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GLOBAL SMOOTH SOLUTIONS TO THE SYSTEM OF
'ONE-DIMENSIONAL THERMOELASTICITY WITH
DISSIPATION BOUNDARY CONDITIONS

SEEN WEIXI (Jo#E)* ZHENG SoNGMU (& R45)* |

Abstract

In this paper, the authors consider the initial boundary value problem for the a

system of one-domensional thermoelasticity with dissipation conditions. By means of the

. delicate energy estimates and the continuation argument, the authors proved the global

existence, uniqueness and the exponential decay of smooth solutions provided that the initial
data are sufficiently small.

§ 1. Introduction

In the recent years, wide interest has been paid to the initial boundary value '
problem of the system of the thermoelasticity (see [1], [2]). In this paper, we
“consider the following initial boundary value problem with dissipation boundary
conditions for the system of one-dimensional thermoelasticity (see [3]).

Uy — v, =0, : (1.1)
v+p(0, §),=0, . (1.2)
| ( o(u, 6) +1’2-2-)t +(p(s, 0))s=b0o (1.3)

Here u is the deformation gradient, v is the velocity, p ig the pressure, e-inner
energy and f-femperature.

The initial conditions and the bbundary conditions are the following:

t=0: u=u(2), v=0°(2), §=0°(), (1.4
5=0: —p(u, §) —yv=0, s . (1.5)

6 =8, _ (1.6)
g=1: v=0, - _ - @n
© 8,=0, | , o . @1.8)

where §°(wx) >0, v, 8, are positive 6onsta,nts, the boundary condition (1.5) represents
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' that the string or rod described by (1.1)—(1.8)is connected with a damper at the
end =0. Similar to [4], we call this kind of boundary conditions the dissipation
boundary condition

It ig well known that (se0 [8])

| Bu<0, >0, eu=_eﬁ(§). @

[} ;
The main results obtained in this paper can be described as 'fbllows. If the
functions e, p are suitably smooth and the compatibility conditions on =0, =0
and ©=1, t=0 are satisfied, then problem (1. 1)—(1.9) a,dmlts & unique global
solution provided that the initial data are sufficiently small.
(1.5) is a nonlinear boundary condition. For the convenience, we first make
the following reduction for problem, (1.1)~——(1.9).

Seb o S
Uy =—p(%, bo), ta=v, v=0—4,. (1.10)
By (1 9), % can ! be solved from the first equation of (1.10) B
u=0(u1), with o’ (uy) >0. | 1.11)
Also seb ‘
P(us, ) =p(o(w), v+6y), Pu<0. @.12)
Substituting (1.10)—(1.12) into the system (1.1)—(1.8), we arrive ab
~ ") LL vt L, @
.u9,+-2—3;-.,%+-%§— v, =0, (114
praa ('v—iﬁo ”‘)ﬁ 2 e 'v-l:-lf?o %=0, (1.15)
t=0: u=u}(2), us=ul(a), v=2"(2), ' (1.16)
=0 uy=yu,, | @.11
v=0, (1.18)
o=1:uy=0, o o (1.19)
2p=0, | (1.20)

Instead of (1. 13) —(1.15), in what follows ‘e will study the lollowmg general
system with the initial boundary value conditions (1.16)—(1.20):

T Pl [ ) T R

o(us, V)0~ (b(ws, 9)00)e+B Uz, )z +d (0, v,) =0. (1.22)
In view of (1.9), (1.12) and the definition of u, and P, We make the following:
a,ssumpmons on (1.21), (1. 22), (1.16)—(1.20):
(D) 6, 8, B, 0€C% FEC* and d=dy (v)e2, ds(v) ECP,
(2) There exist positive constants B and a®, a,, B°, bo, °, co, B°, Ko, SB°, Bo, ks,
ko such that when |u], |v|<R, : ‘
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a*>a>q>0, b°=>b=b>0, °>0=00>0, F°=h=>Fke>0,

2 o 1.28
B'=B=L,>0, B k3>0 % +—>,>0. (1.28)
Under the above assumpmons, (1.21) is a quasilinear symmetric hyperbolic
_ U,
system with respect to w= ( 1.) and (1.22) is a quasilinear parabolic equation with
Uz

respect o v. They couple each ofher.

0
(3) u® (o) =< ‘f? ) € H3, +°(x) € H%, the following
compa,’olblhty conditions are satisfied:
u3(0) =73(0), (D) =0, °(0) =0, 2 () =0, LAy =0. (1.20)
- Let ' | | |

Mo=(1u0l3n+ [0°15)%, Du={u, w,
Diu={t, ts, Uas}, |ul®=ud+ed, |uli=|u|*+|Dujy,  (1.25)
 uli= || 2+ | Duw|2+ | D% |2.

Now our main theorem is the following .

Theorem 1. Under the assumptions (1)—(8), when M, is sufficiently small,
the initial boundary value problem (1. 21) , (. 22) . 16)———(1 20) adm@ts @ unique
global smootlz solution (u, v).

u, Du, D%, v, Dv, D™, Vsse, Yaus €O(T0, +oo) LQ),
Ve € LA([0, +00),I7). | - (1.26)

Moreover, JO ||} da, Jo |v|3da, jo V2o o a_ndjofvim dw decay exponentially fo zero as

> -+o00.

Especially, for the initial boundary value problem of one—dimensional ther-
moelasticity with dissipation boundary conditions, Theorem 1 implies the global
existence and wuniqueness of smooth solutmns and the exponentla.l decay of
solutions.

§ 2. Existence and Uhiqueness of Local Smooth Solutions

Let
 My=[{u, Du, D%} |s-0|2+[{v, Dv, D*}|:_0]?, | (2.1)
* where we denote by [:| the L* norm in the interval [0, 1] and Du|,m, Du|;o,
Dul;_o, D®|;_o are obtained from the initial conditions and system (1.21), (1.22).
From the concrete expressions of (1.21), (1.22), it follows easily that M; tends
tozero as M, tends tozero. : o : '
" Leb |
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Qh= (O: 1) X (0} h):
H(0) = mex (uld+[ofd), ‘ (2.2)

H3(8) = max([ae () [+ [ 001D )

+£ (|vees]®+ [[%“.[1'2_*_ [vete| 2) d, (2.3)

where[u|3 is the L? norm of {u, Du, D®} in the interval [0, 1]. For any positive
constants My, Mg, h, we difine the set of functions: '
(u, v) €E0°(@n), Ha(¥) <Ms, Hs(t)<Ms, Vi€[O, B],
MMy, Ms)= ‘(u, ) |%1|e—0="U2| o0, Us |em1=0, ¥]s=0="s]0-1=0,
- ' Uig | oe1 =Yz | 6=1=0, ' '

(2.4)
and 3"(M,, M 3) is the closure of S*(M,, Mj) with the corresponding norm
Ha(h)+Hs(h).

By the imbedding theorem, there is a constant R, such that if H,(t)<<R;
Vi€ [0, A], then |u|, |v|<<R.

Hstablishing the corresponding auxiliary linear problems and noting that the
boundary condition (1.17) is admissible under the assumption (2), by means of the
energy estimate method for the linear symmetric hyperbolic éystems and the linear
parabolic equations of second order and the contractive mapping theorem, we can
Pprove the folloWing local existence and uniqueness theorem.

Theorem 2. Under the assumptions (1)—(8) in the previous section, there ewist
pesitive constants Og, Oz, M1o(OaM1,<R1) and %, depéndq}ng only on Mo such that when
My <My, problem (1.21), (1.22), (1.16)—(1.20) admits @ unique smooth solution

(u, v) in @, =[0, 1] % [0, to]. Moveover : .

: (u, v) €Z7(01 M1, O2My). (2.5)
Since the proof of Theorem 2 is standard (see [5]), we omit the detail here.
Remark 1. Tt is easy to see that when the coefficients and the initial data have

more regularity, the- solution will have ‘more regularity, too. Hence when the
higher smoothness is required in the process of getting the uniform a priori
estimates in the following section, we can apply the usual dense argument.

§ 3. Umform a Priori Extimates of Solutmns for
Quasﬂmear Systems

In this section we are going to derive the uniform a priori estimates of solution -
(4, v) €3F for problem (1.21), (1.22), (1.16)—(1.20): in @r=(0,1)% (0, T,
'VT'>0. This is the key step in proving the global existence of solutions. From now
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on, we denote by K the positive constant independent of #, v, T' with no particular
regard Yo distinguishing one from another and by ¢ the appropriately small positive

congtant. For simplicity, we omit the m’oegral element dodw and the integral limib
of the double integral.

Assume that (u, v) €37, and
[ulat (2] 1+ |ves | + | ver | <o 3.1)
The main theorem in thig section is the following ,
Theorem 8. For any T>>0, there evisis @ positive constant &; independent of T
such that when s<s; and the solution (u, v) of (1.21), (1.22), (1.16)—(1.20) satisfies
(8.1), the following uniform @ priori estimate holds

J (lu|2+lm|2+vm+vm)clm+J J (lu|3+|ol3 +wm+fum+fv,ﬁ)<K1Mi, (3 2)-

where My is defined by (2.1), K, is a positive constant independent of u, v, ¢, T'.

- Pfrbof For the initial boundary value problem with the dissipation boundary
condions, the main ‘d‘iﬁicul*ay in getting uniform a priori estimate consists in getting
the estimate of boundary integral. T'o do this, we first prove the following
Lemma 1. (1) Iff(s) is @ smooth function in [0, 1], f(0) =0 or f (1) =0,

then _ .
) .
F@ =, ri@)a, (3.8)
jl 72(2) do <f fodo. (3.4)
° o o
(2) If f(2) is @ smooth function in [0, 11, then V3>0,
Fi@) <01(aj F2,do+ j 7 &), Vo€[0,1]. (3.5)
Hereaftor 8,(6=1, 2, ----- ) are the constants independent bj f and 3.
Proof (1) is trivial. For (2), by the Nirenberg inequality
3 1 . 1
/1 3 1 z
s | (@) | <0, (j m) (] 720 ) +0s( [y aa)” (3.6)
From the Young inequality
| (80 1B |
a b<< p +?( 81> , _ (8.7)

1

where ?+%=1’ d; is an arbitrarily small positive constant, it follows that

1 1
1 T 0./ z
2 = 2 . .8)
| sup,11:@) | <05 [ 12 3a) +-32((, 1 4a) 3.8)
By squaring both sides, we get (8.5). '
Lemma 2. I f the solution (u, 8) €27 and satisfies (8.1), then YO<i<T, >0,

u‘2¢’¢—'0<KJ Udys A, ‘ (3 9)
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Sl

. ’”gt{a=0<K Oqjiwt dw, '. ' ‘ ' (310)
KA a=o<K vi’m dm<K j (wzm +0u3uo+ 5 ugm)dw+Kejo V2, dw, (3.11)
1 1 o ' ‘ '
9)5‘,],,_0<K < 5u2‘“+_§— uza,)clm—l—K sj vZ, dw. : ‘ - (8.12)

Pa"oof By noting the boundary coudmons (3.10) is the corollary of Lemma 1.
,‘From . 21) and the boundary cond_xtlons it follows thatb

a2 IR T PR o
3 les<K J e @ (3.13)

a2
- Usg ] 6=0= 3T ufs l =0 =

and (3.11) (8.12) can be obtamed from Lemma 1 and (1 21), . 22), (1 16)—-

(1.20).
Lemma 8. (i) If the solution (u; fv) EEE' then VO<i<T, >0
| f: buuuzmvlv”i% dt<Kaj j IS j j (3.1
and R ,
J bubaalhse | 525 A <K Jj"vm - , ‘ (3.15)
(i) If the solution (u, v) is suitably smooth and swt@sﬁes (3.1), then V O<i<T,
* . /Bcb o=t 2 2 1 .Y\
JO( buiwwu2w6+ ]C u:lazm'vm) =0 dt<K fj(”mmf+au2mm +“8“ u2{v>
+Eef| <1Du|1+ww|1> - o (3.16)
J bumumlz_odt<K ﬂ <8fum +% v} >+K8JJ(IDU»I1+ lva]l—I—aJm) (8.17)
J bum;ugwt],,_o dt<K— wwt‘i‘K&JJ(’U a:t+ I.DUJI + I.D‘Ul 1) | o (3 .17)/
Proof (1) From (1 21). _ N
. uiwlm=o—<— (u2t+/8'va;>) !a:-—O) . | }_  U (8.18)
uﬁzl:v:o:(% u’it)l =0 (3.19)
and from (1.19), (1,20) e
um l w=1=0, . ‘ (3 .20)
. Hence o o .
1 t 1 i — B . .' N
J’ bum%m{w' ——J -——(ust+6%)avu2;|m,=o di
= _J u’ztlw..o dt — f rd u’2t’Uw ,w—odt' R (8.21)

By means of Lamma 1, we have =
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. a’)b’B , ugt‘vglm:o< a%’B "2‘27' ugtlﬂ':oq; G%,B —2;[_77_ ‘U§IG=°
< mb»B —°22-u§;!¢4+ 0 * 2065J vz,  (3.22)

wheére n, & are arbitrarily smell .posi’ﬁiVe cons’ﬁants. Subshtu’omg (8.22) into (3.21)
and taking n sufficiently Small, we get (3 .14). It ié easy to obtain (8.15) in a similar

way.
’ (2) From (1 21), (1.22), (1.16)—(1. 20) it follows that _
uimw’m—(;' %( Z’ ibzn"‘ﬁ%;“*‘h){;—o, | (323)
e oo —ZJZQ—@W—!-B%#‘IQ)IE;@ R "  (329
C talea=0. - e
Here@fter Li(4=1, 2, «oeeee ) are the terms such aS( ) Uiz, mcludlng the product of
ﬁrst order derivative of solutions and coefficients.
Hence S AR o . :
J ( bumuzm—# & kb U/:Lm’f)qxla;—l dt = -j ( bwmum—l— Be kb um%) - di

dt,

(3 26)

where 4;(4=1, 2, +«-e2") slmply denote the glven func’mons 'W.h_'lch ‘congist of the

uztt - (AI'UM “+ Ag@m + Aa'vu;> Ugst + Aﬂ),m’th-l— As’lJmﬂJ‘; +7I 1Was+ I 1]

coefficients. .
By Lemma 2 we get
1

_ Oz (M2 2 L o
— ?Jm+6w2m;+ Ung da
o ..2nJo\" 0

A—Kej vds, . 3.2

(At t 450 oo = osj ( §¢t+au§m+_1. ZALI Kej 2o da. (3.28)

(41t +-Az’0¢w + Aa%)}gm | o=0 == 02777 uzﬁ

o
From (8.1) it followg that -

C’QSJ(]J)M[ +|DolDds,  (3.20)

—0 .-

I 1u2ttl 0=0=> — 093 % u’gtt w

an@<%4umwwmmw I R

Oombining (3.26) with (3.27)—(8.80) and takmg 7 suﬂ-iolen’ﬁly small, we get
- (8.16). » v
It is easy to obtain (3. 17) (3. 17)’ in a s1m11ar way.
Now we are going 1:0 get the energy estimatbes..
Leb
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(1
B =%  (qui+ug+ov’)da,
Pl V
Bo(h) =5 [, (@bt udt-ont) da,
1
2 o

1 V
By(t) =5 | (@detuitol)ds, (8.81):

B =1 (a vt sdrot)ds,

r1 )
Es(¢) =—3):— . (au%,,+ Uk ovl;) do.
Thﬁs we have ' o ~

Lemma 4. For the solution (u, v) €32, satisfing (8.1), when & s appropriately
small, for 0<t<T the following estimates hold,

El@fE;(0)+-§-d'u'zfvg<Ksjy'wu]2, o (3.32)
B -Ba(0) +-;- wt<Ke |[(|Dul o | Do), e 33)
Eo(t) ~ Bo(0)+ 1 [ nte< [[o2+Ks [[(1Dul?+ Do}?),  (3.30)
B.() - B0+ Ictui,,<K$j j (|Duli+ | Do|D), (3.35)

'Icfuimt<KJ;fu§+Ks”(lDu]‘{+le]i). (3.36)

Proof Establishing the usual energy integral for (1.21), (1.22) and noteing
that under the boundary condition (1.17), (1.19)

(o, €)= ([ veedi— a0, ) ), |
=(J’: g Az — it (0, t))2 =_<JZui,dm+'yJ: ds.dm)z ,

1 .
<O [, (uhertids) do, (3.87)

Bo() ~ Bs(0)+5

L4

we have . ‘
+ (1 t 1 .
J‘ j' u§<ouj j 2 |2 (3.88)
oJo 0Jo

So when & is appropriatly small, we can obtain (8.32).

Differentiating (1.21), (1.22) with respect to #, using the energy estimate
method, we can geb (3.38). Similarly, (8.85) can be obtained.

Differentiating (1.21), (1.22) with respect $0 #, multiplying them by u, and
v, Tespectively, summing up and integrating with respect to » and ¢, we arrive ab

By() —Fo(0) + || Inte=| Obtsctne) _ D (s, (o)) + 1) (3.39)
and | :
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'”Is <Ous H(lbu[2+ | Dv|2+23). - (3.40)
From (3.14) | ‘ |
[[20t) [ s e E [ s [[ ot Ef it 0,00

o) o)
and from (1.22), (1.17)—(1.20)
~[[Z (Buara— 000 = = [ | 2T (~em—)od]

-—K 0 mo dt<0’133£fui|,,=o dt<0’148jj’vi¢. (3.42)

Combining (8.89) — (3.42), taking 8 and & suitably small, we obtain (3 .34).

When solution (u, v) is suitably smooth, differentiating (1.21), (1.22) with
respect 10 # and ¢, using the usual energy method and noting (8.17), in a similar
way to the proof of (3.84), we get (8.86). ‘ :

Applying the usual dense argement we conclude (3. 36) holds for (u, ) €.

To estimate ” | Dus |2+ | D?us |2, we introduce the fo]lowmg auxiliary functions,

1
Fl(t> =J Ugllay dw,

Fo(t) = J Uss

r1
Fg (t) '_J Ou;]mp Bkc Vg dm, (3 .4:3)

) (1
F. ()= . Uazt B]GC

r1 .
F5 (t) = o ugtugﬂ dw

'vda;

Ve dw,

and

i1

Dy (%) =—é—j (au%,+u§g) d{v,

H ©

(-]

D, (ﬂ = %‘j (au’imm + u.%a:w) dw, (3 . 44:)

[t

D.() =% j (@it 1er) .

0
Lemima 5. When the solutoin (u, v) € 37 satisfies (3.1) and e 4s suitably small,
- YO<t<<T the following estimates hold;
BB+ bpilee> [ b= K[| ettt o) =Ko [ +ot+id

+'%‘ b')'u2 Iw=0: . ) <3'45>

Fu(®) = Fa(0) + Da(®)—Da(0) + [ [ B2 o< K [[(F o+ dukaote)

+_Ksjj<1mlﬂ+|mlﬁ>, | (3.46)
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P = Fa(0)+ Du) ~ Dy(0) + 5 [B < [[ (bt o)
+&e[(1Dult+ [ Do), Ay

= o »: ) . - ) » o
i) ~F O+ D)= D0+ 7 [£- s [[(% ot dubt o)

+Ks FJ(@?-I—@&—I—ML—H&?,“), k (3.48)
. F5(t)*F5<O)+;2:’;- b?’“%tlmzo >%f b’}’ugtltig +:[Jvu§tt_ij(ugm"l‘uitt'*'@?t)
 =Eef[(IDultagare), G

where 8 is an wrbéﬁi&aw}ly pqsq}tq}w'consmnt.
Proof Noting that when (u, v) is smooth function

. . t - ’ . v ) ! . :‘
F5(8) = Fo(0) = [ 222 a5~ [ g+ vt O (3.50)

| t . - |
F5(t) —F5(0) =L dlé's dt=JJu§u+uziu2m- . (3.51)

_ Differentiating the second equation of (1.21) with respect to ¢, multiplying by
U in both sides, integrating with respect to o, z, by integration by parts and 1.17),
we get (3.45). Similarly, differentiating twice the second equation of (1.21) with
respect to 7, multiplying by wu,, in both sides, we get (8.49). By the usual dense
argument, (8.45) and (3.49) hold for (u, v) €37, too. A

To prove (8.46)—(3.48), &ifferentiating (1.21) with regpect %0 4 and
multiplying bj Us in both sides, we get

1 4d A(DUotinn | '
T a7 (@etuls) ——(%1;—-2—2-%-/91%%—%1 5=0, (8.52)
Differentiate the second equation with reépéct 0 x, multiply it by B—Zu,we have
’ . , 2 . :
%0— wm—ig]a—c- by, ,elcc Vet L5=0. (3.58)

Again multiplying (1.22) by ;f. Uss, adding it with (3.52), (3.58) fogether and

integrating with respect to =, ¢, by (3.15) we geb (3.46).
When (u, v) is suitably smooth, differentiating (1.21) twice with respect to =,
multiplying it by tse, Uace, Tespectively, we have

’%‘f %‘ \au:zlu"’ugm:) - a—a)?ﬁg%'—m)+ﬁwmmu2w+14+ J1=O (3 54)

2 .
2; Usiligs, including the second

Hereafter J,(4=1, 2, ---) denote the terms, such as

order derivatives of the coefficients. :
Differentiating twice the second equation of (1.21) with respect to z,
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multiplying it by —'-8—0— v,, We have
 Bo. . _ Bob B

T Vellagat — A Voligoat 7 Q’c”m{:‘*‘ Is+J 2}"=0- (3.55)
Differentiating (1.22) with respect to o, mul‘aiplying it bj —’]f- Uaze, We have
,("3’60 UagaVatr — I]i Uape =z 3 (]C’Um) +——" 'Ufzm‘i"I 6+J 3= (3 56)

Adding (8.54 )—(3.56) together, integrating with respect %o , ¢, we have
» 2 .
Fg (t) ~F 3(0) +Dg (t) — D (O) +JJ-BT»MEWW =J‘J O (DU petbass)

ow
+J' j sz umm'um—l—” BZ" Dasate-t Ir+T4=0. (3.57)
Obviously o
ﬁ(lm+.|J4|)<0158H(1Du[§+[Dm%). | (3.58)
From (8.16)
J 3@“;‘”;“2“) B ob MMmmmm<016 H(fuim% 8u§m+%u§&u§’wﬂfvi¢>
+017sjj(1bu1§+|pvl§)' | o (3.59)

and from (3.11), (3.12)

B gy [[ £2 ~[[2 (e )
JJ 2 VoVooo 0 IG - VeVso lo=0 dt oo < T Vg |Ves
| <018J‘K fuiw—l—Suﬁw—F%— wﬁm)—i—Oise ”ruiw. . (8.60)

Combining (3.57)—(8.60), taking & sufficiently small, we geb (3.47).

In a similar way, by (8.17) we can get (3.48).

Tt is eagy 1o see from the equation (1.21) that we can estimate the derivatives
of u; by the derivatives of u, and w. '

Lemma 8. For the solution (v, fv) € 37 satis fing (3. 1), VO<<t<T the Jollowing
estimaites hold:

£ : r
<K (o2,
o/

. n ..
u?, <K | | u3g,
4

o

o o

o< [[ (o) + Koo [ o212, (3.61)

ee <K | [ (urt020) + o [ (),

< | st Koo [t

In what follows we are going o geb the uniform & priori estimates of the
" golution for the quasilinear system.
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Let .
. . ,
P() =3 NiE(5) — m(Fi(t) +E 978 en0)+ 2JUCFUD) + Dul8)
| “"75<F5(t) +—2— byuds | e=o ),, |
~ where Ny and n(4=1:--+-- 5) are positive constants fo be specified later. From Lemma |

4 and Lemma 5, there exists a constant g,>0 such that when e<g the following
holds: o |

P#)—-P0)<— lgiﬂmf,—%ﬂkvgt—%im@g N*sz |
— [ [ it B[ [ (1 Dult+ | Do) + K ([Nt oot

2
-1 “u’gt +K 971” (ufet+ufy+07) — "hjj—'i— Ue

o, (ot vt L) | [ £ et B [ (ot

5
+ u/2¢ + ’Umvt) "74”— u2mt+ K 4 JJ("%@# + Suia:t +% 'vf;t)
1 [ w8t Ko | ettt o). e

By Lemma 6 we arrive at

P -P0)< —( N;;’“ —KNs—Kn (%_+Ka))@g

-

— [[( sk — K Ny~ Kny—Kn(5+K3) ok
- ( 1‘;?’“ —Kne— Kns'(1+K)> vf,m-ﬁ(.Ngk —Kws)viu
- F( 1\;5]6 -K N3 —Kna )‘Ufmt _” ("71"K "nad Jud,

_(( gm__K@-;-K)m Kn3> Ufp— ”-% "s¥500

o

-

~

) .
- '8 ?74‘*K2’l73 K(1+K)"75)u2mt"J"((975 Kam)um‘

+fs“(|Du§1+[Dfu|1). | - (3.€9)

Hereafter K denotes the positive constant depending on K, Ny, m

In what follows we will explain that by appropriately choosing =, N; and 9J,
there exist positive consbants g1, oa Such that the followmg inequalities hold
simultaneously,

P() +03 [ (| Duta| -+ 02+ oy o2+ o)

<P(0)+EKs j j (| Duli+|Do|2), Vo<i<T (3.69)

and
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P(H)>cs j: w3+ 0|2+ o2 4ok do. (3.65)

Hereafter o;(i=1, 2, :-+) denote positive congtants independent of u, v, T, ¢.
In fact, for (3.64) to be satisfied, it only need, by (3.63); to choose
Ni(é=1,--+, 5) and & so that the coefficients of each terms (except the last term) are

less than zero. For instance, by taking ma=mn. as pdsitive constant, na-——%‘s—g“‘—,
K
M= s ='§—K(_1B—E{—2—ET and 8= 5 K2 the coefficients of u%;, Ui, Uses, Use:, and ul, are

less than zero. Then we fake N3, N4, N; so large that the coeflicients of v, vZy, 9% ‘
are less than zero. Finally, taking N, N, large enbugh t0 ensure that the coefficients
of the remaining two terms are less than zero, S0 (3.64) is satisfied. It is easy to see
that when N, are fixed, (8.64) still holds for ; being reduced. 4

For (3.65) to be satisfied, by the definition of P(¢), it only need bo take
m(4=1, -+, 5) small enough so that the non-square power terms, such as Us,
appearing in F(&) (i= 1, o, 5), can be bounded by the square power terms
appearing in F;(¢)(4=1, -, 5) and D;(¢)(4=2, 8, 4). For instance, by taking

NGO  _ NsOp _ N0
7}3 2]020 2 973‘“ zk% J 774— 2% 3 we ha've

1 1
N2(Fa(t) + Dy B . V>0 . (u2+9?),
o
N, [* g o
ﬂa(FB(t)‘l‘Da(t))'*‘“‘i‘ OG"Ji?O’s. (ui‘,—l—'vi ’ - (8.66) .

-1 :
ne(Fa(®) +Du(®)) + B [ oo ] (aterob).
Again take 7y, 7}5 g0 small that by Lemma 1 the following inequalify holds
‘2—L,(N1u§+Nsu§t+Nau§m+N4u§tt+ N sude:)

1 1
- <J0 Ugthay O —I—-%— byus| w=0> — s (Jo Uaglay do-+ _:?E_ byudi| e—o )

1 ’
>0 (1t k) da. (3.67)

In order to prove (38.2), by the system (1.21), (1.22) and the boundary
conditions we can easily obtain '
Lemma 7. When the solution (u, v) €37 satisfies (8.1), YO<t<T, the following
hold: '

1 1
% d0<da<K | (|Do|*+ul,)da,

o

1
| 92 <K | (| Duli+ | Do|*+ot)ds, | (3.68)

| ohuda<K [ (| Duli+|Dol*+of,+ok),

4
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H V2 <K JI(@W+%mt) +K sﬂ(vm+ | Du|+ lel")

Moreover, from (8.38) and Lemma 1 we can get

J [u]? +v”<KJ [Dul- +lpv|3, ) (3.69)
.rf‘vKK Hv?m, - N CA ()
: ,‘_[’v%‘<'K Hfu%w. : ’ B CREY

So (3 64) and (8.65) can be rewriften ag :
P®) +aéjj(|u|2+m et ol 12) <P +Ke{[|Dult+ Dol (3.72)

and
| P@%sﬁ(m + | 0|20kt 02r) do. (3.13)

) we a,rrlve at (3 2).

~ Substituting (3.78) into (3.72), taking si='- min( E ) 80

Thus the proof of Theorem 3 is completed.

§ 4. Global Existence and Decay of Solutions

Baged on sections 2 and 8, in this section we are going to prove the main
theorem, that ig, Theorem 1. By Theorem 2, when M3<XM3o, there exists a positive
constant #, depending on My, such that p’roblém d.21), (1.22), (1.16)—(1.20)
admits a unique smooth solution (u, v)VEE’—“(OiMi,,OzM 1). By the imbedding the-
orem, the following holds in [0, 1] %X [0, to]

luli+ v 11+|’U,M-I+I‘UMI<K2_M1, ’ B CHY
where K, is a positive constant independent of u, v, @, ¢ and f,. Taking
Mo
SMy= — 4.2) .
Mi<Mi= mln( ot 701]62 s Mo, T ), ( 2). |

where s;, K, are the constants appearing in Theorem 3, and My, in Theprem 2. We
can get the global existence by the well known continuation argument. To geb the
decay of the solution, similarly to (38.72), we can get

t 1
P(8)—P(%) —I—o‘JJo (lw]34 |9 34 0t -0+ 2220)

t (1 ‘ 4 .
<Es| [ (1Dulz+ Do}, (4.3)
By tne definition of P (%), it i3 easy to see that o » _
. 1 ' - -
P() <K3j (Jul3+|ol3+otn+o) do, (4.4)

provided that & (equivalently, the initial data) is sufficiently small. It follows from
(4.8) and (4.4) that ‘
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j' P(#)d#'<0. (4.5)
'Therefore, when P(¢) €04, i. e., the solutlon is more regular, we have
-t PO<0. , (4.6)
Hence ' : : 3 :
P()<e = P(0). .7

Substituting (3.78) into (4.7), we get ‘
1 S
[} Culg+ folg+ oot < BT, (4.8)

' By the usual dense argument and Banach—Saks theorem, the restriction P () €0*
can be droped. Thus ’ohe proof of Theorem 1 is comple’ned
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