\xi dt = \infty$, i. e. the condition (2.3) is satisfied. So by Theorem 5, we can see that every bounded solution of (5.3) is oscillatory.

Example 4.

$$u^{(4)}(t) - \int_{-1}^{1} \frac{\xi^{2}}{t} \left[u^{3}(t+\xi) + u^{3}(t-\xi) \right] d\xi = -4\sin te^{-t}$$
 (5.4)

ing with the state of the state

By Theorem 7, we can prove that every bounded solution of (5.4) either oscillates or tends to zero as $t \to +\infty$.

References

- [1] Kusano, T., and Onose, H., Remarks on the oscillatory behavior of solution of functional differential equation with deviating arguments, *Hiroshima Math. J.*, 6(1976), 183—189.
- [2] Chen Lusan and Yeh Chehchih Oscillation criteria for arbitrary order nonlinear inequalities with deviating arguments. Bollettino Uniono Mathematica Italiana Analisi Funzio nale e Applicazioni Serie VI, 1-C: 1 (1982), 279—284.
- [3] Chen Lusan, Yeh Chehchin and Lin Jersan, On nonlinear oscillations for n-th order delay inequalities, Indian J. pure and applied Mathematics, 9 (1978), 270—274.
- [4] Philos, C. H., Oscillatory and asymptotic behavior of all solutions of differential equations with deviating arguments, *Proc. Royal Soc.*, *Edinburgh. Sect. A*, 81 (1978), 195—210.

A manage of the contraction of t