# QUOTIENTS OF STRONGLY S-DECOMPOSABLE OPERATORS

WANG SHUSHI (王漱石)\*

#### Abstract

This paper shows that if  $T \in C(X)$  is strongly S-decomposable, where S is a closed subset of  $\sigma_e(T)$  and  $S \neq C_{\infty}$ , then for any (e) spectral maximal subspace Y of T,  $T^Y$  is a closed strongly  $S \cap \sigma_e(T^Y)$ -decomposable operator.

### § 1. Notations and Preliminaries

In this paper we denote the complex plane and its compactification by C and  $C_{\infty}$  respectively. If A is a subset of  $C_{\infty}$ , we write  $A^{c} = C_{\infty} \setminus A$ .

We denote the classes of the closed and the bounded linear operators in Banach space X by C(X) and B(X). If X is a Banach space and Y is a closed subspace of X, then the quotient space of X modulo Y will be denoted by X/Y.

Given  $T \in C(X)$ , we denote the domain of T by D(T), denote the resolvent set, the spectrum and the extended spectrum of T by  $(\rho(T), \sigma(T))$  and  $\sigma_{\epsilon}(T)$  respectively. The local spectrum and the extended local spectrum will be denoted by  $\sigma(x, T)$  and  $\sigma_{\epsilon}(x, T)$ . We have

$$\sigma_e(x,\ T) = egin{cases} \sigma(x,\ T), & ext{if $\infty$ is a regular point of $\widetilde{x}_1(ullet)$.} \\ \sigma(x,\ T) \cup (\infty), & ext{if $\infty$ is a singular point of $\widetilde{x}_T(ullet)$.} \end{cases}$$

If Y is a closed subspace of X such that  $T(Y \cap D(T)) \subseteq Y$ , then Y is called an invariant subspace of T. We denote by INV(T) the family of all invariant subspaces of T.

Given  $Y \in INV(T)$ , the restriction of T to Y and the quotient operator of T induced in X/Y will be denoted by  $T \mid Y$  and  $T^Y$  respectively.

Let  $Y \in INV(T)$ , if for any  $Z \in INV(T)$ , the inclusion  $\sigma_e$   $(T|Z) \sqsubseteq \sigma_e(T|Y)$  implies  $Z \sqsubseteq Y$ , then Y is called an (e) spectral maximal space of T. We deonte the family of all such subspaces by  $SM_e(T)$ .

Given  $T \in \mathcal{O}(X)$  and  $\Delta \subseteq \mathcal{O}_{\infty}$ , we set

$$X(T, \Delta) = \bigcup (Y \in INV(T), \sigma_e(T|Y) \subseteq \Delta).$$

Manuscript received October 11, 1983. Revised August 1, 1984.

<sup>\*</sup> Huzhou Normal College, Huzhou, Zhejiang, China.

If T has the SVEP on  $S^c$  and  $S \subseteq A \subseteq C_{\infty}$ , we set  $X_T(A) = (x \in X, \ \sigma_c(x, T) \subseteq A)$ .

Let F be a closed subset of  $C_{\infty}$  and S be a closed subset of F. A family of open sets  $(G_0; G_1, \dots, G_n)$  is called an open S-covering of F if  $\bigcup_{i=0}^n G_i \supseteq F$  and  $\overline{G}_i \cap S = \emptyset$  for  $i=1, 2, \dots, n$ .

Let  $T \in C(X)$  and S be a closed subset of  $\sigma_e(T)$ . If for any open S-covering  $(G_0; G_1, \dots, G_n)$  of  $\sigma_e(T)$ , there exists  $(Y_i)_{i=0}^n \sqsubseteq SM_e(T)$  such that  $X = \sum_{i=0}^n Y_i$  and  $\sigma_e(T|Y_i) \sqsubseteq G_i$  for  $i=0, 1, 2, \dots, n$ , then T is called S-decomposable.

If, in addition, we require  $Y = \sum_{i=0}^{n} Y \cap Y_i$  for any  $Y \in SM_e(T)$ , then T is called strongly S-decomposable.

Obviously, if  $T \in C(X)$  is an unbounded operator and S is a closed bounded subset of  $\sigma_c(T)$ , then T is S-decomposable if and only if T is  $S \cup (\infty)$ -decomposable. Hence when we discuss the S-decomposability of an unbounded operator, we can always suppose  $\infty \in S$ .

The theory of S-decomposable operators was studied by B. Nagy<sup>[1-3]</sup>, I. Bacalu<sup>[5-8]</sup> and F. -H. Vasilescu<sup>[4]</sup> etc. B. Nagy<sup>[1]</sup> proved that  $T \in C(X)$  is strongly S-decomposable if and only if for any  $Y \in SM_{\mathfrak{o}}(T)$   $T \mid Y$  is  $S \cap \sigma_{\mathfrak{o}}(T \mid Y)$ -decomposable. In fact if T is strongly S-decomposable, then  $T \mid Y$  is strongly  $S \cap \sigma_{\mathfrak{o}}(T \mid Y)$ -decomposable for any  $Y \in SM_{\mathfrak{o}}(T)$ . Moreover B. Nagy<sup>[1]</sup> proved that if  $T \in C(X)$  is strongly S-decomposable and Y is a spectral maximal space of T such that  $Y \supseteq X(\overline{G})$ , where G is an open set containing S, then  $T^Y$  is strongly decomposable, i. e. strongly  $S \cap \sigma_{\mathfrak{o}}(T^Y)$ -decomposable.

It is natural to ask whether the last conclusion holds in general case. Now we are going to solve this problem in the following section.

## \* Some of the second of the se

To prove our main theorem we need the following four lemmas.

**Lemma 1.** Let  $T \in C(X)$  and S be a closed subset of  $\sigma_{\epsilon}(T)$ , then the following statements are equivalent:

- 1) T is strongly S-decomposable.
- 2) For any open S-covering  $(G_0; G_1, \dots G_n)$  of  $\sigma_e(T)$ , there is  $(Y_i)_{i=0}^n \subseteq SM_e(T)$  such that  $\sigma_e(T|Y_i) \subseteq G_i$  for  $i=0,1,\dots,n$ , and  $Y=\sum_{i=0}^n Y_i \cap X_i$  for every  $Y \in SM_e(T)$  with  $\sigma_e(T/Y) \supseteq S$ .
  - 3)  $T \mid Y \text{ is } S \cap \sigma_e(T \mid Y)$ -decomposable for every  $Y \in SM_e(T)$  with  $\sigma_e(T \mid Y) \supseteq S$ .

 $Proof 1) \Rightarrow 2)$  is trivial.

2)  $\Rightarrow$ 1). Suppose that  $(G_0; G_1, \dots, G_n)$  is an open S-covering of  $\sigma_e(T)$ . Take an open subset  $G_0'$  of  $C_\infty$  such that  $S \subseteq G_0' \subseteq \overline{G}_0' \subseteq G_0$  and  $\overline{G}_i \cap G_0' = \emptyset$  for  $i = 1, 2, \dots, n$ . Set  $S_1 = \overline{G}_0'$ . For any  $Y \in SM_e(T)$ , set  $Z = X(T, S_1 \cup \sigma_e(T|Y))$ . Then  $Z \in SM_e(T)$ ,  $Y \subseteq Z$  and  $\bigcup_{i=0}^n G_i \supseteq S_1 \cup \sigma_e(T|Y) \supseteq \sigma_e(T|Z) \supseteq S$ . Let  $Z_i = X(T, \overline{G}_i)$  for  $i = 0, 1, \dots, n$ . Then it follows from 2) that

$$X = \sum_{i=0}^{n} Z_i$$
 and  $Z = \sum_{i=0}^{n} Z \cap Z_i$ .

Obviously,  $Z \cap Z_i = X(T, (S_1 \cup \sigma_e(T|Y)) \cap \overline{G}_i) = X(T, \overline{G}_i \cap \sigma_e(T|Y)) \subseteq Y$  for i = 1,  $2, \dots, n$ . Now we are going to prove  $Y \subseteq \sum_{i=0}^n Y \cap Z_i$ . If  $x \in Y$ , then  $x \in Z$ . Therefore there exist  $x_i \in Z \cap Z_i$  such that  $x = \sum_{i=0}^n x_i$ . Since  $x_i \in Z \cap Z_i \in Y$  for  $i = 1, 2, \dots, n$ , we have  $x_0 \in Y \cap Z_0$ . Consequently  $Y \subseteq \sum_{i=0}^n Y \cap Z_i$ . The opposite inclusion is evident. Thus we obtain 1).

2) $\Rightarrow$ 3). Given  $Y \in SM_e(T)$  with  $\sigma_e(T|Y) \supseteq S$ , assume that  $(G_0; G, \dots, G_n)$  is an open S-covering of  $\sigma_e(T|Y)$ . Take an open subset  $H_0$  of  $C_\infty$  such that  $\overline{H}_0 \cap \sigma_e(T|Y) = \emptyset$  and  $H_0 \cup G_0 \cup G_1 \cup \dots \cup G_n = C_\infty$ . Let  $G'_0 = H_0 \cup G_0$ . Then  $(G'_0; G_1, \dots, G_n)$  is an open S-covering of  $\sigma_e(T)$ . Hence by 2) there exists  $(Y_i)_{i=0}^h \subseteq SM_e(T)$  such that

$$Y = \sum_{i=0}^{n} Y \cap Y_{i}, \ \sigma_{e}(T \mid Y_{0}) \subseteq G'_{0} \text{ and } \sigma_{e}(T \mid Y_{i}) \subseteq G_{i} \text{ for } i = 1, 2, \cdots, n.$$

Let  $Z_0 = X(T, \overline{G}'_0) \cap Y$  and  $Z_i = Y \cap Y_i$  for  $i = 1, 2, \dots, n$ . Since

 $\sigma_e(T|Y) \supseteq S$ ,  $\sigma_e(T|X(T, \overline{G}'_0)) \supseteq S$  and  $\sigma_e(T|Y_i) \cap S = \emptyset$  for  $i=1, 2, \dots, n$ , we have

 $Y = \sum_{i=0}^{n} Z_{i}$  and  $\sigma_{e}(T \mid Z_{i}) \subseteq \overline{G}_{i}$  for  $i = 0, 1, \dots, n$ . Hence  $T \mid Y$  is S-decomposable.

3) $\Rightarrow$ 2). Suppose that  $(G_{\mathbf{e}}; G_1, \dots, G_n)$  is an open S-covering of  $\sigma_{\mathbf{e}}(T)$ . Since  $X \in SM_{\mathbf{e}}(T)$  and  $\sigma_{\mathbf{e}}(T|X) = \sigma_{\mathbf{e}}(T) \supseteq S$ , we see, by 3), that T is S-decomposable and therefore  $X = \sum_{i=0}^{n} X(T, \overline{G}_i)$ . If  $Y \in SM_{\mathbf{e}}(T)$  such that  $\sigma_{\mathbf{e}}(T|Y) \supseteq S$ , then by 3) T|Y is S-decomposable so that  $Y = \sum_{i=0}^{n} Y(T|Y, \overline{G}_i)$ . Since  $Y(T, \overline{G}_i) = Y \cap X(T, \overline{G}_i)$ , we have  $Y = \sum_{i=0}^{n} Y \cap X(T, \overline{G}_i)$ . Consequently 2) follows.

**Lemma 2.** If  $T \in C(X)$  is S-decomposable where S is a closed subset of  $\sigma_e(T)$  and  $S \neq C_{\infty}$ , then for any  $Y \in SM_e(T)$ ,  $T^Y$  is a closed operator.

Proof If  $S \cup \sigma_e(T|Y) \neq C_{\infty}$ , then there is a bounded open subset  $H \subseteq C_{\infty}$  and an open neighborhood G of  $\infty$  such that  $H \cup G = C_{\infty}$ ,  $\overline{G} \neq C_{\infty}$  and  $\overline{H} \cap (S \cup \sigma_e(T|Y)) = \emptyset$ . Obviously  $S \cup \sigma_e$  (T|Y)  $\subseteq G$  and  $H \neq \emptyset$ . Since T is S-decomposable, we have  $X = X(T, \overline{G}) + X(T, \overline{H})$ . It is easily seen that  $Y + X(T, \overline{H})$  is closed because  $X(T, \overline{H}) \cup (S \cup \sigma_e(T|Y)) = X(T, S \cup \sigma_e(T|Y)) + X(T, \overline{H})$  is closed. Therefore we have

$$X = X(T, \overline{G}) + (X(T, \overline{H}) + Y)$$

and so

$$X/Y = X(T, \overline{G})/Y + (X(T, \overline{H}) + Y)/Y.$$

Using the fact that  $T^{Y}|X(T, \overline{G})/Y \in C(X(T, \overline{G})/Y)$  and  $T^{Y}|(X(T, \overline{H})+Y)/Y \in B((X(T, \overline{H})+Y)/Y)$ , we obtain  $T^{Y} \in C(X/Y)$ .

If  $S \cup \sigma_e(T|Y) = C_{\infty}$ , then  $\sigma_e(T|Y) \setminus S = C_{\infty} \setminus S$ . Obviously, there is a bounded open subset H of  $C_{\infty}$  and an open neighborhood G of  $\infty$  such that

$$H \cup G = C_{\infty}$$
,  $\overline{H} \subseteq C_{\infty} \setminus S = \sigma_{\ell}(T \mid Y) \setminus S$  and  $\overline{G} \neq C_{\infty}$ .

Since T is S-decomposable and  $S \subseteq G$ , we have  $X = X(T, \overline{H}) + X(T, \overline{G})$ . By the inclusion  $\sigma_{\epsilon}(T \mid X(T, \overline{H})) \subseteq \overline{H} \subseteq \sigma_{\epsilon}(T \mid Y)$  and the fact that  $Y \in SM_{\epsilon}(T)$  we obtain  $X(T, \overline{H}) \subseteq Y$ . By the boundedness of H we have  $X(T, \overline{H}) \subseteq D(T)$ . Hence  $X(T, \overline{H}) \subseteq Y \cap D(T)$ . For any  $\lambda \in C_{\infty} \setminus \overline{G}$ ,  $\lambda - T \mid X(T, \overline{G}) \cap Y$  is evidently injective. Now we are going to show it is surjective. For any  $y \in X(T, \overline{G}) \cap Y$ , since  $\lambda \notin \overline{G} \supseteq \sigma_{\epsilon}(T \mid X(T, \overline{G}))$ , there is an  $x \in X(T, \overline{G})$  such that  $(\lambda - T)x = y$ . Because Y being an (e) spectral maximal subspace of T is T-absorbent and  $\lambda \in \overline{H} \subseteq \sigma_{\epsilon}(T \mid Y)$ , it follows that  $x \in Y$ . Therefore  $\lambda - T \mid X(T, \overline{G}) \cap Y$  is surjective. Hence  $\sigma_{\epsilon}(T \mid X(T, \overline{G})) \cup \sigma_{\epsilon}(T \mid X(T, \overline{G}) \cap Y) \subseteq \overline{G} \neq C_{\infty}$ . Consequently  $T^{Y}$  is closed. Thus in any case we have proved  $T^{Y} \in C(X/Y)$ .

**Lemma 3.** Suppose that  $T \in C(X)$  is a strongly S-decomposable operator, where S is a closed subset of  $\sigma_e$  (T) and  $S \neq C_{\infty}$ . If T is unbounded, in addition, we suppose  $\infty \in S$ . Suppose  $Y \in SM_e$  (T) and  $\hat{Z} \in SM_e(T^Y)$  with  $\sigma_e(T^Y|\hat{Z}) \supseteq S \cap \sigma_e(T^Y)$ . Let  $Z = (x \in X, [x]_Y \in \hat{Z})$ . Then

$$Z \in SM_e(T)$$
 and  $\sigma_e(T \mid Z) \supseteq S \cup \sigma_e(T \mid Y)$ .

Proof By Lemma 2  $T^Y$  is closed. Obviously  $Z \in \text{INV}(T)$ ,  $Z/Y = \hat{Z}$  and  $\sigma_e(T \mid Z) = \sigma_e((T \mid Z)^Y) \cup \sigma_e(T \mid Y) = \sigma_e(T^Y \mid \hat{Z}) \cup \sigma_e(T \mid Y) \supseteq (S \cap \sigma_e(T^Y)) \cup \sigma_e(T \mid Y) = (S \cup \sigma_e(T \mid Y)) \cap (\sigma_e(T^Y) \cup \sigma_e(T \mid Y)) = (S \cup \sigma_e(T \mid Y)) \cap \sigma_e(T) = S \cup \sigma_e(T \mid Y).$ 

  $x \in W \cap D(T)$  such that  $y = (\lambda_0 - T)x$ . Therefore  $[y]_Y = (\lambda_0 - T^Y)[x]_Y$ . Consequently  $\lambda_0 - T^Y | W/Y$  is surjective. If  $\lambda_0 \in \sigma_e(T | W)$ , we discuss in two cases: a).  $\lambda_0 \in S$ . Since  $\lambda_0 \notin \sigma_e(T^Y | \hat{Z})$  and  $\sigma_e(T^Y | \hat{Z}) \supseteq S \cap \sigma_e(T^Y)$ , we have  $\lambda_0 \notin \sigma_e(T^Y)$ . By Theorem 3.15 in [9], we obtain  $W/Y \in SM_e(T^Y)$  and  $\sigma_e(T^Y | W/Y) \sqsubseteq \sigma_e(T^Y)$  so that  $\lambda_0 \notin \sigma_e(T^Y | W/Y)$  and clearly  $\lambda_0 - T^Y | W/Y$  is surjective. b).  $\lambda_0 \notin S$ . Since  $\sigma_e(T | W) \sqsubseteq \sigma_e(T | Z) = \sigma_e(T^Y | \hat{Z})$   $\bigcup \sigma_e(T | Y)$  and  $\lambda_0 \notin \sigma_e(T^Y | \hat{Z})$ , there exists an open neighborhood  $N(\lambda_0)$  of  $\lambda_0$  such that  $\sigma_e(T/Z)$ ,  $N(\lambda_0) \supseteq \sigma_e(T^Y | \hat{Z}) \supseteq \sigma_e(T | Z) \setminus \sigma_e(T | Y)$ . Therefore  $\sigma_e(T | W) \setminus N(\lambda_0) \supseteq \sigma_e(T | W) \setminus \sigma_e(T | Y)$ . Let  $G_0 = (\lambda_0)^c$ ,  $G_1 = N(\lambda_0)$ . Then  $(G_0, G_1)$  is an open covering of  $\sigma_e(T | W)$  and  $\sigma_e(T | W)$ -decomposable. Hence there exist  $Y_0, Y_1 \in SM_e(T | W)$  such that  $\sigma_e(T | Y_0) \sqsubseteq G_0$ ,  $\sigma_e(T | Y_1) \sqsubseteq G_1$  and  $W = Y_0 + Y_1$ .

Thus for any  $y \in W$  there exist  $y_0 \in Y_0$ ,  $y_1 \in Y_1$  such that  $y = y_0 + y_1$ . Since  $\lambda_0 \notin \sigma_e(T \mid Y_0)$ , there exists an  $x_0 \in Y_0 \cap D(T)$  such that  $(\lambda_0 - T)x_0 = y_0$ . Because  $N(\lambda_0) \cap \sigma_e(T \mid W) \sqsubseteq \sigma_e(T \mid Y)$ , we have  $\sigma_e(T \mid Y_1) \sqsubseteq \sigma_e(T \mid Y)$  and so  $Y_1 \sqsubseteq Y$ . Therefore  $[y]_Y = [y_0]_Y = (\lambda_0 - T^Y)[x_0]_Y$ . Consequently  $\lambda_0 - T^Y \mid W/Y$  is surjective.

Thus we have proved  $\sigma_e(T^Y|W/Y) \subseteq \sigma_e(T^Y|\hat{Z})$ . Since  $\hat{Z} \in SM_e(T^Y)$ , we obtain  $W/Y \subseteq \hat{Z} = Z/Y$  so that  $W \subseteq Z$ . The opposite inclusion is obvious. Hence  $Z = W \in SM_e(T)$ .

**Lemma 4.** Suppose that  $T \in C(X)$  is strongly S-decomposable, where S is a closed subset of  $\sigma_e(T)$  and  $S \neq C_\infty$ . If T is unbounded, in addition, we suppose  $\infty \in S$ . Suppose  $Y \in SM_e(T)$ , K is a closed subset of  $C_\infty$ , G is an open subset of  $C_\infty$  and  $K \subseteq G$   $\subseteq \overline{G} \subseteq S^c$ . Then there exists a  $Z \in SM_e(T)$  such that

$$X(T, K) \subseteq Z, \ \sigma_e(T|Z) \subseteq \overline{G}, \ Z+Y \in INV(T)$$

$$\sigma_e(T^Y|(Z+Y)/Y) \subseteq \overline{G} \cup (S \setminus \sigma_e(T|Y)).$$

*Proof.* Let  $V = X(T, S \cup \sigma_e(T|Y))$ ,  $W = X(T, K \cup S \cup \sigma_e(T|Y))$ . Then V,  $W \in SM_e(T)$ . Let H be an open subset of  $C_{\infty}$  such that  $\overline{H} \cap K = \emptyset$  and  $H \cup G = C_{\infty}$ . Then  $H \supseteq S$ . Since T is strongly S-decomposable, there exist

$$V_0, V_1 \in SM_e(T|V), W_0, W_1 \in SM_e(T|W), Y_0, Y_1 \in SM_e(T|Y)$$

such that

$$V_0 + V_1 = T$$
,  $W_0 + W_1 = W$ ,  $Y_0 + Y_1 = Y$ ,

and

and

$$\sigma_{e}(T|V_{0}) \subseteq \overline{H} \cap \sigma_{e}(T|V), \quad \sigma_{e}(T|V_{1}) \subseteq \overline{G} \cap \sigma_{e}(T|V),$$

$$\sigma_{e}(T|W_{0}) \subseteq \overline{H} \cap \sigma_{e}(T|W), \quad \sigma_{e}(T|W_{1}) \subseteq \overline{G} \cap \sigma_{e}(T|W),$$

$$\sigma_{e}(T|Y_{0}) \subseteq \overline{H} \cap \sigma_{e}(T|Y), \quad \sigma_{e}(T|Y_{1}) \subseteq \overline{G} \cap \sigma_{e}(T|Y).$$

Obviously, we can take

$$V_0 = W_0 = X(T, \overline{H} \cap (S \cup \sigma_e(T|Y))),$$

$$V_1 = Y_1 = X(T, \overline{G} \cap \sigma_e(T|Y)),$$

 $W_1 = X(T, \overline{G} \cap (K \cup \sigma_e(T|Y) \cup S)) = X(T, \overline{G} \cap (K \cup \sigma_e(T|Y))).$ 

Put  $Z = W_1$ . Then  $Z + Y \subseteq W$ . Now in order to show  $Z + Y \in INV(T)$ , it is sufficient to prove Z + Y is closed. Let  $x_n \in Z + Y$  such that  $||x_n|| \le 1/2^n$ . Then  $x_n \in W$ . Therefore there exist  $x_n^{(0)} \in W_0$ ,  $x_n^{(1)} \in W_1$  such that  $x_n^{(0)} + x_n^{(1)} = x_n$  and  $||x_n^{(0)}|| + ||x_n^{(1)}|| \le p ||x_n|| \le p/2^n$ , where p > 0 is a constant. On the other hand there exist  $z_n \in Z$  and  $y_n \in Y$  such that  $z_n + y_n = x_n$ . Therefore

$$x_n^{(0)} - y_n = z_n - x_n^{(1)} \in Z \cap X (T, (\overline{H} \cap (S \cup \sigma_e(T|Y))) \cup \sigma_e(T|Y))$$

$$= X (T, (\overline{G} \cap (K \cup \sigma_e(T|Y))) \cap ((\overline{H} \cap (S \cup \sigma_e(T|Y)))$$

$$\cup \sigma_e(T|Y)) \subseteq X (T, \sigma_e(T|Y)) = Y.$$

Hence  $(x_n^{(0)})_{n=1}^{\infty} \subseteq Y$ . Let  $\sum_{n=1}^{\infty} x_n^{(0)} = x^{(0)}$ ,  $\sum_{n=1}^{\infty} x_n^{(1)} = x^{(1)}$ . Then

$$x^{(0)} \in Y$$
,  $x^{(1)} \in Z$  and  $\sum_{n=1}^{\infty} x_n = x^{(0)} + x^{(1)} \in Z + Y$ .

Consequently Z+Y is closed. Now we show  $\sigma_e(T|(Z+Y)) \subseteq \overline{G} \cup \sigma_e(T|Y) \cup S$ . If  $\infty \notin \overline{G} \cup \sigma_{\epsilon}(T|Y) \cup S$ , then  $\infty \notin S$ . By the hypothesis, T is bouned. Therefore  $\infty \notin \sigma_e(T \mid (Z+Y))$ . If  $\lambda_0 \in C \setminus (\overline{G} \cup \sigma_e(T \mid Y) \cup S)$ , then  $\lambda_0 \notin \overline{G} \supseteq \sigma_e(T \mid Z)$  and  $\lambda_0 \notin \overline{G} \supseteq \sigma_e(T \mid Z)$  $\sigma_e(T|Y)$ . Therefore both  $\lambda_0 - T|Z$  and  $\lambda_0 - T|Y$  are surjective. Consequently  $\lambda_0 - T \mid (Z + Y)$  is also surjective. Since  $Z + Y \subseteq X(T, \overline{G} \cup \sigma_e(T \mid Y) \cup S)$ , we see that  $\lambda_0 - T \mid (Z+Y)$  is injective. Thus  $\lambda_0 \notin \sigma_e(T \mid (Z+Y))$ . Consequently  $\sigma_e(T \mid (Z+Y))$  $\sqsubseteq G \cup \sigma_e(T|Y) \cup S$ . Finally we show  $\sigma_e(T^Y|(Z+Y)/Y) \sqsubseteq \overline{G} \cup (S \setminus \sigma_e(T|Y))$ . By Lemma  $2T^{Y}$  is closed. Since  $Z \subseteq D(T)$ , we have  $(Z+Y)/Y \subseteq D(T^{Y})$ , and so  $T^{Y}|(Z+Y)/Y$  is a bounded operator. If  $\lambda_0 \in C \setminus (\overline{G} \cup (S \setminus \sigma_e(T|Y)))$ , then  $\lambda_0 \notin \overline{G} \supseteq$  $\sigma_{e}(T|Z)$ . For any  $\hat{a} \in (Z+Y)/Y$ , there is a  $z \in Z$  such that  $[z]_{Y} = \hat{a}$ . Therefore there is an  $x \in Z \cap D(T)$  satisfying  $(\lambda_0 - T)x = z$  and so  $(\lambda_0 - T^Y)[x]_Y = [z]_Y = \hat{a}$ . Hence  $\lambda_0 - T^Y | (Z+Y)/Y$  is surjective. For any  $z \in Z$  and  $y \in Y$ , if  $(\lambda_0 - T^Y) [z+y]_Y = 0$ , then  $[(\lambda_0 - T)z]_Y = 0$  and so  $(\lambda_0 - T)z \in Y$ . If  $\lambda_0 \in (\overline{G})^c \cap \sigma_e(T|Y)$ , since Y being an (e) spectral maximal space of T is T-absorbent and  $\lambda_0 \in \sigma_{\varepsilon}(T|Y)$  we have  $z \in Y$ . Consequently  $[z+y]_Y=0$ . Hence  $\lambda_0-T^Y|(Z+Y)/Y$  is injective. If  $\lambda_0\in(\overline{G})^\circ\cap$  $\rho(T|Y) \cap S^c$ , then there is an  $x \in Y \cap D(T)$  such that

$$(\lambda_0-T)x=(\lambda_0-T)z$$
, i. e.  $(\lambda_0-T)(z-x)=0$ .

Since  $(\overline{G})^{\circ} \cap \rho(T|Y) \cap S^{\circ} \subseteq \rho(T|(Z+Y))$ , we have z-x=0, i. e.  $z=x \in Y$ . Therefore  $[z+y]_Y=0$  and so  $\lambda_0-T^Y|(Z+Y)/Y$  is injective.

Thus we have proved that if  $\lambda_0 \notin (((\overline{G})^c \cap \sigma_e(T|Y)) \cup ((\overline{G})^c \cap \rho(T|Y) \cap S^c))^c = \overline{G} \cup (S \setminus \sigma_e(T|Y))$ , then  $\lambda_0 - T^Y \mid (Z+Y)/Y$  is injective.

Our proof is complete.

**Theorem 5.** If  $T \in C(X)$  is strongly S-decomposable, where S is a closed subset of  $\sigma_e(T)$  and  $S \neq C_{\infty}$ , then for any  $Y \in SM_e(T)$ ,  $T^{\Upsilon}$  is a closed strongly  $S \cap \sigma_e(T^{\Upsilon})$ -decomposable operator.

Proof Without loss of generality we can suppose  $\infty \in S$  if T is an unbounded operator. By Lemma 2  $T^{Y}$  is closed. By Lemma 1, in order to prove this theorem it is sufficient to show  $T^{Y} \mid \hat{X}_{1}$  is  $S \cap \sigma_{e}(T^{Y})$ -decomposable for any  $\hat{X}_{1} \in SM_{e}(T^{Y})$  with  $\sigma_{e}(T^{Y} \mid \hat{X}_{1}) \supseteq S \cap \sigma_{e}(T^{Y})$ . Let  $X_{1} = (x \in X, [x]_{Y} \in \hat{X}_{1})$ . By Lemma 3,  $X_{1} \in SM_{e}(T)$  and  $\sigma_{e}(T \mid X_{1}) \supseteq S \cup \sigma_{e}(T \mid Y)$ . Hence  $T \mid X_{1}$  is strongly S-decomposable and  $Y \in SM_{e}(T \mid X_{1})$ . Set  $T_{1} = T \mid X_{1}$  and  $S_{1} = S \cap \sigma_{e}(T^{Y})$ . Then we have only to prove  $T_{1}^{Y}$  is  $S \cap \sigma_{e}(T^{Y})$ -decomposable.

Assume that  $(G_0; G_1, \dots, G_n)$  is an open  $S \cap \sigma_e(T^Y)$ -covering of  $\sigma_e(T^Y)$ . Obviously  $(S \setminus G_0) \cap \sigma_e(T^Y) = S \cap \sigma_e(T^Y) \setminus G_0 \cap \sigma_e(T^Y) = \emptyset$  and  $S \setminus G_0$  is closed. If  $S \setminus G_0$  is bounded, then there is a bounded open set  $G_0$  such that  $G_0 \supseteq S \setminus G_0$  and  $G_0 \cap \sigma_e(T^Y) = \emptyset$ . If  $S \setminus G_0$  is unbounded, then  $\sigma_e(T^Y)$  is bounded (Otherwise  $\infty \in (S \setminus G_0) \cap \sigma_e(T^Y) = \emptyset$ , this is a contradiction). Hence there exists a neighborhood  $G_0$  of  $\infty$  such that

$$G_0' \supseteq S \backslash G_0$$
 and  $G_0' \cap \sigma_e(T^Y) = \emptyset$ .

Take an open subset  $G_0''$  of  $C_{\infty}$  such that

$$\overline{G}_0'' \cap \sigma_e(T_1^Y) = \emptyset$$
 and  $G_0'' \cup G_0 \cup \cdots \cup G_n = C_\infty$ 

Put  $H_0 = G_0 \cup G'_0 \cup G''_0$ . Then  $H_0 \supseteq S$ . Let  $H'_0$  be an open subset of  $C_\infty$  such that  $S \subseteq H'_0 \subseteq \overline{H}'_0 \subseteq H_0$ . Set  $H_i = G_i \setminus \overline{H}'_0$  for  $i = 1, 2, \dots, n$ . Then  $(H_i)_{i=0}^n$  is an open S-covering of  $C_\infty$ . Obviously we can take another open S-covering  $(H_i^*)_{i=0}^n$  of  $C_\infty$  such that

$$H_0 \supseteq \overline{H}_0^* \supseteq H_0^* \supseteq S$$
 and  $H_i \supseteq \overline{H}_i^*$  for  $i=1, 2, \dots, n$ .

Since  $T_1$  is strongly S-decomposable, we have  $X_1 = \sum_{i=0}^{n} X_1(T_i, H_i^*)$ .

By Lemma 4, there exists  $(Z_i)_{i=1}^n \sqsubseteq SM_e(T_1)$  such that

$$Z_i + Y \in INV(T_1), \ \sigma_{\mathfrak{o}}(T_1|Z_i) \subseteq \overline{H}_i, \ X(T_1, \overline{H}_i^*) \subseteq Z_i,$$

and

Therefore

$$\sigma_{\mathfrak{e}}(T_1^{\mathsf{v}}|(Z_i+Y)/Y) \subseteq \overline{H}_i \cup (S \setminus \sigma_{\mathfrak{e}}(T|Y)).$$

Put  $Z_0 = X_1(T_1, \overline{H}_0^* \cup \sigma_e(T|Y))$ . Then  $Y \subseteq Z_0$  and  $X_1 = \sum_{i=0}^n Z_i = Z_0 + \sum_{i=0}^n (Z_i + Y)$ .

$$X_1/Y = Z_0/Y + \sum_{i=1}^{n} (Z_i + Y)/Y$$
.

By Lemma 4, we have  $\sigma_e(T_1^Y | (Z_i + Y)/Y) \subseteq \overline{H}_i \cup (S \setminus \sigma_e(T | Y))$  for  $i = 1, 2, \dots, n$ . Hence

$$(Z_i+Y)/Y=W_i\oplus \hat{V}_i$$

where  $\widehat{W}_i$  and  $\widehat{V}_i$  are invariant subspaces of  $T_1^Y$  and satisfy  $\sigma_e(T_1^Y|\widehat{W}_i) \subseteq \overline{H}_i \subseteq \overline{G}_i$ ,  $\sigma_e(T_1^Y|\widehat{V}_i) \subseteq S \setminus \sigma_e(T|Y)$  respectively.

Since  $Z_0 = X_1(T_1, \overline{H}_0^* \cup \sigma_e(T|Y)) \in SM_e(T_1)$ , we see that  $T_1|Z_0 = T|Z_0$  is strongly  $S \cap \sigma_e(T|Z_0)$ -decomposable. Therefore for any  $z \in Z_0$  there exists a  $u \in S$ 

 $X_1(T_1, \overline{H}_0) \cap Z_0$  and a  $v \in Y$  such that z = u + v. If  $\infty \notin \overline{H}_0$ , then  $\infty \notin S$ . Hence T is bounded and so  $\infty \notin \sigma_e$   $(T_1^y|Z_0/Y)$ . If  $\lambda \in C \setminus \overline{H}_0$ , then there is an  $x \in X_1(T_1, \overline{H}_0) \cap Z_0 \cap D(T)$  such that  $(\lambda - T_1)x = u$  and so  $(\lambda - T_1^y)[x]_Y = [u]_Y = [z]_Y$ . Hence  $\lambda - T_1^y|Z_0/Y$  is surjective. Now we show  $\lambda - T_1^y|Z_0/Y$  is injective. Assume  $x \in Z_0 \cap D(T)$  such that  $(\lambda - T_1^y)[x]_Y = 0$ . Then  $(\lambda - T)x \in Y$ . If  $\lambda \in \sigma_e(T|Y)$ , since Y being an (e) spectral maximal space of T is T-absorbent, we have  $x \in Y$  and so  $[x]_Y = 0$ . If  $\lambda \in (C \setminus \overline{H}_0) \setminus \sigma_e(T|Y)$ , then there is an  $x' \in Y \cap D(T)$  such that  $(\lambda - T)x' = (\lambda - T)x$ , i. e.  $(\lambda - T)(x' - x) = 0$ . Since  $x' - x \in Z_0$  and  $\lambda \in \rho(T|Z_0)$ , we have x' - x = 0. Therefore  $x = x' \in Y$  and consequently  $[x]_Y = 0$ . Hence  $\lambda - T_1^y|Z_0/Y$  is injective. Thus we have proved  $\sigma_e(T_1^y|Z_0/Y) \subseteq \overline{H}_0$ . On the other hand, since  $\sigma_e(T|Z_0) \supseteq S$ , we have

 $\sigma_{\epsilon}(T_1^Y|Z_0/Y) \supseteq \sigma_{\epsilon}(T_1|Z_0) \setminus \sigma_{\epsilon}(T|Y) \supseteq S \setminus \sigma_{\epsilon}(T|Y).$ 

Hence  $\sigma_e(T_1^Y|\hat{V}_i) \sqsubseteq \sigma_e(T_1^Y|Z_0/Y)$  and so  $\hat{V}_i \sqsubseteq Z_0/Y$  for  $i=1,2,\cdots,n$ . Thus

$$X_1/Y = Z_0/Y + \sum_{i=1}^{n} \hat{W}_i, Z_0/Y \in SM_e(T_1^Y),$$

 $\hat{W}_i \in SM_e(T_1^Y), \ \sigma_e(T_1^Y|Z_0/Y) \subseteq \overline{G}_0 \ \text{and} \ \sigma_e(T_0^Y|\hat{W}_i) \subseteq \overline{G}_i \ \text{for} \ i=1,2, \ \cdots, \ n_e$  Our proof is finished.

#### References

- [1] Nagy, B., Restrictions, quotients and S-decomposability of operators, Rev. Roum. Math. Pures et Appl., 25: 7(1980), 1085—1090.
- [2] Nagy, B., A spectral residuum for each closed operator, Topics in Modean Operator Theory, 1981.
- [3] Nagy, B., On S-decomposable operators, J. Operator Theory, 2(1979), 277-286.
- [4] Vasilescu, F. H., Residually decomposable operators in Banach spaces, Tohoku. Math. J., 21(1969), 509-522.
- [5] Bacalu, I., S-decomposable operators in Banach spaces, Rev. Roum. Math. Pures et Appl., 20 (1975), 1101—1107.
- [6] Bacalu, I., Residual spectral decompositions I, Stud. Cerc. Mpt., 32:5(1980), 867—504.
- [7] Bacalu, I., Residual spectral decompositions II, Stud. Cerc. Mat., 33: 6, (1980), 587-623.
- [8] Bacalu, I., Residual spectral decompositions III, Stud. Cerc. Mat., 33:1(1981), 3-39.
- [9] Erdelyi, I. and Lang, R., Spectral decompositions on Banach spaces, Springer-Verlag (1977).
- [10] Wang Shengwang and Erdelyi, I., A spectral duality theorem of closed operators (II) (to appear in the Chinese Annals of Math.)
- [11] Zhang Dianzhou and Wang Shushi, Residually decomposable operators and their duality theorem (to appear in the Journal of East China Normal University Natural Science Edition).
- [12] Wang Shushi, Closed decomposable operators in Banach spaces, Journal of East China Normal University Natural Science Edition, 3, (1981), 15-24.