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QUOTIENTS OF STRONGLY S—DECOMPOSABLE
~ OPERATORS

Wane SHUSHI (E#.6)*

Abstract

This paper shows that if T € 0(X) is strongly ;S’—decomposable where § is a closed
gubset of o, (T) and § #0.., then for any (¢) spectral maximal subspace ¥ of T; I7 'is'a
closed strongly § N o, (IT7)~decomposable operator.

§ 1. Notations and Preliminaries

In this paper we denote the complex plane and 1’&9 compactlﬁcainon by O and Co.
respectively. If A4 ig a subset of 0., We write 4°=C.\A4. ' '

We denote the classes of the closed and the bounded linear ’ope'rat’ors in Banach
space X by O(X) and B(X ). If X is a Banach SPdce and ¥ is a closed subspace of
X, then the quotient space of X modulo ¥ will be denoted by X /Y. -

Given T €0(X), we denote the domain of T by D(T), denote the resolvent set,

the spectrum and the extended spectrum of T by (p(T), O’(T) and cre(T)'

respectively. The local sPectrum and 'bhe extended looal spectrum will bs denoted
by o (@, T) and o.(z, T). We have _
. (mlT)v={a(m T, if oo ig a,i'egular point of Z1(+).
o Lo(m, T) U (), 1f0018381ngular pomt of ccT( )

If ¥ is a closed subspace of X such that T Xnom)cyr, ’ohen Y is called an'
invariant subspace of T'. We denote by INV (7') the family of all invariant subspaces
of T. : - |

Given ¥ €INV(T), the restriction of T to ¥ and the quotient operator of T’
induced in X /¥ will be denoted by T |Y and T respectively. | |

Let ¥ €INV(T), if for any ZEINV(T), the inclusion e (TIZ) CGG(T[Y)
implies ZCY, then ¥ is called an (e) speciral maximal space of T. We deonts the
family of all such subspaces by SM.(T).

Given T€0(X) and 4CC0., we set

X(T, 4)=U @ €INV(T), c(T|{T)C4).
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If T has the SVEP on §° and SS4CC.., we set
Xr(4d)=(2€X, o,(x, T)C4).
Let F be a eloSed subsat of O’@ and S be.a closed subset of F. A famﬂy of Open

gets (Go; G4, +++, G) is ealled an. open S—eovermg of F if l__) G;DF and G,,HS' %)

for 9=1, 2,
Let TEC (X ) and S e : a closed subset of o, (T). If for any open S—covering

(Go; Gy, +-, @) of o,(T), there exists (¥)i-oe&=SM (T) such that X = 21’; and

§=0

0, (T|Y ) E6; for 4= =0, 1,2, n then T is called S—deeomposable
- If, in addition, we require ¥ = 2 YﬂY, for any YGSM (T) y ‘bhen T is ealled

el

sﬁrongly S-decomposable.
Obviously, if T EO’(X ) is an unbounded operator and S is a closed bounded
subset of o(T'), then iy §-decomposable if 'and enly if T is 8Y (o9)-decomposable.
Hence When we. dlseuss the /S’——decomposablhty of an unbounded opera,’ﬁor We_can
always suppose oo € 8. . i .
‘ The theory of S—deeompo%ble operators Was s‘ﬁudled by - B Nang‘y£1 -8 T
Bacalu®®! and F. —H Vasnlesouw eto, B. Nagym proved thaﬁ T EO(X ) is strongly
S—deeomposable if and only 1f for any Y € SM e(T) T [ is S A o*e(T | Y)—deeomposable o
In fact if T 1s strongly S—deeomPOSable then T| e is strongly S No. (T [1’ Y=
deeomposable for any Ye ;S’M (T).. Moreover B Nagym proved thatif T€ O (X) is
strongly S—deeomposable and Y 1s 3 SPeetra.l mammal space of T sueh tha,t Y D:
X (&, where @ is an opén seb eon’oammg S, then TY ig strongly decomposable i. e "
strongly 8 ﬂ T (T ) —deeompos;a.ble ‘ o o
It is na,tura,l to ask Whether the last conelusnon holds in- general cage. Now we
are gomg ’ﬁo solve thls problem in the foIlowmg Seemon e

N
'i

§ 2 The Mam Theorem Sl

"\\? : {. -‘ o Fae

Lemma 1.. Let T EO (X ) and S’ be a elosed s/u,bset of cr, (T) then the foLEowmg
statements are egwb'ualern.

T T

1) T is strongl«y S—deeomposable ,
2) For any open S—covering (Go; G4, - ,.) of o-e(fl’), thefre ws (Y ;) ,,,-OCSM (T)
such that ¢, (T |Y ) ;G«,jenm—fe,,l SNLE cmel Y,a. EYﬂY " for efuery YE SM T)
with o,(T/¥) 26. R A e U

38) T|Y is SNo.(T|Y) —deeomposable fcir overy: Y E SMe (T’) with o, (T IY )D28.



No. 2 -/ Wang, S. STRONGLY S-DECOMFOSABLE OPERATORS'. 245

Proof 1)=>2) is trivial.: , - :

2)=1). Sﬁppose that (Go; G4, +++, G,) is an open S—éovering of o, (T). Take
an open subset G of O., such that SCGHEGF,EG, and G;NG= & for i=1, 2,
Set S;=G). For any Y €8M,(T), set Z=X (T, S1Uo.(T|Y)). Then ZESM, (T),

YCZ and UG;:J;S&UGG(T[Y)DO-G(T]Z)DS LetZ; x(T, G;) fOI"b 0, 1
Then it follows from 2) that .
X= EZ, and Z= EZHZ

=0 =0

Obkusly, znz;-—X@ (U (T|¥)) NG) =X (T, G‘nae(TrYDCY for §=1,
25; ;'.1 , T Now We are gomg ’ﬁo prove Y & EYﬂZi If mEY then wGZ Therefore
there exist m,GZﬂZ'; such that o= 2:04 Since € ZNZ,€Y for i=1; 2; -, n, we

=0
have wo ‘E Y NZ,. Oonsequenﬂy Yc EY [‘]Z‘ The opposﬂie inclusion is evident.
Thus we obtam 1) ' ' o
12)=58). Given YESM (T) with o, (T |Y):JS agsume $hat (Go, oo, @) s
an open S—eovenng of cr,(T IY ). Take an open subset H, of C.. such that H o ﬂ o (T|
Y)= and HOUGOUG1U ‘UG@,=0C.. Let Gy=H,{JGo. Then Gy Qay -, @) is
an open S—eovermg of o, (T) Hence by 2) there exists (Y;)G_OC;S'M (T) Such that

Y= EYan, GG(TIYG)CGOando-e(TlY.,)CG;forw 1, 2,

Let Zo=X (T, Gy) NY and Z,=¥ NY; for i=1; 2, ---, n. Since o :
o (T'|Y) 28, O'e(TIX(T G))DS and a,(Tm)ns gfom 1, 2
we have .

Y EZ; and cre(T [Z,) CG‘ for =0, 1 °, ) B Henoe T [Y is S—decompos::mble 4.

3)=>2) Suppc)Se that (Ge; Gy, - G) isan open S—-covermg of a,(T) Smoe-‘
X €8M(T) and 0,(T| X) =0,(T) 28, we see, by 8), that Tis S—deeomposable and

therefore X = ZX(T Gc) If YESM (T) such that a,(TIY)DS then: by 3) Ty
ig ;S'—decompomble so tha,t Y 2 Y(T ]Y G‘;) Smce Y (T G,) YﬂX (T G‘), we '
have Y 2 YnX (T G‘) Oonsequently 2) follows |

< Lemma 2. If TEC(X) is S~decomposable where 8is.a closecl subset 0 f T (T) >
and S+ C.; then Jfor any Y'€SM (T), T% is a closed operator. . . - o

Proof If SUa, (T'|Y)#0., then there is a bounded open subset H =C0.. and an:
open neighborhood & of .00 such thit H UG =0., G+#C. and HN (SUo.(T [N=F.
Obviously 8Uo, (T|¥)SG and H+ . Since T is S—decomposable, we have X =
X (T, @)+X (T, H): It is easily seen that ¥ +X (T, H) is olosed because x (T, .
HU @B UoT|7))=X (T, 8Ua,(TI))+X (T, H) is'closed. Therefore we have -
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X=X, @) X, ) +Y)
and so.
X/Y=Xx(T, G)/Y+(X(T -H) —l—Y)/Y
Usmg the fact that TY[X(T /Y Eo(X(T, @/Y) and TY|(X(T, H)Y+Y)/Y
- €B((X(T, H)+Y)/Y), we obtain TYGO’(X/Y)

If SUc,(T|Y)=0., then oo(T| Y) \§=0.\S. Obviously, there is a bounded

open subset H of C.. and an open neighborhood G of co such that

HUG=0C., HCC.\S=0,(T|Y)\S and @ #C...
Since T' is S-decomposable and SE@, we have X =X (T, H)+X (T, ). Byv the
inclusion o (T| X (T, H))SHZo,(T|Y) and the fact that ¥ €SM,(T) we obtain
X (T, H)CY. By the boundednéss of H we have X (T, H)ZD(T). Hence X (T,
H)CTY ND(T). For any AEVNG A—T | X (T, G)NY is evidently injective. Now
we are going to show it is.isurjeotiyé. For any y€ X (T, & NY, since A¢G 2o,
(T|X (T, @), thereisan x€X (T, @) such that (7\.' Ta=y. Because ¥ being‘ an
(e) spectral maximal subSpace of T is T—absorbent and A€ HCo, (T|Y), it follows
that x €Y, Therefore A— T [X (T, @NY is ‘surjective. Hence o, (T'| X (T, @)U
oe(T| X (T, & NY) CG‘#O Consequently TY is olosed Thus in any case we have
proved T*€0(X/Y). .

Lemma 3. Suppose that TEcO(X) ésa stfronglry ;SLdecomposable operator, where
8 is a closed subset of o (T) and 8+#O0.. If T s unbounded, in addition, we suppose
00 €8. Suppose Y ESM, (T) and Z € SM,(T7) with oo(T¥|Z) 28 Noe(T7).. Let Z=
(ze X, [ﬂyEZ) Then -

ZeSM, (T) and o‘a(TIZ) DSU%(T!Y) :

Proof By Lemma 2 T is closed. Obviously Z €INV(T), Z/Y = =2 and o-e(T | Z)
=0 {(T|ZY)UodT| V)= T7| Z)Uo T |7)2ASNoTNUoT|T)= (S UoT]| Y))
N (©@(T7) Uoe(T|T)) = (BU0e(T|Y)) Noo(T) =8 Uae(T|T).

Let W=X (T, ¢,(T|Z)). Then WESM(T), c.(T|W)CZo,(T|Z) and YTZ
EW. Now we show WEZ. To this aim it is sufficient to prove W/ YCZ/Y. Since
Z/Y =5 €8M,(T7), we only have to verify oo(TT | W/Y)YCoo(T¥|Z). Assume that
0o (T¥|Z). If T is bounded, then clearly oo d o, (T¥|W/Y). If T is unbounded,
by the hypothesis €8 and o, (T¥|2)28 No.(T¥), we have oo &S Na,(T¥) and
consequently oo o, (T¥). Therefore co ¢t o (T¥|W /Y ). Assume that there ig a Ay €
O\oo(T¥|2). If MEo{T|Z), then Ao T |W)Uc T |¥)2oo(T|W))=c(T7| W/ :
Y). If ME€0o(T|Z), since Ao, (T¥|2) and o,(T|2Z)=0c.(T¥|Z) Uc(T|Y) we
have Ao €0, (T |Y). Let s €W N D(T) such that (Ag—T7%)[@]y=0. Then (Ae—T)3E .
Y. Since ¥ being an (e) gpectral maximal subspabe of 7' is T-absorbent and A, €
oo(T|Y) we have €Y and so [2]y=0. Hence Ay—T7¥ I'W/Y ig injective. Now let
us show A—T7% (W/Y is surjective. If Ay o, (T|W), then for any y €W there is an.
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wEWN D(T) such that y=(Ao— T)a; Therefore [y]y= (ho— TY) [z]y. Consequently
Ao—T¥ | W /Y s surjective. If Ao Eo, (T |W), we discuss in two cases: a). A€ S. Since
MG 0e(T¥|2) and oo (T¥|Z) 28 N0 (T7), we have A& o, (T7). By Theorem 3.15 in

{91, we obtain W/¥Y €8M,(TY) and o, (T¥ |W /Y )Sa ) so that Ao (T¥ |W/Y)

and. clearly Ao—TY|W /Y is surjective. b). No & S. Since o (T (WYC0o(T | Z)=0T¥ | 2)

Uoo(T|Y) and Ao, (TY(Z), there exists an open neighborhood N (Ao) of A, such

that o, (T/Z) . N (ho) 20(T7| 2) D0, (T| 2) \0‘-e (T'|Y). Therefore oo(T|W)\N (o) 2

o (T]W)\O‘e(TIY) Let Go= (o) G =N (ho). Then (Go, G4) is an open covering

of o, (T|W) and F28. Bince T is strongly S—-decomposable and WeSM,(T),

T |W is SNos(T|W)-decomposable. Hence there exist ¥, Y.€S8M, (T | W) such that
0 o(T| ¥ o) TG, 6o(T| V) CGy and W=V +T5. -

" Thus for any y€ W there exist ¢oEY,o, y1 €Yy such that y=yo-+yi. Since A&
o, (T | Yo), there emsts an 2, &Y o[ D(T) sueh that (ho— T) To=Yo- Because N (Ay) N
oo (T |W) Coo (T |Y), we have o,(T| Yy) Co, (T Y’) and so Y1CY Therefore [y]y=
[yoly = (ho—=TY) [w5]y. Consequently Ag—T¥|W /Y is sur;eotlve :

Thus we have proved o (TY\W/Y)E ae(TYlZ) Since Zesu, (TY) , we obtain
W/YCZ=2/Y so, tthat WEZ. The opposite inclugion ig obvious. Hence Z = WE
SML(T). ‘ :

Lemma 4. Suppose that- TEO (X) s stromgly S-decomposable, whem S is a
dlosed subset of o,(T) and 8+ 0. If T is unbounded, in addition, we suppose oo €S,
Suppose Y €SM(T), K s a-closed subset of Cw, G is an open subset of 0. and KC@
CGCS° Then there ewists a Z€SM, (T) such that -

X (T, K)CZ, 0(T| Z2) =G, Z+Y€INV(T)

and | e (TT(Z+Y)/Y)EGU (S\oo(T|Y)).

Proof: Let V=X (T, SUci(T|Y)), W=X(T, EUSU0o,(T|Y)). Then 7,
W ESM,(T). Lot H be an open subset of O.. such that HNK = and HUG=
O ‘Then H338. Since T ig strongly S-decomposable, Jahere exish 4
Vo, ViESM, (T'V) Wo, W1 ESM(T|W), Yo, Y. €8N, (T[Y)
such that - » , ‘

‘ VO+V1=T, Wo""Wi‘._—‘W; Yo+Y:=Y, v
and \ . o - - _

o (T|V)CSHNG(T|V), 0T |VOSFNe(TIV), .
o (TIWEE NG (T W), 0u(T W) SENou(TIW),
0. (T|Y o) SHNo (T|Y), oe(TlYi) CGﬂcre(TlY)
:Obv10usly, we can fake. 5
SRR Vo——Wo—X(T HD(SU%(TW))),
Vi=Y,=X(T, GNo.(T|Y)),
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Wi X (@, @0 (R Uo(TIY) US) =X (T, BN (BUay(T|F)).
Put Z=MW.. Then Z+Y CW. Now in erder to show Z+Y €INV (T), it is sufficient
to prove Z+Y is closed. Leb o, EZ+Y such that |a,|<1/2* Then s, EW. Therefore
there exist 2{” €W, #$° € Wy such.that o¥ +o° =z, and |2| 4 |o®| <p|z.[<p/2",
where p>0 ig a constant. On the other hand there exist z,, 6 VA and y,, €Y ‘such ’ﬁha’s
2ot =12,. Therefore -
' E wm’-z/’ =2, ~fv“’€ZﬂX(T n (SUUe(TlY))) Uo(T|7))
=X (T, (@n (KU%(TIY))) n ((Hﬂ (SU%(TW)))
UO“e(TIY)))CX(T Cfe(TlY)) =Y.

Henoce (m(")) ,,_1C.Y Let 2 zz;“” =2, 2 wf}’ =w(1’. Then

- ow=1

w(o)ey w(l)ez and Ew_.m(o)_i_w(l)ez_f_y

n=1

COnSequently Z +Y s, cIOSed Now we show o, (T | (Z +Y)) CG‘ U cre(TlY) us. If
og¢G@Uo,(T| Y) us,. then oo. ¢8. By the hypothesis, T is ‘bouned. Therefore
oo, (T|(Z+Y)). If ?\.OEO’\ (GUO’e(T[Y) U;S'), then K0$G203(TIZ) and . ?uoi
0o(T|Y). Therefore both Ao— ‘T |Z and M—T|Y are surjective. Consequently

'TI (Z 4+7Y) is also surjective. Since Z+Y CX (7, | @Ude(T | Y)US), we see that

o—T|(Z +Y) is injective. Thus Moo (T[(Z+Y)). Consequently o, (T|(Z+Y))
CGUGB(T[Y) US Finally we show o, (TY[ (Z—l—Y)/Y) cGU B\oe(T|Y)). By
Lemma 277 ig GIOSed Smce ZCD(T), we have (Z +Y)/YED(T¥), and 50
. TY| (Z+Y)/Y i a bounded operator. If 7\,060'\ (GU (S’\cre(TlY)), then )\.O$GD
0.(T|Z). For any ae (Z +¥ ) /Y, there 1s a zEZ such that [2]y=a. Therefore there
isanas€ZND(T) sa,tlsfymg (?»0 T)w =2, and so (7\.0 TY) [#]y=[2]y=a. Henoe

~T7| (Z—I—Y)/Y is sur;;eehve For any zEZ and yEY if Mo~T7) [z+ylr=0,
then [ (Ao— T)zjy—O a.nd 80 (Ao— T)zEY If Mo € @) ﬂo-e(TlY), since ¥ bemg an
(e) 8peotra,1 max1ma1 spaoe of T is T—absorbent and M E oo (T|Y) we have 2€Y.
Consequently [z +:l/]y—0 Henoe =T¥|(Z +Y) /Y is m;echve If A€ (G‘) N

p(T|Y) N&°, then there is an s €Y N D(T) such that '
(ko—T) = (ho—T)z, i. e. (?\,0 T) (z—x) =0.

Smoe (@)° ﬂp(TIY) N8°Sp(T| (Z+Y)), we have z—5=0, i, 6. 2=3E Y. Therefore ‘
[z4+y]y=0 and s0 Ay— TY| (Z+Y)/Y is injective.

Thus we have proved that if MGE (((G) ﬂo-e(TlY)) u ((G) ﬂp(TlY) N8 )e=
GU (8\o,(T|Y?)), then Ag— TYI (Z+Y)/Y 1s 1nJecinve

Our proof is complete.- : = S

Theorem §. If TcC (X ) s strrorngly S—deoomposable fwheq"e 8.is @ closed subset
of 6o(T) and S+C., then for any YESM (T), T% is a- olosed strongly ;S’ﬂae(TY)—

decomposa;ble operator. C L e e
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Proof Without loss of generality we can suppose oo €8 if T is an unbounded

operator, By Lemma 2 T'¥ ig closed. By Lemma 1, in order to prove this theorem it
.IS sufficient to show T%| Xy is 8N o;(T7)—decompogable for any X, €8M.(T%) with
(Te(TY|X1) 28No.(T%). Let X1=(@EX, [w]yEXi) By Lemma 8, X;E€S8M(T)
and ¢,(T|X1) 28 Uco(T|Y). Hence T|X, is strongly S-decomposable and Y €
SM,(T|X4). Set T1=T|X, and S:=8nN o-e(TY) Then we have only 0 prOVe T7 is
SNo. (T'¥)-decomposable. : _
- Asgsume that (Go; G4,++, G4) i3 an open S N c,(TY)—oovermg of o-e(TY) Ob’VlO\]Sly
(S\Go)Noo(TT)=8 NoTNGoNae(TF) =B and S\ Gy is closed. If §\@, is bounded,
then there is a bounded open set G such that @,28\Go and FGNoTT)=1: If S\ Gy
is unbounded, then o,(T'¥) is bounded (Qtherwise o0& (8\&) Noe(T7) =(J, this is
a contradiction) . Hence. there exists a ne1ghb0rhood @y-of do such that

. GBAQS\GB ~a_nd‘,~-;9‘6 ﬂ oo (T7) = Q‘- o
Take an opqn isu_b_SQt o of C., such that .
ﬂcr,,(Tl) 4] and G”UGOU UG‘ =-O' o

Put Ho=GoUG,UG). Then He2S. Let Hf be an open subset of O. such that
SCH,CH,CH, Sot Hi=G\H}, for i=1, 2, -, n. Then (H;) ', is an open
S-covering of Ca. Obviously ‘we can' fake another openm S—oovermg (H ) ' 0 of Cu
such that . . . :
| HODH*DHODS and H¢DH* for b= 1 2

Smoe T1 is strongly ;S‘—decompos!able we have Xy= 2 X 1 (Ti, H*)

By Lemma 4, there exxs‘ﬁs (Z;),_ll::S’M (Tl) such that ) _
zi+YemV(T1>, cre(Tlxzar:H” X(Ti, HNCZy - .
and : N

e (T (ZAT) /T EHU (S\ou(T 7).
Put Zo—Xl(Ti, H*Uo‘,(T‘Y)) Then ¥ EZ, and X,_— 2Z¢—Zo+ 2 (Z;—!—Y)
JTherefore . .. PRI A :
X,/Y = ZD/Y +2(Z‘+Y)/Y

By Lemma 4, we have o (T%|(Z:+Y)/Y)EH.U U @\e.(T|Y)) for i=1, 2,
Hence
(Z£+Y)/Y=Wi@f7‘;
where W, and ¥ are invariant subspaces of TY and satisfy o, (T}’lW,‘) CH.CG,
oo (TY |V ) ©E8\0s(T |Y) respectively.
Since Zo=X1(T:, HyUcoe(T|Y)) ESMe(Tl), we see that Ti|Zo=T|Z, i
strongly SN o, (T !Zo)—decomeSa,ble. Therefore for any 2E€ 7 there exists a w€
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Xa(Ty, HYNZy and a vEY such that z=u+v. If oo ¢ H,, then o ¢S, Hence T ig
bounded and so o ¢g, T11Zo/Y). If NEC\H,, then thers is an 0 € X1 (T, H)N
ZyND(T) such that (A=T))w=w and so A—T[z]e=[u]y= [2]v: Hence A—T7¥|Z,/
Y ig surjective. Now we show A—TY|Zo/Y is injective. Assume v€ZoND(T) such
that (A—T7)[#]y=0. Then A=T)2€Y. If A€, (T|Y), since ¥ being an (e) spectral
maximal space of 7' ig T-absorbent, we have €Y and so0 [:ﬂy-:(). If 7\.6 (O\Eo)\-
o«(T|Y), then there is an &'€¥ N D(T) such that (A—T)a'= (i — Ta, i. e,
(A—=T) (&' —z) =0. Since &'—~o€Z, and AEp(T|Z,), we have o' — 5=0: Therefore
r=2'CY and consequently [2]y=0. Hence A— T{|Zo/Y is injective. Thus we have
proved o(17|Zo/Y) S H,. On the other hand, since o, (T'| Z,) 28, we have

| Oo(TE| 26/ F) Do (T3] Z)\0o(T| V) 28\6 (T | 7).
Hence o, (TY|V) S0, (TY| Zo/Y) and so PiCZ,/Y for i=1,2, <, n..Thus

Xo/T = 2o/Y +31W,, Zo/Y €SH(TY),
WiESM(TY), oo(TY| Zo/T) =G, and oo (TY|WYCE, for =1,2, «-v, .
Our proof is finished. o T L ‘
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