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~ RINGS OF HILBERT MODULAR FORMS ON
TOTALLY REAL NUMBER F IELDS
- WITH ODD DEGREE

Feng KEQIN (i %, 3 *

Abstract -

E. Thomas and A. T. Vasquez provea the following result: For any totally real cubic
number - field K. and subgroup I' of modular type of PSL3(0x), the ring of Hilbert
modular forms for I' over K i is not Gorenstem ring. In the present paper the author comes
o the same conolumon for any totally real number Tield of odd degree n>3

§ 1. Introduction and Statément 'of.ATheorem |

Leb K be a totally real number field of degree n, O the ring of integers in K,
G'=PSL,(0x) the Hilbert (projective) modular group over K, fi: K<sR (1<<¢<<n)
the n distinct embeddings of K into the field B of real numbers. For each a€ K, let
o = £,(a) (1<'b<n) Let H be the complex upper half plane We deﬁne the action

a b
of g= (c )E & on H* in following way: for 2= (zi, %) € H",

Dy 45D g, 4w
7 9(z)= (o‘l)z FagD T Ty, +d(n)) o
Let I be a subgroup of G. A holomorphic function f: A "—>G ig ca,lled amodular
form of weight 2k for I" over K if ' '

Flg(@) =1f1<c(*’zf+«z<f>> *f(2)

, ,
for each g=(a )EF and z= (24, --, z,,)EH" (1f n=1, K= Q, we also mush
¢

assume that f i “holomorphie at the cusps”).
Let (.M s be the complex vector space of Hllbert modular forms of Welght 2k
for I over K. Then

Mr= 2 (Mr)i, (Mr)o=C

isa graded ﬁmtely generated C-algebra which is called the ring of Hilbert modular
formgs for I" -over K. One of fundamental problems in modular form theory is to
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determine the structure of M, for given K and I'. When ‘n=1, E=Q and
I'=G=PSLy(2), it is a classical result. that Mq=C[E,, Hs;] where H: Iz the
Eisenstein series of weight 2¢. When n=2 (K= Q(\/— )), only some scabtered results
have been obtained. More exacﬂy SPea.kmg, Hirzebruch,. Zagier and van der Geer
determined. the structure of M & for the cases D 5 8 18 24 in [2 8, 4, 5]. Among
them the first three rings -are complete intersection rmgs but the last one is not. :
Generally, let R= %Rk be a graded, ﬁmﬁelz -generated C-algebra, d=dim R

the Krull dimension of R, dj the dimensidn of C—vector space R;. We call the formal
power series )

H(R\) = 2 N

the Hilber? series of the graded G—algebra, R. It is well-known -that H (R, A) is a
rational function in A and d equals the order of poles of H (B,A) ab A= -1. (ses the
book [1] for detall) By using the Noether’s normahzafmon ’oheorem, we know that
there exish homogeneous elements 4, ---, 63€ R of positive degree such that R i3 a
finitely generaﬁed G0, - ﬁdj —module. If R is'a free C[6,--- Bd]‘—modﬁle, then we
call R a Cohen—Macaulay rmg IfRisa OOhen—Macaulay rmg and there exists 1€ Z
suoh tha,t
H (R 7\.’1) ( 1)"7\,‘1:'[ (R h),

then we call it a Gorens’oem ring (th:ls is not the or1g1na.1 deﬁmtlon, butis equalen’ﬁ
with the orlgmal one, Seo Stanley [7]) At la.st as a ﬁmtely genera’oed C—algebra,
has the following form -~ g

* R=C[wy,--,2]/1,
where I is some ideal of the polynomial ring Cl@y,,ws]. Let r be the minimal
number of generating élements of I. If d=dim R=s—r, then we call R a complete
intersection ring. It is well-known that - o K

complete intersection=>Gorenstein=>Cohen-Macaulay.

For the properties and meanings of these types of ring in ring theory and algebraio
geometry, see Stanley [6,7].

Now we can state more results in addltmn %0 above—men‘moned Elrsqabruch
Zagier and Van der Geer’s results. Thomas and Va,squez[93 has recently prOVed that
(@) For K=Q (\/—- s D12, .MG is a complete mterSeG’olon rmg{:)D =5, 8,
or 13. :

A subgroup I of G= PSLQ (OK) is called modular type if I'=G or I‘ is ’aorsnon-
free. ‘

(II) Let I" be a subgroup of modular type for a totally real cubic number field.
Then the ring My is nevef Gorenstein ring (thus My is never complete intersection

ring).
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In the present paper we prove, that the result (II) hold for any totally real
number field of odd degree n=>3. In other words, we are going to prove

: Theorem. For any totally real number field K of odd degree n=>8 and subgroup
I‘ of modulao‘ type of G= PSL, (Ok), Mr @S never Gorenstem mng (thus M r 48 mever
complete intersection mng) o ' .

By the above definition for Gorenstein rmg, we know thaﬂ: in order to prove the
Theorem it iy sufficient to prove the*:

Proposition (x). Under the assumptions.in Theorrem, there \does not emist 1€ Z
such that

o C H(Mp, A1) =(— 1)am M;JH (Mp, m .

To do that we need o deduce dimension formulas for dim (M 11)15 (]a>0) in § 2. Then
we geot sufficient information on Hilbert serles H (M r, A), S0 that we can prove the
Proposition ‘(x) and the Theorem ih'§ 8.

§ 2. Dlmensmn Formulas

From now on we let K be a totally real number field Wl’oh odd degree [K: Q] =
n=2m-+1>8, I' a subgroup of modular type of G =PSL,(0,). Shimizu obtained the
following dimension formula (see [9] (2, 1)_, (2,.2) and (2,5))

dim (U z)y—+ (ZD R g D+Za@n@) frk>2,

where ¢=[G: I'], h=pumber of cusps of the fundamental domain. H AN & (s) =the
Dedekind zeta function for K. The lagh term 3} comes from the fixed points on H*/

I".Let o be a fixed point on H"/I" (this means that the fixed subgroup I',#{+I}),
the r=|I",|>2 1s also called the order of the fixed pom’n z. Wl‘bh each ﬁxed pomt @
we associate a unique (n+1)—buple L

, v=(r; 1, gs, +-, qn):
which ig called the proper type of z." Here .¢a, +--, g, are prime o -r and viewed
aSelemen’os in Z/rZ. Let

a.(qr) —the number of equwa,lent classes of ﬁxed pomts Wl’oh proper ’Gype 7.
W)= B 0o /(=D (=) (1), @

Since there are only ﬁmte number equlva,lent classes of fixed poinis, the sum 2 on

the right hand side of (1) is finite.
For k=1 Freitage proved that (see [9], (8,2))
dim (Mp)s=(—D*"G(I) =) +h=1—x(I)+h, (8)
~where x(I") is the arithmetic genus of Hilbert modular variety H*/I", for which we
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have the lezebruch—-wgnéra g formula (see [8], Theorem 1 ,1)

—1], @

where a,(I") =the number of I‘——equlvalent classes of ﬁxed points with order r From
the definition of a(v) we know thab ‘ ' '

w(D)= 3 a@. 7= g ). ®)

() =2 [2@Zk( 1)+2a,

At last, for =0 we have dim (Mp)o=dim C=1.Thus we have the dimension formu-
la of dlm (Mr)y, for each 5=0. But in order o prove our Theorem we need to clear
up the sum 2 in (1). Namely, we need o determme

(1). for which r>2 the .H ”/ﬂ has fixed point of order r;

(2) what kind of proper ’bype w=(r; 1, ¢a,"**,¢n) & fixed point of order r may
have and what a(7) may be. | '

Now we answer these problems. At first, if I" is torsion-free, by the definition
we know thab there is no any kind -of fixed point on H*/T'and all a(7)=0, thus
2 O Thus the only non—trlvml case is I' =G.

Lemma 1. Le Kbea totally real nwmberr fwtd fw@th odd degree -
[K:Q] =n=2m+1>3.

I f H*/G has a fmed pormt of o:rder rr>2 then |
(1) r=2or p* (p is an 0dd prime, 1>1), and (") |2(2m~+1).
(2) T'he proper type of a fiwed point qu,th order r=gp' has the form

7= (Pl 1, +.‘77 +g 3 "% i'g"_1>:

2,.1_ a. (&) for eaoh such Iownd of

where g is a pmmfz,twe root mod [ Moreo'uefr, w(r) =

T.

- Proof (1) If % is a fixed point of order r, then Q(Z,+{?) is a subfield of K,
L =o 25' (so0 [10], lemma 1.8). Thus [Q(L+{7)4Q] | [K:q]= —om+1. I r> 2,

it is well konwn that r % 2 (mod 4) and [QC,—!—CJ) Q] ———q)(rr), Then

-é— p(r) is odd and 7 is a power of some odd prime number. So we proved

).

(2) For r=p' (p=>3, I=>1) we can show that the proper type of % has the form
g=(p4 1, g, £¢° -, £g"") by the argument in the proof of [9], proposition
(2,10) ([9], pr oposition (2,10) is concerned with n=3, but the proof works for any
0dd n=[K:Q]>8). The lastassertion of(2) comes from the Prestel’s results ([9],
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(2.8) and (2 9)) dlrectly

Suppose that H"/F has a fixed pomt of order r. For r=2 there is only one

proper type v=(2; 1, L,+++,1) and ya(s) = 'Zi(_(llﬁ?* ’(—-1}"2“"“’,sotheﬁxed

pomts of order 2 contribute @, (T)( 1)%/21 40 the’ term 2 of (1). For r =p'( p>3,
1=1), from Lemma 1 we know that the fixed points of order p* contribute “’ (’r)

“Ay(r) to 2, Whee | © it . oLt i el

Alr)= 3 et Fe/ (A= C)(l C‘*") (1 Z"”) ©

EZ ey
Therefore the formula (1) hecomes (for k>2) o
dim (i)~ h——?—z’“;g—,,.i)im 1) +a2<f>< 1>k/2"+1+ 3 am-=
o ] S e(p l nt L

" ™
On the other hand, for k= 1 we ob’na,m from (3) and (4) |

dim (Mp);=1-+h— s L= D= 2,,];,1 az(l")— 5 e (D) T 1 )

But in the cases of r=p' (p>3, Z>1) from (6) we know ‘ohat

405 3 ST TR
-2 (e )G Z‘Zw ) ()
=§1 1EC(Smce 1{*& .vlégl __.1 a,nd 2]%"'1)

1<21<r~1 i- gl T c~l)“’r2

F:rom ‘bhlS and (8)we know that formula (7) also holds for Io 1 but plus one > at tho
' right hand side of (7). ‘ S

§ 3. The PrQof ".df Th'keb‘rvem’, |

For proving Theorem we need to write down the Hllbert series H (M I ?\.) It 13

- clear thab
m+W+---+m+---=>-1-’g’%,‘ o | 9
S D ae(I) : |
2 d) C 2”21 T “;SH) 1+x - (10)

From formula (6) we can see that AR (q) Ak+,(r) , thus for each r=p'( p>3 1=>1)
and ¢ (p%) |2n we have
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S k__ Qr (}") T o .
, AN (D)
where
| Qr(\) =41 (r)N+ A2 (r) A2+ +A (r)A% O (12)
At last, from elementary algebra we get S
> @h—1)m =(+*%’-§-2—;1~, o (18)

where P, (4) is a polynomial and (1—A)}P,(A). From (9) — (13) and the statement :
at the end of § 2 we know that

H(Mr, ) 1+2 dim (Mr)hF= +(1+x) o bl 1) (IP %)m
~@ll) _* aru‘) Q™
4 2”+1‘ 1+k+a(‘?—;’;o con1 T _ar . (14)

* We need further imformation about the polynomlals Q,(K) and P (1)
Lemma 2. Q™) =—-@,(1).
Proof From formula (9) we know that for 1<k<r,
‘ grcttarttan)
) Ak (q') =

:l:ﬂ“‘ {Z;. (1 C) (]_ — CU’) coe (1._ CQn)

<a<n

z—k(1+q=+ t@n)

ql~ia"1 gz—; (l Ha- C‘"n) (A=

2<ign

C(r-}-l—k)(l'l-ﬂa'i‘ Q)

"y B TT DD
C(r+1—k)(1+q=++qn)

- DB BTGy e

From this and the expression (12) for Qr(A) we can oomplete the proof of Lemma, 2.
Lemma 8. For n=1, A*2Py (A1) =P.(A) end deg P,(\) =n+1

n R,(A
Proof Let Z‘, Epf = —(-1——%1—

by elementary algebra. leferen’matxng both sides of above equa,hty, we get the

Then R,(MA) iga polynomlal and deg B,(A) <n

recursion formuls for B,(A):
B1(AM) =M, Bopa(A) =ALBL (M) (1—2) + (n+1) Ra(M)].
From this, it is easy to prove by induction that |
deg R,(A)=n, x"*_lR,.(h"l) =R,(A).
Moreover, from (18) we have

—(-1%% pfe 1)“x2k—x(g T — g (2%) W)

(B 2Ry (1) )= MAANRG) — 2Ry ()]
(1 )\J)n-}*l (1 hﬂ)n-{-l (1 7\‘2>n+1

Thus P, (xﬂ) =ALA+ R () 2By (02)] and deg R,()) =n
=>degP (A) ——-(1+n+n+1) =n+1.




No. 3 © .+ Feng, K. Q. RINGS OF HILBERT MODULAR FORMS 265

By using A"*R, (A7) =R, (}\,) we get
7"25+4P (2‘—2) =;\:2n+3 I:;\‘—n—l(l__{_?\')n-f-lR (}\‘-1) 2nR (}\‘—2)]
_)“n+2(1 +}b> n+1?\'—n—1R (}“) 2n}‘2n+3h-"n—2R (}\‘2)
=ALQA+A)" B, () = 2'R, (M) = P (A2).
Thus A**2P, (A1) = P,(1).
Now we continue to examine the H (M, ?uj Let

S M) == @-») I (- w)=1+ +( —Dme (15)
: ‘ o Bh0 .
Then a=n+1+ Z 1, B=deg M (A) =n+2+ g_] 'a'Ea:—l—l'(mod '2)agd from (14)

ara')%';o N ,. v ) ) ar(I‘;*O )
we know that o o ’

H(-MI’)P‘*) NO") /M O");
where N (1) is the polynomlal '

T =h B4 (2@ -5 L(-DPs (x)Tl-ﬂ%Zﬁ—

_a(l) AM NN a(I) QMMM .
2n+1 1A mzr e con—1 T o, o Lo (16)

ar(IN+0
Since deg P,(A) =n+1, deg Q, (1) <r, Pa (0) =Q-(0) =0, from (16) we know that
deg N (X) =B+1, the constant term and leading term of N (A) are 1 and (— 1) oL+l
respectively, and both come from the term (1+A)M(X) of the right hand side of
(15). Therefore from (15) and (16), N (A) can be written as
N () =h(h++ 4 (—1)=+8) +(1+01?»+ cohB 4 (= 1)), (17)

where the first term is A —;\—'%(—;"l and the second term ig the sum of remaining terms

of right hand side of (16). From (15) we know that A°M (?Ci) -(=1)*M (). Then
from Lemmas 2,3 we know that each term (denoted by L(A)) of (16) except the firgh
one satisfies the relation
MYELA) =L (-1)=.
So does the sum 1+o1?u+ «+esA\°+ (—1)?A8*1 of these terms. From this we have
c1=(—1)%s. (18)
Now we can complete the proof of Theorem easily. From A=)} P, (1), formula
(14) and the well-known fact {,(—1) #0, we see that H (M A) has a pole of order
n+labi=1, i e. dim Mp=n+1=0 (mod 2). As we said ab the end of § 1, in order
to prove Theorem it is sufficient to prove the proposfmon (%) in § 1, i. e. we have to
prove that there is no | €Z such that
H(Mr A% =02H (Mr,1). . (19)
~ Suppose that there is 1€ Z such that (19) hold. From (17) we have

H () = Sttt BTN (9,
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From (19) and MM (A?)=(—1)M(A) we know that | must be equal to 1 and
cr+h=(—1)%(cs+ (—1)***h) = (—1)%,=h. But from (18) we know that ¢y —c,( —1)?,
therefore A =0 which is impossible since A=the number of ousps on H*/I'>1. So we
complete the proof of Theorem. ‘
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