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OSCILLATORY CRITERIA FOR n-ORDER NONLINEAR
FUNCTIONAL DIFFERENTIAL INEQUALITIES AND

EQUATIONS WITH CONTINUOUS DISTRIBUTED
- DEVIATING ARGUMENTS )

Ruix Jioxe (f6 )"

Abstract

. This paper. deals with more gemeral n-order nonlinear functional: d1fferent1al
mequahtles with contmuous d1str1buted deviating a.rguments and equa,tzons of this type

The author obtams some oscillatory criteria and generahzes and modn’ies some
results given by Lu-San Chen and Chen—Chih Yeh. )

§ 1.”Intr'Qd"1‘1‘ctiOnk -

In the last few years several results about the oscillatory criteria’ for n-order
nonlinear functional differential inequalities with finite- deviating ‘argnments have
been obtained, e. g. see [1, 2]. The purpose of this paper is fo obtain some oscillatory
criteria for more general n—order nonlinear functional differential inequalities with
continnous distributed déviating argnments and to give some Tesults for equations of
this type. We generalize and modify some results in [2; 8]. -

In this paper we consider the followmg inequalities

w®[La® +[ P, £, ulGa, D1, ulGath, DI, - uGalt, Do ©

~n@®]<o, e @

and
[ L@ [ F, ¢ ulls, §1, w6, 00, -, bty ODdo

*p(z)]>o » - - (1.2)

where n=>2 and L, is an operstor defined by | '

Lau@)‘—'u ®, Lu) = @ — g G-t @)y 1.3
an(t>>0<@—12 ), Ta () = -1 o | -

)
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Also we study equatlons

e +j F G, & w6t 1, ulat D1, -, ulBalt, £1)do @) =h),
. o N S
L@ = [ PG & sl O, ulbalh O, ulGaCh s>1>da<§> ~h@).
G L ' o @2y
A function u(¢) which satisfies some: &neciuality ag - (i.l}, 1.2) or some
equation as (1.1)’, (1.2)" is said to be oscillatory if it has an unbounded set of zeros

but u(¢) =0 for all t>T, where T' is an appropriate constant. Otherwise it is called
nonoscillatory. :
Throughout this paper, we suppOSe
I(By) F@, & @, -+, n) EO[R, % [a, B] X R™, R], F (3, §1, @1, *+, ©m)F0 for
all t>t1, where #; is an appropriate constant. If %,>0 (¢=1, 2, -», m), then F(3, &,
g, e a;,,,) is positive and non~decrea81ng Wlth reSpect 0 @1, e, @, forall 10, £C€
Iw, b] If n is even, then .

F(t & w1, oy o) <—F (@, & @1, +, —am), for all 2,>0, -(1 5

't>01 56 [w) b]y (7"=1) 2; ) m)’
If'n is.0dd; then . . e
SRR F<t7 .53;;’51)‘. °%% mM)>_'F(tJ f, —W1, '";5 _wﬂt)) fO]’.' all x>0, -
R . t?O(dl=1; 2, o5 m)' - . . : | (1 0)
(Ra)- () EO[R,, R.—{0}],. Jmﬁ(t)dt=oo(fi=1, 2, eym=1). (1 6)

(Rs)* Gi(t, §) €OLR+ X [g, 8], B], Lm &4(3; §) =0 (£€ [a, BI).

(Ry) The integrals in inequalities are Stieltjes integrals.
(Rs). (1) EC[R,, R] and there exists an oscillatory solution p(f) such that

L.p(#) =h(®, tljggp(t)=0, _ @

where R, = [0, +o0) and R=(—o0, +0). -
For convenience, we define W,(¢) EC[R,, B.], ¢=1, 2, ---, n—1, as follows:

W) =f ri(s)ds, |
c o (1.8)
Wit = [ r(@Wes(©ds, =2, 8, -, n—1.

In gection 2 of this paper we give some results for inequalies of even order. In
‘gection 3 we give some results for mequa,hes of odd order. In section 4 we give
gome results for equations of this type. In section 5 we give some examples.
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§ 2. Oscillatory Criteria for Inequalies 1.1), (1.2)
of Even Order

In order to obtain our main results we need the following lemma,” which is a
simple generalization of results given by Philos®. The proof of this Lemma is
omitted here. _ A A | ’ ’

Lemma. Let u be a positive function deﬁmd on an interval [T, o), T>=0. If
L. 28 of constant sign on[T, oo), then there ewists a T0>T and an integer K, 0O<SK ‘
<n, withn+K odd for Lu<0 or n+K even foa‘ Lu=0, such that |

1I<h<n-—1, Liu(t) >0, 0,1, -, k—1, @.0)
- (=D Lu®) >0, @'=Ia, k+1, ree, m—1p |
=0, (=1)'Tu(®)>0, §=0,1, -, n—1; .
k=mn, Lu(t) >0, 4=0,1, ---, n—1, -
Theorem 1. If n is even and :
[Wesd[[ 7, €, 0, 9do(© Jat— 200 @9

Jor any nonzero constant ¢, then every bounded solution of (1.1) s oscillatory.
- Proof . Asin [2], we can see that if u(?) i a bounded posﬂslve nonoscillatory
. solution of (1.1), then

L@ +[ P, & ul@a O, ulGalt, 1, =, ulGalt, H1do <0,

where m(t) =u()—p() and p(t) satisfies the condition Rs). Obvmusly, we have
L,»(t) <0 and »() >0 for ¢ large enough. By Lemma 1, we have k=1, 8, -, n—1,
but for 5>8, we can obtain lim #(f) = +oo, this contradicts the fact that »(t) is

t—>+eo

bounded. .
So we only have k=1, and (=)™ L (2) >0 for i=1, 2 .-s, n—1. Specialy,
when ¢=1, we have o' (t) >0 for ¢ large enough. :
Therefore

4= S (0 W) Lal) =0,
o(t) = K+ A () —.f Wos @ L 6)ds

SE [ Waa [ PG €, ulGaGe, D1, ulGuls, Od0(©) i,
where K =ao(T)— A(T"). We have u () —m(t) +p () >a(T)— | p(t)] for t=T. Because
lim p(#) =0, there exists T*>T such that | p(t) ]<-— o(T) for t=T"*. So we have

§=b d-eo

u(®)>o(T) ~+o(M) =4 2(T) =0, G>T7).

T e o A.
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~ Becauge hm @, (t §) =+oo, for £€[a, b],i=1; 2, ---, m, there ex1sﬁs T**>T* when
=T G (t &) =T for SE [a, b]. E[ence for t>T** R

e@SE+ W@ [[ FG, & 0,1, a0 (® Jds— +oo

as t——>+oo which contradicts the fact that »(f) -is bounded. For w(t)-is a bounded
negative nonoscillatory solution of (1.1), we only need notice that (1.4) and (1.5)
| hold, we can similarly obtain a contradiction. Thus our proof is complete
Remark. Tn [2], it is supposed that - R '
lim Lip(t) =0 - for ¢= 0 1 n——1

- t=poo

But from this one can not obtain w/(£) =4’ (%) +p (t)>0 because there existy (&)
and o (t) such that p’ (z,) <0 and 0" (t,,) |>a; (t) 1. . u/(t,) =o' (t.) — [p'(t) | <O for
some {f, n=1, 2, } In fact there exists 2 (%) such that hm @' (t,) =0 for some

{t,, n=1, 2, ---}. So therels ste“shlng wrong in the proof Qf_ Theorem 1lin [2]. In
fact as in this paper we only need . . L
thop(t)=-= hmp(t) =0.

In this paper we gwe a mod1ﬁed and sunple condltlon to complete the proof of
Theorem 1. ' : :
Theorem 2. I f n is even and- the condition (2.8) holds, then efve'ry boundedﬁ
solution of (1.2) either oscillates or tends to zero as t—>-co. - - *

Proof If there exists u(#) which ig'a bounded positive 'nonoscillatory soluﬁon ‘
of (1. 2) and hmu,(t) #O then as in [2], We can seo that L,,w(t ) >O Where m(t) =
u(t) — p(t) ig positive evenmally So we haVe ( 1) ‘L;a;(t) >O (@ =1, 2 ° n-ll)_

and” 2 (—1) "W, (t) L (£) <O for ¢t largs enough. Hence '
=1 .

cOSE—[[Woa@[ 7 & ulbsGs, 1, -, ulBals, DV @ds,

where K =o(T)— 2( 1)’+1W,(T) L (T). Notice o’ (£) <0, so the limit lim o (g)=

- t_'+°° .
——w(oo) exigts, and 0*>0. Also O*>O because if "= O then thm w(t) = hmm(t)
~>c0
-+ llm p(t), i, e. this leads to a contraduohon 1o 1}J.m w(t) %O So for =T we have
. T=oo

u(®) =2 +p(®) >o(e0) +p(1) =0"~ |p(®) |~
From limp (%) =0.we can seo ‘that there emsts T such thais for t>T*, l p(t) | <02,

-—)+eo

~ Hence u(t) >O’*/2 O So we have' _ o O
o()<E~ J ﬂ_i(s)[j F(s g, 6 c)da'(f):l s—> — o0

as {—>-+oo, which contradmts $he boundedness of fu(t)
Likewise, we can’ prove that there cannot- ex-lst__a bounded negative solution w(t)
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of (1 2) hm u,(t) #0. The proof of Theéorem 2 ig complete.

Remark As the remark of Theorem. 1, we easily see tha’o from the condition
]im L;p (#)=0 (4=0, 1, +--, n—1), w'(£)<<0 can not be obtained. So there iy something

wrong in the proof of Theorem 8 in [2] In thls paper we. only need hm p(t) =0

10 ob’oam u (%) >O’#O (t>T*), e we glve a mod1ﬁed and su:nple condmon o
complete the proof of Theorem 2. - ' o
Also we see that u(t) —p(f) is a decreasing function

§ 3 Oscilla’tory:Cfif‘eﬁa for in‘equalities
(1 1) (1 2) of Odd Order

For inequalities (1 1) a. 2) of odd order we have follovnng resul’as :
. Theorem 3. Supppse n 4s.0dd. If the. oondwteon (. 3) holds then every bounded
solutoon of @. 1) gither osoollates or terrbds to zero as t—->+0<> ‘
The proof of Theorem $ is sumﬂar o that of Theorem 1.
Theorem 4. Suppose n is odd. If the condition (2 3) holds then efverry bounded
solution of (1.1) éither oscillates or tends to zero as >t 0. '
) The proo£ of Theorem 4 is s1m11ar to that of Theorem 2

- §+4. Oscﬂlatory Crlterla for Equatlons (1 1) , (1 2) ’

N

Theorem 5 Supposa n 4s even. I f the cowdomon (2 3) holds then e've'ry bownded
solamon of (1.1)" s oscollatory
Ptroof Notice that

,g—Lu(t) +J"F‘(t & ul@et, O, w[G‘ (, )j')_do‘(g) —h(t)<0 .
has no eventually bounded posmve solution a.nd L

L)+ F ¢, & ul6a(s O, -+, ulbalt, Do () ~h()>0

 has'no evenﬁually bounded nega,mve soluhon So We can see thad; every bounc'{ed“

solumon of (1. 1)' ig oso111a’ﬁory The: proof of Theorem 5 is complete > Pl
' Slmllarly, We can prove followmg Theorems. R
Theorem 6. - Suppose n is odd. If the condetwn 2 3) holds then e'vea*y bowndedx
solution of (1. 1)’ either oscillates or tends to zero as t—>+oo oo -
Theorem 7. - Suppose n-is even. If the condition 2:8) helds therm m)ery bounded'
solution of (1.2)’ either oscillates or tends to zero as t — +o2.
Theorem 8. Suppose n is odd. If the condition (2.8) holds, then every bounded
solution of (1.2)' is oscillatory. | '
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- §5. Some Examples -

E’mample 1 | | - ‘

| u® (t) +J - [21,3 (t—{—é') +u (t §)] df 2(sm t4-c0st) e"‘ (5 1)v

Obvmusly, F(, ¢, u[G‘ (t §)]) satisfies hypothesm (Ri) a.nd p () =sinte™
satisfies p® (¢) =2(sin t+cosf)e”?, zhf-n p(3) =0. Notice, W, () = -2—,

[ "L [ £ redgar=co
; ) 2o ¢ Y ‘ ' C
So the condition (2.3) is satisfied. By Theorem 6, we can see that every bounded

solution of (5.1) either osoﬂla’ses or ’ﬁends to zero as { — +°°
Ezample 2. L

| »u<3><f>“-“f e +u3<t—§>1d§=ztsint+oos¥> ot - (32)

By Theorem 8, we can prove that every bounded solutlon of (6.2) is oso1lla4ﬁory |
Ea:ample 3.

() +f ﬁ[u8(t+§) OG—©)ldem—dsintet (5.8)
Notice p(t) =sin t¢~* satisfies p®@ () = — 4sin te'* hm p(t) =0, p(t) 1s osclllatory,
Wi -—J J £ (c3+03) d{dé=00, i. e. the oon(htmn (2.8) is safmsﬁed So by

Theorem 5, we can see that every bounded solutfion of (5.8) is oscﬂlatory. '
- Evample 4. ‘

uw(t) j ()40 (t— ) JdE = —dsinte? i (5 4):'

By Theorem 7, we can prove that every bounded solutlon of (5 4) either
oscﬂlates or tends %o zero as § — +oo. :
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