RINGS OF HILBERT MODULAR FORMS ON TOTALLY REAL NUMBER FIELDS WITH ODD DEGREE

FENG KEQIN (冯克勤)*

Abstract

E. Thomas and A. T. Vasquez proved the following result: For any totally real cubic number field K and subgroup Γ of modular type of $\mathrm{PSL}_2(O_K)$, the ring of Hilbert modular forms for Γ over K is not Gorenstein ring. In the present paper the author comes to the same conclusion for any totally real number field of odd degree $n \geqslant 3$.

§ 1. Introduction and Statement of Theorem

Let K be a totally real number field of degree n, O_K the ring of integers in K, $G = \operatorname{PSL}_2(O_K)$ the Hilbert (projective) modular group over K, $f_i \colon K \hookrightarrow R \ (1 \leqslant i \leqslant n)$ the n distinct embeddings of K into the field R of real numbers. For each $\alpha \in K$, let $\alpha^{(i)} = f_i(\alpha) \quad (1 \leqslant i \leqslant n)$. Let H be the complex upper half plane. We define the action of $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ on H^n in following way: for $z = (z_1, \dots, z_n) \in H^n$,

$$g(z) = \left(\frac{a^{(1)}z_1 + b^{(1)}}{c^{(1)}z_1 + d^{(1)}}, \cdots, \frac{a^{(n)}z_n + b^{(n)}}{c^{(n)}z_n + d^{(n)}}\right).$$

Let Γ be a subgroup of G. A holomorphic function $f: H^n \to \mathbb{C}$ is called a modular form of weight 2k for Γ over K if

$$f(g(z)) = \prod_{i=1}^{n} (c^{(i)}z_i + d^{(i)})^{2k} f(z)$$

for each $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $z = (z_1, \dots, z_n) \in H^n$ (if n=1, K=Q, we also must assume that f is "holomorphic at the cusps").

Let $(M_{\varGamma})_k$ be the complex vector space of Hilbert modular forms of weight 2k for \varGamma over K. Then

$$M_{\Gamma} = \sum_{k>0} (M_{\Gamma})_k, (M_{\Gamma})_0 = \mathbf{C}$$

is a graded, finitely generated C-algebra which is called the ring of Hilbert modular forms for Γ over K. One of fundamental problems in modular form theory is to

Manuscript riceived July 1, 1983.

^{*} Department of Mathematics, Chinise University of Science and Technology, Hefel, China.

determine the structure of M_{Γ} for given K and Γ . When n=1, K=Q and $\Gamma=G=\mathrm{PSL}_2(Z)$, it is a classical result that $M_G=\mathbb{C}[E_2,\ E_3]$ where E_i is the Eisenstein series of weight 2i. When n=2 ($K=Q(\sqrt{D})$), only some scattered results have been obtained. More exactly speaking, Hirzebruch, Zagier and van der Geer determined the structure of M_G for the cases D=5, 8, 13, 24 in [2, 3, 4, 5]. Among them the first three rings are complete intersection rings, but the last one is not.

Generally, let $R = \sum_{k \ge 0} R_k$ be a graded, finitely generated C-algebra, $d = \dim R$ the Krull dimension of R, d_k the dimension of C-vector space R_k . We call the formal power series

$$H(R,\lambda) = \sum_{k>0} d_k \lambda^k$$

the Hilbert series of the graded C-algebra R. It is well-known that $H(R, \lambda)$ is a rational function in λ and d equals the order of poles of $H(R,\lambda)$ at $\lambda=1$. (see the book [1] for detail). By using the Noether's normalization theorem, we know that there exist homogeneous elements $\theta_1, \dots, \theta_d \in R$ of positive degree such that R is a finitely generated $C[\theta_1, \dots, \theta_d]$ -module. If R is a free $C[\theta_1, \dots, \theta_d]$ -module, then we call R a Cohen-Macaulay ring. If R is a Cohen-Macaulay ring and there exists $l \in \mathbb{Z}$ such that

$$H(R,\lambda^{-1}) = (-1)^{d} \lambda^{l} H(R,\lambda),$$

then we call it a Gorenstein ring (this is not the original definition, but is equivalent with the original one, see Stanley [7]). At last, as a finitely generated C-algebra, R has the following form

$$R = \mathbb{C}[x_1, \dots, x_s]/I,$$

where I is some ideal of the polynomial ring $C[x_1, \dots, x_s]$. Let r be the minimal number of generating elements of I. If $d = \dim R = s - r$, then we call R a complete intersection ring. It is well-known that

 $\mathbf{complete} \hspace{0.2cm} \mathbf{intersection} {\Longrightarrow} \mathbf{Gorenstein} {\Longrightarrow} \mathbf{Cohen-Macaulay.}$

For the properties and meanings of these types of ring in ring theory and algebraic geometry, see Stanley [6,7].

Now we can state more results in addition to above-mentioned Hirsebruch, Zagier and Van der Geer's results. Thomas and Vasquez^[9] has recently proved that

(I) For $K=Q(\sqrt{D})$, $D\neq 12$, M_G is a complete intersection ring $\Leftrightarrow D=5$, 8, or 13.

A subgroup Γ of $G = PSL_2(O_K)$ is called modular type if $\Gamma = G$ or Γ is torsion-free.

(II) Let Γ be a subgroup of modular type for a totally real cubic number field. Then the ring M_{Γ} is never Gorenstein ring (thus M_{Γ} is never complete intersection ring).

In the present paper we prove that the result (II) hold for any totally real number field of odd degree $n \ge 3$. In other words, we are going to prove

Theorem. For any totally real number field K of odd degree $n \ge 3$ and subgroup Γ of modular type of $G = PSL_2(O_k)$, M_{Γ} is never Gorenstein ring (thus M_{Γ} is never complete intersection ring).

By the above definition for Gorenstein ring, we know that in order to prove the Theorem it is sufficient to prove the

Proposition (*). Under the assumptions in Theorem, there does not exist $l \in \mathbb{Z}$ such that

$$H(M_{\varGamma},\,\lambda^{-1}) = (-1)^{\dim M} \lambda^l H(M_{\varGamma},\,\lambda).$$

To do that we need to deduce dimension formulas for dim $(M_r)_k$ $(k \ge 0)$ in § 2. Then we get sufficient information on Hilbert series $H(M_r, \lambda)$, so that we can prove the Proposition (*) and the Theorem in § 3.

§ 2. Dimension Formulas

From now on we let K be a totally real number field with odd degree $[K:Q] = n = 2m + 1 \ge 3$, Γ a subgroup of modular type of $G = \mathrm{PSL}_2(O_k)$. Shimizu obtained the following dimension formula (see [9], (2, 1), (2, 2) and (2,5))

dim
$$(M_r)_k = h + \frac{(-1)^n (2k-1)^n e}{2^{n-1}} \zeta_k (-1) + \sum_{\tau} a(\tau) \gamma_k(\tau)$$
 for $k \ge 2$, (1)

where $e = [G: \Gamma]$, $h = \text{number of cusps of the fundamental domain } H^n/\Gamma$, $\zeta_k(s) = \text{the Dedekind zeta function for } K$. The last term \sum_{τ} comes from the fixed points on H^n/Γ

 Γ . Let x be a fixed point on H^n/Γ (this means that the fixed subgroup $\Gamma_x \neq \{\pm I\}$), the $r = |\Gamma_x| \ge 2$ is also called the order of the fixed point x. With each fixed point x we associate a unique (n+1)-tuple

$$\tau=(r;\,1,\,q_2,\,\cdots,\,q_n),$$

which is called the proper type of x. Here q_2, \dots, q_n are prime to r and viewed as elements in $\mathbb{Z}/r\mathbb{Z}$. Let

 $a(\tau)$ = the number of equivalent classes of fixed points with proper type τ .

$$\gamma_{k}(\tau) = \frac{1}{r} \sum_{\substack{\zeta_{s=1}^{r}, \\ r=1, \\ r=1}} \left. \zeta^{k(1+q_{2}+\cdots+q_{n})} \right/ (1-\zeta)(1-\zeta^{q_{2}}) \cdots (1-\zeta^{q_{n}}).$$
 (2)

Since there are only finite number equivalent classes of fixed points, the sum \sum_{τ} on the right hand side of (1) is finite.

For k=1 Freitage proved that (see [9], (3,2))

$$\dim (M_{\Gamma})_{1} = (-1)^{n} (\chi(\Gamma) - 1) + h = 1 - \chi(\Gamma) + h, \tag{3}$$

where $\chi(\Gamma)$ is the arithmetic genus of Hilbert modular variety H^*/Γ , for which we

have the Hirzebruch-vignèra's formula (see [8], Theorem 1,1)

$$\chi(\Gamma) = 2^{-n} \left[2e\zeta_k(-1) + \sum_{r\geq 2} a_r(\Gamma) \frac{r-1}{r} \right], \tag{4}$$

where $a_r(\Gamma)$ = the number of Γ -equivalent classes of fixed points with order r. From the definition of $a(\tau)$ we know that

$$a_r(\Gamma) = \sum_{q_1, \dots, q_n} a(\tau), \quad \tau = (r; 1, q_2, \dots, q_n).$$
 (5)

At last, for k=0 we have dim $(M_r)_0 = \dim \mathbb{C} = 1$. Thus we have the dimension formula of dim $(M_r)_k$ for each $k \ge 0$. But in order to prove our Theorem we need to clear up the sum \sum in (1). Namely, we need to determine

- (1) for which $r \ge 2$ the H^n/Γ has fixed point of order r;
- (2) what kind of proper type $\tau = (r; 1, q_2, \dots, q_n)$ a fixed point of order r may have and what $a(\tau)$ may be.

Now we answer these problems. At first, if Γ is torsion-free, by the definition we know that there is no any kind of fixed point on H^n/Γ and all $a(\tau)=0$, thus $\sum_{\tau=0}^{\infty} -0$. Thus the only non-trivial case is $\Gamma=G$.

Lemma 1. Let K be a totally real number field with odd degree

$$[K:Q] = n = 2m + 1 \ge 3.$$

If H^n/G has a fixed point of order $r \ge 2$, then

- (1) r=2 or p^{l} (p is an odd prime, $l\geqslant 1$), and $\varphi(p^{l}) \mid 2(2m+1)$.
- (2) The proper type of a fixed point with order $r=p^l$ has the form

$$\tau = (p^l; 1, \pm g, \pm g^2, \cdots, \pm g^{n-1}),$$

where g is a primitive root mod p^l . Moreover, $a(\tau) = \frac{1}{2^{n-1}} a_r(G)$ for each such kind of

Proof (1) If x is a fixed point of order r, then $Q(\zeta_r + \zeta_r^{-1})$ is a subfield of K, $\zeta_r = e^{\frac{2\pi i}{r}}$ (see [10], lemma 1.8). Thus $[Q(\zeta_r + \zeta_r^{-1}):Q] \mid [K:Q] = 2m+1$. If r > 2, it is well known that $r \not\equiv 2 \pmod{4}$ and $[Q\zeta_r + \zeta_r^{-1}):Q] = \frac{1}{2} \varphi(r)$, Then $\frac{1}{2} \varphi(r)$ is odd and r is a power of some odd prime number. So we proved (1).

(2) For $r=p^l$ $(p\geqslant 3, l\geqslant 1)$ we can show that the proper type of x has the form $\tau=(p^l; 1, \pm g, \pm g^2, \dots, \pm g^{n-1})$ by the argument in the proof of [9], proposition (2,10) ([9], proposition (2,10) is concerned with n=3, but the proof works for any odd $n=[K:Q]\geqslant 3$). The last assertion of (2) comes from the Prestel's results ([9],

(2.8) and (2.9)) directly.

Suppose that H^n/Γ has a fixed point of order r. For r=2 there is only one proper type $\tau=(2; 1, 1, \dots, 1)$ and $\gamma_k(\tau)=\frac{1}{2}\cdot\frac{(-1)^{k_n}}{(1-(-1))^n}=(-1)^k2^{-(n+1)}$, so the fixed points of order 2 contribute $a_2(\Gamma)(-1)^k/2^{n+1}$ to the term \sum_{τ} of (1). For $r=p^l(p\geqslant 3, l\geqslant 1)$, from Lemma 1 we know that the fixed points of order p^l contribute $\frac{a_r(r)}{r\cdot 2^{n-1}}$ $A_k(r)$ to \sum_{τ} , where

$$A_{k}(r) = \sum_{\substack{q_{1} = \pm g^{i-1} \\ 2 < i < n}} \sum_{\substack{\zeta^{r} = 1 \\ \zeta \neq 1}} \zeta^{k(1+q_{2}+\cdots+q_{n})}/(1-\zeta)(1-\zeta^{q_{2}})\cdots(1-\zeta^{q_{n}}).$$
 (6)

Therefore the formula (1) becomes (for $k \ge 2$)

$$\dim (M_{\Gamma})_{k} = h - \frac{(2k-1)^{n}e}{2^{n-1}} \zeta_{k}(-1) + a_{2}(\Gamma)(-1)^{k}/2^{n+1} + \sum_{\substack{r = p^{j} \\ \varphi(p^{j}) \mid 2n}} A_{k}(r) - \frac{a_{r}(\Gamma)}{r \cdot 2^{n-1}}.$$
(7)

On the other hand, for k=1 we obtain from (3) and (4)

$$\dim (M_{\Gamma})_{1} = 1 + h - \frac{e}{2^{n-1}} \zeta_{k}(-1) - \frac{1}{2^{n+1}} a_{2}(\Gamma) - \frac{1}{2^{n}} \sum_{r \geq 3} a_{r}(\Gamma) \frac{r-1}{r}.$$
 (8)

But in the cases of $r=p^l$ $(p \ge 3, l \ge 1)$, from (6) we know that

$$A_{1}(r) = \sum_{\substack{q_{i} = \pm g^{i-1} \\ 2 \le i \le n}} \sum_{\substack{\zeta' = 1 \\ l \ne 1}} \frac{\zeta}{1 - \zeta} \cdot \frac{\zeta^{q_{2}}}{1 - \zeta^{q_{2}}} \cdots \frac{\zeta^{q_{n}}}{1 - \zeta^{q_{n}}}$$

$$= \sum_{\substack{l' = 1 \\ l \ne 1}} \frac{\zeta}{1 - \zeta} \left(\frac{\zeta^{g}}{1 - \zeta^{g}} + \frac{\zeta^{-g}}{1 - \zeta^{-g}} \right) \left(\frac{\zeta^{g^{2}}}{1 - \zeta^{g^{2}}} + \frac{\zeta^{-g^{2}}}{1 - \zeta^{-g^{2}}} \right) \cdots \left(\frac{\zeta^{g^{n-1}}}{1 - \zeta^{g^{n-1}}} + \frac{\zeta^{-g^{n-1}}}{1 - \zeta^{-g^{n-1}}} \right)$$

$$= \sum_{\substack{l' = 1 \\ l \ne 1}} \frac{\zeta}{1 - \zeta} \left(\operatorname{Since} \frac{\zeta^{t}}{1 - \zeta^{t}} + \frac{\zeta^{-l}}{1 - \zeta^{-l}} = -1 \text{ and } 2 | n - 1 \right).$$

$$= \sum_{1 \le l \le \frac{r-1}{2}} \left(\frac{\zeta^{l}}{1 - \zeta^{l}} + \frac{\zeta^{-l}}{1 - \zeta^{-l}} \right) = -\frac{r-1}{2}.$$

From this and (8) we know that formula (7) also holds for k=1 but plus one at the right hand side of (7).

§ 3. The Proof of Theorem

For proving Theorem we need to write down the Hilbert series $H(M_r, \lambda)$. It is clear that

$$h\lambda + h\lambda^2 + \dots + h\lambda^n + \dots = \frac{h\lambda}{1 - \lambda},\tag{9}$$

$$\sum_{k=1}^{\infty} a_2(\Gamma) \frac{(-1)^k \lambda^k}{2^{n+1}} = -\frac{a_2(\Gamma)}{2^{n+1}} \frac{\lambda}{1+\lambda}.$$
 (10)

From formula (6) we can see that $A_k(r) = A_{k+r}(r)$, thus for each $r = p^l$ $(p \ge 3, l \ge 1)$ and $\varphi(p^l) \mid 2n$ we have

$$\sum_{k=1}^{\infty} A_k(r) \lambda^k = \frac{Q_r(\lambda)}{1 - \lambda^r},\tag{11}$$

where

$$Q_r(\lambda) = A_1(r)\lambda + A_2(r)\lambda^2 + \dots + A_r(r)\lambda^r. \tag{12}$$

At last, from elementary algebra we get

$$\sum_{k>1}^{\infty} (2k-1)^n \lambda^k = \frac{P_n(\lambda)}{(1-\lambda)^{n+1}},$$
(13)

where $P_n(\lambda)$ is a polynomial and $(1-\lambda) \nmid P_n(\lambda)$. From (9) – (13) and the statement at the end of § 2 we know that

$$H(M_{\Gamma}, \lambda) = 1 + \sum_{k=1}^{\infty} \dim (M_{\Gamma})_{k} \lambda^{k} = \frac{h\lambda}{1 - \lambda} + (1 + \lambda) - \frac{e}{2^{n-1}} \zeta_{k} (-1) \frac{P_{n}(\lambda)}{(1 - \lambda)^{n+1}} - \frac{a_{2}(\Gamma)}{2^{n+1}} \frac{\lambda}{1 + \lambda} + \sum_{\substack{r = p' \\ a_{r}(\Gamma) \neq 0}} \frac{a_{r}(\Gamma)}{r \cdot 2^{n-1}} \frac{Q_{r}(\lambda)}{1 - \lambda^{r}}.$$
(14)

We need further imformation about the polynomials $Q_{\mathfrak{p}}(\lambda)$ and $P_{\mathfrak{p}}(\lambda)$.

Lemma 2. $\lambda^{r+1}Q_r(\lambda^{-1}) = -Q_r(\lambda)$.

Proof From formula (9) we know that for $1 \le k \le r$,

$$\begin{split} A_k(\tau) &= \sum_{\substack{q_i = \pm g^{i-1} \\ 2 \leqslant i \leqslant n}} \sum_{\substack{\zeta^r = 1 \\ \zeta \neq 1}} \frac{\zeta^{k(1+q_2+\cdots+q_n)}}{(1-\zeta)(1-\zeta^{a_2})\cdots(1-\zeta^{a_n})} \\ &= \sum_{\substack{q_i = \pm g^{i-1} \\ 2 \leqslant i \leqslant n}} \sum_{\substack{\zeta^r = 1 \\ \zeta \neq 1}} \frac{\zeta^{-k(1+q_2+\cdots+q_n)}}{(1-\zeta^{-1})(1-\zeta^{-q_2})\cdots(1-\zeta^{-q_n})} \\ &= \sum_{\substack{q_i = \pm g^{i-1} \\ 2 \leqslant i \leqslant n}} \sum_{\substack{\zeta^r = 1 \\ \zeta \neq 1}} \frac{\zeta^{(r+1-k)(1+q_2+\cdots+q_n)}}{(\zeta-1)(\zeta^{a_2}-1)\cdots(\zeta^{a_n}-1)} \\ &= (-1)^n \sum_{\substack{q_2 = \pm g^{i-1} \\ 2 \leqslant i \leqslant n}} \sum_{\substack{\zeta^r = 1 \\ \zeta \neq 1}} \frac{\zeta^{(r+1-k)(1+q_2+\cdots+q_n)}}{(1-\zeta)(1-\zeta^{a_2})\cdots(1-\zeta^{a_n})} = -A_{r+1-k}(\tau^*). \end{split}$$

From this and the expression (12) for $Q_r(\lambda)$ we can complete the proof of Lemma 2. **Lemma 3** For $n \ge 1$, $\lambda^{n+2} P_k(\lambda^{-1}) = P_n(\lambda)$ and deg $P_n(\lambda) = n+1$.

Proof Let $\sum_{k=1}^{\infty} k^n \lambda^k = \frac{R_n(\lambda)}{(1-\lambda)^{n+1}}$. Then $R_n(\lambda)$ is a polynomial and $\deg R_n(\lambda) \leqslant n$ by elementary algebra. Differentiating both sides of above equality, we get the recursion formula for $R_n(\lambda)$:

$$R_1(\lambda) = \lambda$$
, $R_{n+1}(\lambda) = \lambda [R'_n(\lambda)(1-\lambda) + (n+1)R_n(\lambda)]$.

From this, it is easy to prove by induction that

$$\deg R_n(\lambda) = n, \quad \lambda^{n+1}R_n(\lambda^{-1}) = R_n(\lambda).$$

Moreover, from (13) we have

$$\frac{P_n(\lambda^2)}{(1-\lambda^2)^{n+1}} = \sum_{k=1}^{\infty} (2k-1)^n \lambda^{2k} = \lambda \left(\sum_{k=1}^{\infty} k^n \lambda^k - \sum_{k=1}^{\infty} (2k)^n \lambda^{2k} \right) \\
= \lambda \left(\frac{R_n(\lambda)}{(1-\lambda)^{n+1}} - \frac{2^n R_n(\lambda^2)}{(1-\lambda^2)^{n+1}} \right) = \frac{\lambda \left[(1+\lambda)^{n+1} R_n(\lambda) - 2^n R_n(\lambda^2) \right]}{(1-\lambda^2)^{n+1}}$$

Thus $P_n(\lambda^2) = \lambda [(1+\lambda)^{n+1}R_n(\lambda) - 2^nR_n(\lambda^2)]$ and deg $R_n(\lambda) = n$

$$\Rightarrow \deg P_n(\lambda) = \frac{1}{2}(1+n+n+1) = n+1.$$

By using $\lambda^{n+1}R_n(\lambda^{-1}) = R_n(\lambda)$ we get

$$\begin{split} \lambda^{2n+4} P_n(\lambda^{-2}) &= \lambda^{2n+3} \left[\lambda^{-n-1} (1+\lambda)^{n+1} R_n(\lambda^{-1}) - 2^n R_n(\lambda^{-2}) \right] \\ &= \lambda^{n+2} (1+\lambda)^{n+1} \lambda^{-n-1} R_n(\lambda) - 2^n \lambda^{2n+3} \lambda^{-2n-2} R_n(\lambda^2) \\ &= \lambda \left[(1+\lambda)^{n+1} R_n(\lambda) - 2^n R_n(\lambda^2) \right] = P_n(\lambda^2). \end{split}$$

Thus $\lambda^{n+2}P_n(\lambda^{-1}) = P_n(\lambda)$.

Now we continue to examine the $H(M_{\Gamma}, \lambda)$. Let

$$M(\lambda) = (1 - \lambda)^{n} (1 - \lambda^{2}) \prod_{\substack{r > 3 \\ a_{r}(r) \neq 0}} (1 - \lambda^{r}) = 1 + \dots + (-1)^{\alpha} \lambda^{\beta}.$$
 (15)

Then $\alpha = n + 1 + \sum_{\substack{2lr \\ a_r(T) \neq 0}} 1$, $\beta = \deg M(\lambda) = n + 2 + \sum_{\substack{2lr \\ a_r(T) \neq 0}} r \equiv \alpha + 1 \pmod{2}$ and from (14)

we know that

$$H(M_{\Gamma},\lambda) = N(\lambda)/M(\lambda),$$

where $N(\lambda)$ is the polynomial

prove that there is no $l \in \mathbf{Z}$ such that

$$N(\lambda) = h \frac{\lambda M(\lambda)}{1 - \lambda} + (1 + \lambda) M(\lambda) - \frac{e}{2^{n-1}} \zeta_k(-1) P_n(\lambda) \frac{M(\lambda)}{(1 - \lambda)^{n+1}} - \frac{a_2(\Gamma)}{2^{n+1}} \frac{\lambda M(\lambda)}{1 + \lambda} + \sum_{\substack{2\nmid r\\a_r(\Gamma) \neq 0}} \frac{a_r(\Gamma)}{r \cdot 2^{n-1}} \frac{Q_r(\lambda) M(\lambda)}{1 - \lambda^r}.$$

$$(16)$$

Since deg $P_n(\lambda) = n+1$, deg $Q_r(\lambda) \leq r$, $P_n(0) = Q_r(0) = 0$, from (16) we know that deg $N(\lambda) = \beta + 1$, the constant term and leading term of $N(\lambda)$ are 1 and $(-1)^{\alpha} \lambda^{\beta+1}$ respectively, and both come from the term $(1+\lambda)M(\lambda)$ of the right hand side of (15). Therefore from (15) and (16), $N(\lambda)$ can be written as

$$N(\lambda) = h(\lambda + \dots + (-1)^{\alpha+1}\lambda^{\beta}) + (1 + c_1\lambda + \dots + c_{\beta}\lambda^{\beta} + (-1)^{\alpha}\lambda^{\beta+1}), \tag{17}$$

where the first term is $h \frac{\lambda M(\lambda)}{1-\lambda}$ and the second term is the sum of remaining terms of right hand side of (16). From (15) we know that $\lambda^{\beta}M(\lambda^{-1}) = (-1)^{\alpha}M(\lambda)$. Then from Lemmas 2,3 we know that each term (denoted by $L(\lambda)$) of (16) except the first one satisfies the relation

$$\lambda^{\beta+1}L(\lambda^{-1}) = L(\lambda)(-1)^{\alpha}.$$

So does the sum $1+c_1\lambda+\cdots+c_{\beta}\lambda^{\beta}+(-1)^{\alpha}\lambda^{\beta+1}$ of these terms. From this we have $c_1=(-1)^{\alpha}c_{\beta}$. (18)

Now we can complete the proof of Theorem easily. From $(1-\lambda) \nmid P_n(\lambda)$, formula (14) and the well-known fact $\zeta_k(-1) \neq 0$, we see that $H(M_r,\lambda)$ has a pole of order n+1 at $\lambda=1$, i. e. dim $M_r=n+1\equiv 0\pmod 2$. As we said at the end of § 1, in order to prove Theorem it is sufficient to prove the proposition (*) in § 1, i. e. we have to

$$H(M_{\Gamma}, \lambda^{-1}) = \lambda^{l} H(M_{\Gamma}, \lambda). \tag{19}$$

Suppose that there is $l \in \mathbb{Z}$ such that (19) hold. From (17) we have

$$H\left(M_{T},\lambda\right)=\frac{1+\left(c_{1}+h\right)\lambda+\cdots+\left(c_{\beta}+\left(-1\right)^{\alpha+1}h\right)\lambda^{\beta}+\left(-1\right)^{\alpha}\lambda^{\beta+1}}{M(\lambda)}.$$

From (19) and $\lambda^{\beta}M(\lambda^{-1}) = (-1)^{\alpha}M(\lambda)$ we know that l must be equal to 1 and $c_1+h=(-1)^{\alpha}(c_{\beta}+(-1)^{\alpha+1}h)=(-1)^{\alpha}c_{\beta}-h$. But from (18) we know that $c_1=c_{\beta}(-1)^{\alpha}$, therefore h=0 which is impossible since h=0 the number of cusps on $H^n/\Gamma \geqslant 1$. So we complete the proof of Theorem.

References

- [1] Atiyah, & M. F. Macdonald, I. G., Introduction to Commutative Algebra, Addison-Wesley, 1969.
- [2] Van der Geer, G., Hilbert modular forms for the field $Q(\sqrt{6})$, Math. Ann., 233 (1978), 163—179.
- [3] Van der Geer, G. & Zagier, D., The Hilbert modular group for the field $Q(\sqrt{13})$, Invent. Math., 42 (1977), 93—133.
- [4] Hirzebruch, F., Hilbert's modular group for the field $Q(\sqrt{5})$ and the cubic diagonal surface of Clebsch and Klein, Russian Math. Surveys, 31 (1976), 96—110.
- [5] Hirzebruch, F., The ring of Hilbert modular forms for real quadratic number fields of small discriminant, Lecture Notes in Math. (vol. 627), Springer-Verlag, Berlin, 1977.
- [6] Stanley, R. P., In variants of finite groups and their applications to combinatorics, Bull. AMS, 1 (1979), 475—511.
- [7] Stanley, R. P., Hilbert functions of graded algebras, Advances in Math. 28, (1978), 57-83.
- [8] Thomas, E. & Vasquez, A., Chern numbers of Hilbert modular varieties, J. für r. und ang. Math., 324 (1981), 192—210.
- [9] Thomas, E. & Vasquez, A., Rings of Hilbert modular forms, Compositio Mathematica, 48 (1983), 139—165.
- [10] Weisser, D., The arithmetic genus of the Hilbert modular variety and the elliptic fixed points of the Hilbert modular group, *Math. Ann.*, 257 (1981), 9—22.